1
|
Lan S, Zhao Z, He Z. Measles Virus-Based Genetic Modifications: Progress in Hematological Malignancy Treatment. Onco Targets Ther 2025; 18:605-615. [PMID: 40304006 PMCID: PMC12039834 DOI: 10.2147/ott.s518407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
With the enhancement of public living standards and health awareness, demands for high-quality treatment with hematological malignancies are increasing, correspondingly. However, since significant adverse events have been found associated with chemotherapy, radiotherapy and other traditional anticancer measures, and a considerable number of patients still experience relapse or drug resistance, developing new treatment strategies has become the focus in the field of hematological malignancies. The measles virus vaccine strain, as an oncolytic virus, has been paid special attention to, due to its dual advantages of selectively invading and killing tumor cells and activating anti-tumor immunity. Currently, multiple studies have shown the effectiveness of unmodified measles virus vaccine strains in treating hematological malignancies. However, due to the systemic invasiveness and complexity of hematological malignancies, the concept of genetically engineered measles virus vaccine strain has garnered significant attention. In this article, we reviewed the progress on measles virus vaccine strains in the treatment of hematological malignancies, especially on the application of genetic engineering technology. Meanwhile, we also explored the challenges encountered in current treatments and discussed future design direction for modifying measles virus vaccine strains.
Collapse
Affiliation(s)
- Siqian Lan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Zhengyan Zhao
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| |
Collapse
|
2
|
Kľoc D, Kurhajec S, Huniadi M, Sýkora J, Guman T, Šarišský M. SLAM Family Receptors in B Cell Chronic Lymphoproliferative Disorders. Int J Mol Sci 2024; 25:4014. [PMID: 38612827 PMCID: PMC11012012 DOI: 10.3390/ijms25074014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) receptor family (SLAMF) consists of nine glycoproteins that belong to the CD2 superfamily of immunoglobulin (Ig) domain-containing molecules. SLAMF receptors modulate the differentiation and activation of a wide range of immune cells. Individual SLAMF receptors are expressed on the surface of hematopoietic stem cells, hematopoietic progenitor cells, B cells, T cells, NK cells, NKT cells, monocytes, macrophages, dendritic cells, neutrophils, and platelets. The expression of SLAMF receptors was studied during normal B cell maturation. Several SLAMF receptors were also detected in cancer cell lines of B-lymphoid origin and in pathological B cells from patients with B cell chronic lymphoproliferative disorders (B-CLPD), the most frequent hematological malignancies in adults. This review summarizes current knowledge on the expression of SLAMF receptors and their adaptor proteins SAP and EAT-2 in B-CLPD. Several SLAMF receptors could be regarded as potential diagnostic and differential diagnostic markers, prognostic factors, and targets for the development of novel drugs for patients with B-CLPD.
Collapse
Affiliation(s)
- Dominik Kľoc
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.K.); (M.H.)
| | - Slavomír Kurhajec
- Department of Pharmaceutical Technology, Pharmacognosy, and Botany, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia;
| | - Mykhailo Huniadi
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.K.); (M.H.)
| | - Ján Sýkora
- Department of Haematology and Oncohaematology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice and Louis Pasteur University Hospital Košice, Trieda SNP 1, 04011 Košice, Slovakia; (J.S.); (T.G.)
| | - Tomáš Guman
- Department of Haematology and Oncohaematology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice and Louis Pasteur University Hospital Košice, Trieda SNP 1, 04011 Košice, Slovakia; (J.S.); (T.G.)
| | - Marek Šarišský
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.K.); (M.H.)
| |
Collapse
|
3
|
Yagi M, Hama M, Ichii S, Nakashima Y, Kanbayashi D, Kurata T, Yusa K, Komano J. S phingomyelin synthase 1 supports two steps of rubella virus life cycle. iScience 2023; 26:108267. [PMID: 38026182 PMCID: PMC10654604 DOI: 10.1016/j.isci.2023.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Our knowledge of the regulatory mechanisms that govern the replication of the rubella virus (RV) in human cells is limited. To gain insight into the host-pathogen interaction, we conducted a loss-of-function screening using the CRISPR-Cas9 system in the human placenta-derived JAR cells. We identified sphingomyelin synthase 1 (SGMS1 or SMS1) as a susceptibility factor for RV infection. Genetic knockout of SGMS1 rendered JAR cells resistant to infection by RV. The re-introduction of SGMS1 restored cellular susceptibility to RV infection. The restricted step of RV infection was post-endocytosis processes associated with the endosomal acidification. In the late phase of the RV replication cycle, the maintenance of viral persistence was disrupted, partly due to the attenuated viral gene expression. Our results shed light on the unique regulation of RV replication by a host factor during the early and late phases of viral life cycle.
