1
|
Underwood PW, Pawlik TM. Precision Medicine for Metastatic Colorectal Cancer: Where Do We Stand? Cancers (Basel) 2024; 16:3870. [PMID: 39594824 PMCID: PMC11593240 DOI: 10.3390/cancers16223870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Metastatic colorectal cancer is a leading cause of cancer-related death across the world. The treatment paradigm has shifted away from systemic chemotherapy alone to include targeted therapy and immunotherapy. The past two decades have been characterized by increased investigation into molecular profiling of colorectal cancer. These molecular profiles help physicians to better understand colorectal cancer biology among patients with metastatic disease. Additionally, improved data on genetic pathways allow for specific therapies to be targeted at the underlying molecular profile. Investigation of the EGFR, VEGF, HER2, and other pathways, as well as deficient mismatch repair, has led to the development of multiple targeted therapies that are now utilized in the National Comprehensive Cancer Network guidelines for colon and rectal cancer. While these new therapies have contributed to improved survival for metastatic colorectal cancer, long-term survival remains poor. Additional investigation to understand resistance to targeted therapy and development of new targeted therapy is necessary. New therapies are under development and are being tested in the preclinical and clinical settings. The aim of this review is to provide a comprehensive evaluation of molecular profiling, currently available therapies, and ongoing obstacles in the field of colorectal cancer.
Collapse
Affiliation(s)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, 395 W. 12th Ave., Suite 670, Columbus, OH 43210, USA;
| |
Collapse
|
2
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Zhang J, Zhou L, Zhao S, El-Deiry WS. Regorafenib synergizes with TAS102 against multiple gastrointestinal cancers and overcomes cancer stemness, trifluridine-induced angiogenesis, ERK1/2 and STAT3 signaling regardless of KRAS or BRAF mutational status. Oncotarget 2024; 15:424-438. [PMID: 38953895 PMCID: PMC11218792 DOI: 10.18632/oncotarget.28602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Single-agent TAS102 (trifluridine/tipiracil) and regorafenib are FDA-approved treatments for metastatic colorectal cancer (mCRC). We previously reported that regorafenib combined with a fluoropyrimidine can delay disease progression in clinical case reports of multidrug-resistant mCRC patients. We hypothesized that the combination of TAS102 and regorafenib may be active in CRC and other gastrointestinal (GI) cancers and may in the future provide a treatment option for patients with advanced GI cancer. We investigated the therapeutic effect of TAS102 in combination with regorafenib in preclinical studies employing cell culture, colonosphere assays that enrich for cancer stem cells, and in vivo. TAS102 in combination with regorafenib has synergistic activity against multiple GI cancers in vitro including colorectal and gastric cancer, but not liver cancer cells. TAS102 inhibits colonosphere formation and this effect is potentiated by regorafenib. In vivo anti-tumor effects of TAS102 plus regorafenib appear to be due to anti-proliferative effects, necrosis and angiogenesis inhibition. Growth inhibition by TAS102 plus regorafenib occurs in xenografted tumors regardless of p53, KRAS or BRAF mutations, although more potent tumor suppression was observed with wild-type p53. Regorafenib significantly inhibits TAS102-induced angiogenesis and microvessel density in xenografted tumors, as well inhibits TAS102-induced ERK1/2 activation regardless of RAS or BRAF status in vivo. TAS102 plus regorafenib is a synergistic drug combination in preclinical models of GI cancer, with regorafenib suppressing TAS102-induced increase in microvessel density and p-ERK as contributing mechanisms. The TAS102 plus regorafenib drug combination may be further tested in gastric and other GI cancers.