Collapse
Affiliation(s)
- Mayuko Yagi
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Minami Hama
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Sayaka Ichii
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Yurie Nakashima
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Daiki Kanbayashi
- Osaka Institute of Public Health, Morinomiya Center, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Takako Kurata
- Osaka Institute of Public Health, Morinomiya Center, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Jun Komano
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| |
Collapse
|
4
|
Sousa-Pimenta M, Martins Â, Machado V. Oncolytic viruses in hematological malignancies: hijacking disease biology and fostering new promises for immune and cell-based therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:189-219. [PMID: 37541724 DOI: 10.1016/bs.ircmb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
The increased tropism for malignant cells of some viruses has been highlighted in recent studies, prompting their use as a strategy to modify the transcriptional profile of those cells, while sparing the healthy ones. Likewise, they have been recognized as players modulating microenvironmental immunity, namely through an increase in antigen-presenting, natural-killer, and T CD8+ cytotoxic cells by a cross-priming mechanism elicited by tumor-associated antigens. The immunomodulatory role of the oncolytic virus seems relevant in hematological malignancies, which may relapse as a result of a proliferative burst elicited by an external stimulus in progenitor or neoplastic stem cells. By reprogramming the host cells and the surrounding environment, the potential of virotherapy ranges from the promise to eradicate the minimal measurable disease (in acute leukemia, for example), to the ex vivo purging of malignant progenitor cells in the setting of autologous bone marrow transplantation. In this review, we analyze the recent advances in virotherapy in hematological malignancies, either when administered alone or together with chemotherapeutic agents or other immunomodulators.
Collapse
Affiliation(s)
- Mário Sousa-Pimenta
- Serviço de Onco-Hematologia, Instituto Português de Oncologia do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Biomedicina, Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto, Universidade do Porto, Porto, Portugal.
| | - Ângelo Martins
- Serviço de Onco-Hematologia, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Vera Machado
- Grupo de Oncologia Molecular e Patologia Viral, Centro de investigação do IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Instituto português de Oncologia do Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), LAB2, Rua Dr António Bernardino de Almeida, Porto, Portugal
| |
Collapse
|
5
|
Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi AA. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol 2023; 14:1174138. [PMID: 37251372 PMCID: PMC10213746 DOI: 10.3389/fimmu.2023.1174138] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family receptors were discovered in immune cells for the first time. The SLAM-family receptors are a significant player in cytotoxicity, humoral immune responses, autoimmune diseases, lymphocyte development, cell survival, and cell adhesion. There is growing evidence that SLAM-family receptors have been involved in cancer progression and heralded as a novel immune checkpoint on T cells. Previous studies have reported the role of SLAMs in tumor immunity in various cancers, including chronic lymphocytic leukemia, lymphoma, multiple myeloma, acute myeloid leukemia, hepatocellular carcinoma, head and neck squamous cell carcinoma, pancreas, lung, and melanoma. Evidence has deciphered that the SLAM-family receptors may be targeted for cancer immunotherapy. However, our understanding in this regard is not complete. This review will discuss the role of SLAM-family receptors in cancer immunotherapy. It will also provide an update on recent advances in SLAM-based targeted immunotherapies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shamim Mollazadeh Ghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shabnam Mollazadehghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Measles Virus as an Oncolytic Immunotherapy. Cancers (Basel) 2021; 13:cancers13030544. [PMID: 33535479 PMCID: PMC7867054 DOI: 10.3390/cancers13030544] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Measles virus (MeV) preferentially replicates in malignant cells, leading to tumor lysis and priming of antitumor immunity. Live attenuated MeV vaccine strains are therefore under investigation as cancer therapeutics. The versatile MeV reverse genetics systems allows for engineering of advanced targeted, armed, and shielded oncolytic viral vectors. Therapeutic efficacy can further be enhanced by combination treatments. An emerging focus in this regard is combination immunotherapy, especially with immune checkpoint blockade. Despite challenges arising from antiviral immunity, availability of preclinical models, and GMP production, early clinical trials have demonstrated safety of oncolytic MeV and yielded promising efficacy data. Future clinical trials with engineered viruses, rational combination regimens, and comprehensive translational research programs will realize the potential of oncolytic immunotherapy.
Collapse
|
7
|
Yoon H, Kim EK, Ko YH. SLAMF1 contributes to cell survival through the AKT signaling pathway in Farage cells. PLoS One 2020; 15:e0238791. [PMID: 32886706 PMCID: PMC7473542 DOI: 10.1371/journal.pone.0238791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022] Open
Abstract
SLAMF1 is often overexpressed in Epstein Barr virus (EBV)-infected B cell tumors. However, its role in the pathogenesis of EBV-infected B cell tumors remains largely unknown. Here, we generated SLAMF1-deficient EBV+ tumor cells and examined the effect of its deficiency on cell proliferation and cell survival. There were no significant differences in cell proliferation and cell cycle distribution for short periods between the SLAMF1-deficient and wild-type cells. However, the deficient cells were more resistant to an AKT inhibitor (MK-2206). When the both cells were co-cultured and repeatedly exposed to the limitations in nutrition and growth factors, the SLAMF1-deficient cells were gradually decreased. We observed that levels of phospho-AKT were differentially regulated according to the nutritional status between the SLAMF1-deficient and wild-type cells. A decrease in phospho-AKT was observed in SLAMF1-deficient cells as well as an increase in pro-apoptotic Bim just before cell passage, which may have been due to the loss of SLAMF1 under poor growth condition. Overall, SLAMF1 is not a strong survival factor, but it seems to be necessary for cell survival in unfavorable growth condition.
Collapse
Affiliation(s)
- Heejei Yoon
- Clinical Medicine Research Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Department of Ophthalmology, Corneal Dystrophy Research Institute, College of Medicine, Yonsei University, Seoul, South Korea
- * E-mail: (YHK); (HY)
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, College of Medicine, Yonsei University, Seoul, South Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- * E-mail: (YHK); (HY)
| |
Collapse
|
8
|
Gordiienko I, Shlapatska L, Kovalevska L, Sidorenko SP. SLAMF1/CD150 in hematologic malignancies: Silent marker or active player? Clin Immunol 2018; 204:14-22. [PMID: 30616923 DOI: 10.1016/j.clim.2018.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
SLAMF1/CD150 receptor is a founder of signaling lymphocyte activation molecule (SLAM) family of cell-surface receptors. It is widely expressed on cells within hematopoietic system. In hematologic malignancies CD150 cell surface expression is restricted to cutaneous T-cell lymphomas, few types of B-cell non-Hodgkin's lymphoma, near half of cases of chronic lymphocytic leukemia, Hodgkin's lymphoma, and multiple myeloma. Differential expression among various types of hematological malignancies allows considering CD150 as diagnostical and potential prognostic marker. Moreover, CD150 may be a target for antibody-based or measles virus oncolytic therapy. Due to CD150 signaling properties it is involved in regulation of malignant cell fate decision and tumor microenvironment in Hodgkin's lymphoma and chronic lymphocytic leukemia. This review summarizes evidence for the important role of CD150 in pathogenesis of hematologic malignancies.
Collapse
Affiliation(s)
- Inna Gordiienko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Larysa Shlapatska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Larysa Kovalevska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Svetlana P Sidorenko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
9
|
Yoon H, Ko YH. LMP1+SLAMF1high cells are associated with drug resistance in Epstein-Barr virus-positive Farage cells. Oncotarget 2018; 8:24621-24634. [PMID: 28445949 PMCID: PMC5421874 DOI: 10.18632/oncotarget.15600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
How Epstein-Barr virus (EBV) affects the clinical outcome of EBV-positive diffuse large B-cell lymphoma (DLBCL) remains largely unknown. The viral oncogene LMP1 is at the crux of tumorigenesis and cell survival. Therefore, we examined the association between LMP1high cells drug resistance. We first assessed SLAMF1 as a surrogate marker for LMP1high cells. LMP1 and its target gene CCL22 were highly expressed in SLAMF1high Farage cells. These cells survived longer following treatment with a combination of cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP). Genes associated with interferon-alpha, allograft rejection, NF-κB and STAT3 were also overexpressed in the surviving Farage cells. Specifically, CHOP treatment increased IL10, LMP1 and pSTAT3 expression levels in a dose-dependent fashion. Addition of exogenous IL4 greatly increased the levels of LMP1 and pSTAT3, which rendered the Farage cells more resistant to CHOP by up-regulating the anti-apoptotic genes BCL-XL and MCL1. The Farage cells were sensitive to Velcade and STAT3, 5, and 6 inhibitors. Inhibition of NF-κB and STAT3, in combination with CHOP, decreased LMP1 levels and effectively induced cell death in the Farage cells. We suggest that LMP1high cells are responsible for the poor drug response of EBV+ DLBCL and that perturbation of the NF-κB and STAT signaling pathways increases toxicity in these cells.