Collapse
Affiliation(s)
- Jun Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, RI 02912, USA
| | - Lanlan Zhou
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, RI 02912, USA
| | - Shuai Zhao
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, RI 02912, USA
| | - Wafik S. El-Deiry
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, RI 02912, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, RI 02912, USA
| |
Collapse
|
4
|
Miyamoto R, Takigawa H, Yuge R, Shimizu D, Ariyoshi M, Otani R, Tsuboi A, Tanaka H, Yamashita K, Hiyama Y, Urabe Y, Ishikawa A, Sentani K, Oka S. Analysis of anti-tumor effect and mechanism of GLS1 inhibitor CB-839 in colorectal cancer using a stroma-abundant tumor model. Exp Mol Pathol 2024; 137:104896. [PMID: 38703552 DOI: 10.1016/j.yexmp.2024.104896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/01/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Glutaminase 1 (GLS1), a key enzyme in glutamine metabolism in cancer cells, acts as a tumor promoter and could be a potential therapeutic target. CB-839, a GLS1-specific inhibitor, was developed recently. Herein, we aimed to elucidate the anti-tumor effects and mechanism of action of CB-839 in colorectal cancer (CRC). METHODS Using the UCSC Xena public database, we evaluated GLS1 expression in various cancers. Immunostaining for GLS1 was performed on 154 surgically resected human CRC specimens. Subsequently, we examined the GLS1 mRNA expression levels in eight CRC cell lines and evaluated the association between GLS1 expression and CB-839 efficacy. To create a reproducible CRC model with abundant stroma and an allogeneic immune response, we co-transplanted CT26 and stem cells into BALB/c mice and treated them with CB-839. Finally, RNA sequencing of mouse tumors was performed. RESULTS Database analysis showed higher GLS1 expression in CRC tissues than in normal colon tissues. Clinical samples from 114 of the 154 patients with CRC showed positive GLS1 expression. GLS1 expression in clinical CRC tissues correlated with vascular invasion. CB-839 treatment inhibited cancer cell proliferation depending on GLS1 expression in vitro and inhibited tumor growth and metastasis in the CRC mouse model. RNA sequencing revealed that CB-839 treatment inhibited stromal activation, tumor growth, migration, and angiogenesis. These findings were validated through in vitro and in vivo experiments and clinical specimen analysis. CONCLUSIONS GLS1 expression in CRC plays important roles in tumor progression. CB-839 has inhibitory effects on cancer proliferation and the tumor microenvironment.
Collapse
Affiliation(s)
- Ryo Miyamoto
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidehiko Takigawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Ryo Yuge
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daisuke Shimizu
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Misa Ariyoshi
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rina Otani
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akiyoshi Tsuboi
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidenori Tanaka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ken Yamashita
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuichi Hiyama
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuji Urabe
- Department of Gastrointestinal Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Akira Ishikawa
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
6
|
Serra M, Rubes D, Schinelli S, Paolillo M. Small Molecules against Metastatic Tumors: Concrete Perspectives and Shattered Dreams. Cancers (Basel) 2023; 15:4173. [PMID: 37627201 PMCID: PMC10453213 DOI: 10.3390/cancers15164173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis is the main cause of anti-cancer therapy failure, leading to unfavorable prognosis for patients. The true challenge to increase cancer patient life expectancy by making cancer a chronic disease with periodic but manageable relapses relies on the development of efficient therapeutic strategies specifically directed against key targets in the metastatic process. Traditional chemotherapy with classical alkylating agents, microtubule inhibitors, and antimetabolites has demonstrated its limited efficacy against metastatic cells due to their capacity to select chemo-resistant cell populations that undergo epithelial-to-mesenchymal transition (EMT), thus promoting the colonization of distant sites that, in turn, sustain the initial metastatic process. This scenario has prompted efforts aimed at discovering a wide variety of small molecules and biologics as potential anti-metastatic drugs directed against more specific targets known to be involved in the various stages of metastasis. In this short review, we give an overview of the most recent advances related to important families of antimetastatic small molecules: intracellular tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, KRAS inhibitors, and integrin antagonists. Although the majority of these small molecules are not yet approved and not available in the drug market, any information related to their stage of development could represent a precious and valuable tool to identify new targets in the endless fight against metastasis.
Collapse
Affiliation(s)
- Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.R.); (S.S.); (M.P.)