Collapse
Affiliation(s)
- Heejei Yoon
- Clinical Research Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Fouquet G, Marcq I, Debuysscher V, Bayry J, Rabbind Singh A, Bengrine A, Nguyen-Khac E, Naassila M, Bouhlal H. Signaling lymphocytic activation molecules Slam and cancers: friends or foes? Oncotarget 2018; 9:16248-16262. [PMID: 29662641 PMCID: PMC5882332 DOI: 10.18632/oncotarget.24575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/03/2017] [Indexed: 01/01/2023] Open
Abstract
Signaling Lymphocytic Activation Molecules (SLAM) family receptors are initially described in immune cells. These receptors recruit both activating and inhibitory SH2 domain containing proteins through their Immunoreceptor Tyrosine based Switch Motifs (ITSMs). Accumulating evidence suggest that the members of this family are intimately involved in different physiological and pathophysiological events such as regulation of immune responses and entry pathways of certain viruses. Recently, other functions of SLAM, principally in the pathophysiology of neoplastic transformations have also been deciphered. These new findings may prompt SLAM to be considered as new tumor markers, diagnostic tools or potential therapeutic targets for controlling the tumor progression. In this review, we summarize the major observations describing the implications and features of SLAM in oncology and discuss the therapeutic potential attributed to these molecules.
Collapse
Affiliation(s)
- Gregory Fouquet
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Ingrid Marcq
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Véronique Debuysscher
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Jagadeesh Bayry
- INSERM UMRS 1138, Centre de Recherche des Cordeliers-Paris, Paris, France
| | | | | | - Eric Nguyen-Khac
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France.,Service Hepato-Gastroenterologie, Centre Hospitalier Universitaire Sud, Amiens, France
| | - Mickael Naassila
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Hicham Bouhlal
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| |
Collapse
|
11
|
Chow J, Márka Z, Bartos I, Márka S, Kagan JC. Environmental Stress Causes Lethal Neuro-Trauma during Asymptomatic Viral Infections. Cell Host Microbe 2017; 22:48-60.e5. [PMID: 28704652 PMCID: PMC5560172 DOI: 10.1016/j.chom.2017.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/16/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
Abstract
Asymptomatic infections often proceed undetected, yet can still prime the host to be sensitive to secondary environmental stress. While the mechanisms underlying disease caused by asymptomatic infections are unknown, it is believed that productive pathogen replication is required. We report that the environmental stress of carbon dioxide (CO2) anesthesia converts an asymptomatic rhabdovirus infection in Drosophila to one that is lethal. This lethality results from a pool of infectious virus in glial cells and is regulated by the antiviral RNAi pathway of the host. CO2 sensitivity is caused by the fusogenic activity of the viral glycoprotein, which results in fusion of neurons and glia. Expression of the viral glycoprotein, but not a fusion defective mutant, is sufficient to cause CO2 sensitivity, which can occur even in the absence of productive viral replication. These findings highlight how viral proteins, independent of pathogen replication, may predispose hosts to life-threatening environmental stress.
Collapse
Affiliation(s)
- Jonathan Chow
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Zsuzsa Márka
- Department of Physics, Columbia University, New York, NY, USA
| | - Imre Bartos
- Department of Physics, Columbia University, New York, NY, USA
| | - Szabolcs Márka
- Department of Physics, Columbia University, New York, NY, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Nakata K, Takeda S, Tanaka A, Kwang J, Komano J. Antiviral activity of acid beta-glucosidase 1 on enterovirus 71, a causative agent of hand, foot and mouth disease. J Gen Virol 2017; 98:643-651. [PMID: 28141506 DOI: 10.1099/jgv.0.000723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand, foot and mouth disease (HFMD). EV71 causes fever, rash, diarrhoea and, in some cases, acute encephalopathy/encephalitis, which can be fatal. No specific treatment is currently available for EV71 infection. Here, we conducted a cDNA library screen and identified acid β-glucosidase 1 (GBA1; also known as β-glucocerebrosidase) as an EV71 resistance factor. The anti-EV71 function of GBA1 was verified by gene transduction and knockdown experiments. Cerezyme, a molecular drug used to treat Gaucher's disease and having recombinant human GBA1 as the active ingredient, protected against EV71 infection. The anti-EV71 activity of GBA1 was bimodal: endogenous GBA1 restricted cell surface expression levels of scavenger receptor class B, member 2 (SCARB2), also known as lysosomal integral membrane protein 2 (LIMP-2), and exogenous recombinant GBA1 interfered with EV71 to interact with SCARB2 outside the cell. Thus, our findings suggest that GBA1 may represent a novel molecular target for the treatment of EV71 infection.