| | | | | | | |
Collapse
|
7
|
Otani R, Takigawa H, Yuge R, Shimizu D, Ariyoshi M, Miyamoto R, Kadota H, Hiyama Y, Hayashi R, Urabe Y, Ishikawa A, Oue N, Kitadai Y, Oka S, Tanaka S. The Anti-Tumor Effect of the Newly Developed LAT1 Inhibitor JPH203 in Colorectal Carcinoma, According to a Comprehensive Analysis. Cancers (Basel) 2023; 15:cancers15051383. [PMID: 36900176 PMCID: PMC10000236 DOI: 10.3390/cancers15051383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
A novel large neutral amino acid transporter 1 (LAT1)-specific inhibitor, JPH203, is expected to cause cancer-specific starvation and possess anti-tumor effects; however, its anti-tumor mechanism for colorectal cancer (CRC) remains unclear. We analyzed LAT family gene expressions in public databases using UCSC Xena and evaluated LAT1 protein expression using immunohistochemistry in 154 cases of surgically resected CRC. We also evaluated mRNA expression using polymerase chain reaction in 10 CRC cell lines. Furthermore, JPH203 treatment experiments were conducted in vitro and in vivo using an allogeneic immune-responsive mouse model with abundant stroma created via the orthotopic transplantation of the mouse-derived CRC cell line CT26 and mesenchymal stem cells. The treatment experiments were followed by comprehensive gene expression analyses with RNA sequencing. Database analyses and immunohistochemistry research on clinical specimens revealed that LAT1 expression was cancer-dominant, and its increase was accompanied by tumor progression. In vitro, JPH203 was effective in an LAT1 expression-dependent manner. In vivo, JPH203 treatment considerably reduced tumor size and metastasis, and RNA sequencing-based pathway analysis showed that not only tumor growth and amino acid metabolism pathways, but also stromal activation-related pathways were suppressed. The results of the RNA sequencing were validated in the clinical specimens, as well as both in vitro and in vivo. LAT1 expression in CRC plays an important role in tumor progression. JPH203 may inhibit the progression of CRC and tumor stromal activity.
Collapse
Affiliation(s)
- Rina Otani
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hidehiko Takigawa
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-822575939
| | - Ryo Yuge
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Daisuke Shimizu
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Misa Ariyoshi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Ryo Miyamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hiroki Kadota
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yuichi Hiyama
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Ryohei Hayashi
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yuji Urabe
- Department of Gastrointestinal Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Akira Ishikawa
- Department of Molecular Pathology, Hiroshima University, Hiroshima 734-8551, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yasuhiko Kitadai
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
8
|
Dey A, Mitra A, Pathak S, Prasad S, Zhang AS, Zhang H, Sun XF, Banerjee A. Recent Advancements, Limitations, and Future Perspectives of the use of Personalized Medicine in Treatment of Colon Cancer. Technol Cancer Res Treat 2023; 22:15330338231178403. [PMID: 37248615 PMCID: PMC10240881 DOI: 10.1177/15330338231178403] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/18/2023] [Accepted: 03/13/2023] [Indexed: 08/29/2024] Open
Abstract
Due to the heterogeneity of colon cancer, surgery, chemotherapy, and radiation are ineffective in all cases. The genomic profile and biomarkers associated with the process are considered in personalized medicine, along with the patient's personal history. It is based on the response of the targeted therapies to specific genetic variations. The patient's genetic transcriptomic and epigenetic features are evaluated, and the best therapeutic approach and diagnostic testing are identified through personalized medicine. This review aims to summarize all the necessary, updated information on colon cancer related to personalized medicine. Personalized medicine is gaining prominence as generalized treatments are finding it challenging to contain colon cancer cases which currently rank fourth among global cancer incidence while being the fifth largest in total death cases worldwide. In personalized therapy, patients are grouped into specific categories, and the best therapeutic approach is chosen based on evaluating their molecular features. Various personalized strategies are currently being explored in the treatment of colon cancer involving immunotherapy, phytochemicals, and other biomarker-specific targeted therapies. However, significant challenges must be overcome to integrate personalized medicine into healthcare systems completely. We look at the various signaling pathways and genetic and epigenetic alterations associated with colon cancer to understand and identify biomarkers useful in targeted therapy. The current personalized therapies available in colon cancer treatment and the strategies being explored to improve the existing methods are discussed. This review highlights the advantages and limitations of personalized medicine in colon cancer therapy. The current scenario of personalized medicine in developed countries and the challenges faced in middle- and low-income countries are also summarized. Finally, we discuss the future perspectives of personalized medicine in colon cancer and how it could be integrated into the healthcare systems.