Collapse
Affiliation(s)
- Keiko Nakata
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, 3-69 Nakamichi-1chome, Higashinari-ku, Osaka 537-0025, Japan
| | - Satoshi Takeda
- AIDS Research Center, National Institute of Infectious Diseases, Toyama 1-23-1 Shinjuku-ku, Tokyo 162-8640, Japan
| | - Atsushi Tanaka
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Jun Komano
- National Hospital Organization, Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya 460-0001, Japan
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, 3-69 Nakamichi-1chome, Higashinari-ku, Osaka 537-0025, Japan
| |
Collapse
|
13
|
Yoon H, Park S, Ju H, Ha SY, Sohn I, Jo J, Do IG, Min S, Kim SJ, Kim WS, Yoo HY, Ko YH. Integrated copy number and gene expression profiling analysis of Epstein-Barr virus-positive diffuse large B-cell lymphoma. Genes Chromosomes Cancer 2015; 54:383-96. [PMID: 25832818 DOI: 10.1002/gcc.22249] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/15/2022] Open
Abstract
Viral oncogenes and host immunosenescence have been suggested as causes of Epstein-Barr virus-positive diffuse large B-cell lymphoma (EBV + DLBCL) of the elderly. To investigate the molecular genetic basis of immune evasion and tumor outgrowth, we analyzed copy number alterations (CNAs) and gene expression profiles in EBV + DLBCL samples compared with EBV - DLBCL. There were relatively few genomic alterations in EBV + DLBCL compared with those detected in EBV-negative DLBCL. The most frequent CNAs (>30%) in EBV + DLBCLs were gains at 1q23.2-23.3, 1q23.3, 1q32.1, 5p15.3, 8q22.3, 8q24.1-24.2, and 9p24.1; losses at 6q27, 7q11.2, and 7q36.2-36.3 were also recurrent. A gene expression profile analysis identified the host immune response as a key molecular signature in EBV + DLBCL. Antiviral response genes, proinflammatory cytokines, and chemokines associated with the innate immune response were overexpressed, indicating the presence of a virusinduced inflammatory microenvironment. Genes associated with the B-cell receptor signaling pathway were downregulated. An integrated analysis indicated that SLAMF1 and PDL2 were key targets of the gains detected at 1q23.2-23.3 and 9p24.1. The chromosomal gain at 9p24.1 was associated with poor overall survival. Taken together, our results led to the identification of recurrent copy number alterations and distinct gene expression associated with the host immune response in EBV + DLBCL. We suggest that the upregulation of PDL2 on 9p24.1 promotes immune evasion and is associated with poor prognosis in EBV + DLBCL.
Collapse
Affiliation(s)
- Heejei Yoon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Samsung Biomedical Research Institute, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Viral oncolysis - can insights from measles be transferred to canine distemper virus? Viruses 2014; 6:2340-75. [PMID: 24921409 PMCID: PMC4074931 DOI: 10.3390/v6062340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Neoplastic diseases represent one of the most common causes of death among humans and animals. Currently available and applied therapeutic options often remain insufficient and unsatisfactory, therefore new and innovative strategies and approaches are highly needed. Periodically, oncolytic viruses have been in the center of interest since the first anecdotal description of their potential usefulness as an anti-tumor treatment concept. Though first reports referred to an incidental measles virus infection causing tumor regression in a patient suffering from lymphoma several decades ago, no final treatment concept has been developed since then. However, numerous viruses, such as herpes-, adeno- and paramyxoviruses, have been investigated, characterized, and modified with the aim to generate a new anti-cancer treatment option. Among the different viruses, measles virus still represents a highly interesting candidate for such an approach. Numerous different tumors of humans including malignant lymphoma, lung and colorectal adenocarcinoma, mesothelioma, and ovarian cancer, have been studied in vitro and in vivo as potential targets. Moreover, several concepts using different virus preparations are now in clinical trials in humans and may proceed to a new treatment option. Surprisingly, only few studies have investigated viral oncolysis in veterinary medicine. The close relationship between measles virus (MV) and canine distemper virus (CDV), both are morbilliviruses, and the fact that numerous tumors in dogs exhibit similarities to their human counterpart, indicates that both the virus and species dog represent a highly interesting translational model for future research in viral oncolysis. Several recent studies support such an assumption. It is therefore the aim of the present communication to outline the mechanisms of morbillivirus-mediated oncolysis and to stimulate further research in this potentially expanding field of viral oncolysis in a highly suitable translational animal model for the benefit of humans and dogs.
Collapse
|