Collapse
Affiliation(s)
- Amit Dey
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Abhijit Mitra
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Suhanya Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Białystok, Poland
| | | | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Orebro University, Örebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| |
Collapse
|
9
|
Barnestein R, Galland L, Kalfeist L, Ghiringhelli F, Ladoire S, Limagne E. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness. Oncoimmunology 2022; 11:2120676. [PMID: 36117524 PMCID: PMC9481153 DOI: 10.1080/2162402x.2022.2120676] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
With the rapid clinical development of immune checkpoint inhibitors (ICIs), the standard of care in cancer management has evolved rapidly. However, immunotherapy is not currently beneficial for all patients. In addition to intrinsic tumor factors, other etiologies of resistance to ICIs arise from the complex interplay between cancer and its microenvironment. Recognition of the essential role of the tumor microenvironment (TME) in cancer progression has led to a shift from a tumor-cell-centered view of cancer development, to the concept of a complex tumor ecosystem that supports tumor growth and metastatic dissemination. The expansion of immunosuppressive cells represents a cardinal strategy deployed by tumor cells to escape detection and elimination by the immune system. Regulatory T lymphocytes (Treg), myeloid-derived suppressor cells (MDSCs), and type-2 tumor-associated macrophages (TAM2) are major components of these inhibitory cellular networks, with the ability to suppress innate and adaptive anticancer immunity. They therefore represent major impediments to anticancer therapies, particularly immune-based interventions. Recent work has provided evidence that, beyond their direct cytotoxic effects on cancer cells, several conventional chemotherapeutic (CT) drugs and agents used in targeted therapies (TT) can promote the elimination or inactivation of suppressive immune cells, resulting in enhanced antitumor immunity. In this review, we will analyze findings pertaining to this concept, discuss the possible molecular bases underlying the selective targeting of these immunosuppressive cells by antineoplastic agents (CT and/or TT), and consider current challenges and future prospects related to the integration of these molecules into more efficient anticancer strategies, in the era of immunotherapy.
Collapse
Affiliation(s)
- Robby Barnestein
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
| | - Loïck Galland
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
| | - Laura Kalfeist
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - François Ghiringhelli
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Sylvain Ladoire
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Emeric Limagne
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| |
Collapse
|
10
|
Chen L, Yang F, Chen S, Tai J. Mechanisms on chemotherapy resistance of colorectal cancer stem cells and research progress of reverse transformation: A mini-review. Front Med (Lausanne) 2022; 9:995882. [PMID: 36172536 PMCID: PMC9510709 DOI: 10.3389/fmed.2022.995882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor recurrence and chemotherapy resistance are mainly responsible for poor prognosis in colorectal cancer (CRC) patients. Cancer stem cell (CSC) has been identified in many solid tumors, including CRC. Additionally, CSC cannot be completely killed during chemotherapy and develops resistance to chemotherapeutic drugs, which is the main reason for tumor recurrence. This study reviews the main mechanisms of CSC chemotherapy resistance in CRC, including activation of DNA damage checkpoints, epithelial-mesenchymal transition (EMT), inhibition of the overexpression of antiapoptotic regulatory factors, overexpression of ATP-binding cassette (ABC) transporters, maintenance of reactive oxygen species (ROS) levels, and the dormant state of CSC. Advances in research to reverse chemotherapy resistance are also discussed. Our study can provide the promising potential for eliminating CSC and preventing tumor progression for CRC treatment.
Collapse
Affiliation(s)
- Lei Chen
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Funing Yang
- Pediatric Outpatient Clinic, First Hospital of Jilin University, Changchun, China
| | - Si Chen
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
- *Correspondence: Jiandong Tai
| |
Collapse
|
11
|
Cui Y, Xiao R, Zhou Y, Liu J, Wang Y, Yang X, Shen Z, Liang B, Shen K, Li Y, Xiong G, Ye Y, Ai X. Establishment of organoid models based on a nested array chip for fast and reproducible drug testing in colorectal cancer therapy. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00206-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Liu J, Tao H, Yuan T, Li J, Li J, Liang H, Huang Z, Zhang E. Immunomodulatory effects of regorafenib: Enhancing the efficacy of anti-PD-1/PD-L1 therapy. Front Immunol 2022; 13:992611. [PMID: 36119072 PMCID: PMC9479218 DOI: 10.3389/fimmu.2022.992611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
Anti-PD-1/PD-L1 therapy has shown significant benefits in the treatment of a variety of malignancies. However, not all cancer patients can benefit from this strategy due to drug resistance. Therefore, there is an urgent need for methods that can effectively improve the efficacy of anti-PD-1/PD-L1 therapy. Combining anti-PD-1/PD-L1 therapy with regorafenib has been demonstrated as an effective method to enhance its therapeutic effect in several clinical studies. In this review, we describe common mechanisms of resistance to anti-PD-1/PD-L1 therapy, including lack of tumor immunogenicity, T cell dysfunction, and abnormal expression of PD-L1. Then, we illustrate the role of regorafenib in modifying the tumor microenvironment (TME) from multiple aspects, which is different from other tyrosine kinase inhibitors. Regorafenib not only has immunomodulatory effects on various immune cells, but can also regulate PD-L1 and MHC-I on tumor cells and promote normalization of abnormal blood vessels. Therefore, studies on the synergetic mechanism of the combination therapy may usher in a new era for cancer treatment and help us identify the most appropriate individuals for more precise treatment.
Collapse
Affiliation(s)
- Junjie Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haisu Tao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| |
Collapse
|
13
|
Alessandrini L, Franz L, Sbaraglia M, Saccardo T, Cappello F, Drigo A, Frigo AC, Marioni G. Tumor-Stroma Ratio and Programmed Cell Death Ligand 1 Expression in Preoperative Biopsy and Matched Laryngeal Carcinoma Surgical Specimen. Int J Mol Sci 2022; 23:ijms23148053. [PMID: 35887397 PMCID: PMC9319127 DOI: 10.3390/ijms23148053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Programmed cell death ligand 1 (PD-L1) seems to rely on close relations between neoplastic and immune cells in the tumor microenvironment. Tumor to stroma ratio (TSR) has been associated with prognosis in different malignancies. The aims of this exploratory investigation were to analyze for the first time the: (i) association between TSR, PD-L1 expression and other clinical−pathological features in laryngeal squamous cell carcinoma (LSCC) biopsies and paired surgical specimens; (ii) prognostic and predictive role of TSR and PD-L1. TSR, PD-L1 expression (in terms of combined positive score [CPS]), and other clinical−pathological features were analyzed in biopsies and surgical specimens of 43 consecutive LSCC cases. A CPS < 1 evaluated on surgical specimens was associated with a low TSR (stroma rich) on both biopsies and surgical specimens (p = 0.0143 and p = 0.0063). Low TSR showed a significant negative prognostic value when evaluated on both biopsies and surgical specimens (HR = 8.808, p = 0.0003 and HR = 11.207, p = 0.0002). CPS ≥ 1 appeared to be a favorable prognostic factor (HR = 0.100, p = 0.0265). The association between bioptic and surgical specimen TSR and PD-L1 expression should be further investigated for a potential impact on targeted treatments, also with regard to immunotherapeutic protocols.
Collapse
Affiliation(s)
- Lara Alessandrini
- Department of Medicine DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.A.); (M.S.); (F.C.)
| | - Leonardo Franz
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.F.); (T.S.); (A.D.)
- Guided Therapeutics (GTx) Program International Scholar, University Health Network (UHN), Toronto, ON M5G2C4, Canada
| | - Marta Sbaraglia
- Department of Medicine DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.A.); (M.S.); (F.C.)
| | - Tommaso Saccardo
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.F.); (T.S.); (A.D.)
| | - Filippo Cappello
- Department of Medicine DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.A.); (M.S.); (F.C.)
| | - Alessandro Drigo
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.F.); (T.S.); (A.D.)
| | - Anna Chiara Frigo
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.F.); (T.S.); (A.D.)
- Correspondence: ; Tel.: +39-049-821-2029
| |
Collapse
|
14
|
Della Chiesa M, Setti C, Giordano C, Obino V, Greppi M, Pesce S, Marcenaro E, Rutigliani M, Provinciali N, Paleari L, DeCensi A, Sivori S, Carlomagno S. NK Cell-Based Immunotherapy in Colorectal Cancer. Vaccines (Basel) 2022; 10:1033. [PMID: 35891197 PMCID: PMC9323201 DOI: 10.3390/vaccines10071033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful and immediate response against transformed cells and the ability to modulate the subsequent adaptive immune response. The potential of immunotherapies based on NK cell involvement has been initially revealed in the hematological setting but has inspired the design of different immune tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-based therapies are in urgent need. In this review, we gathered the most recent advances in NK cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).
Collapse
Affiliation(s)
- Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Giordano
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | | | | | - Laura Paleari
- A.Li.Sa., Liguria Region Health Authority, 16121 Genoa, Italy;
| | - Andrea DeCensi
- Medical Oncology, Galliera Hospital, 16128 Genoa, Italy; (N.P.); (A.D.)
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Simona Carlomagno
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| |
Collapse
|
15
|
Yoshida Y, Sasaoka S, Tanaka M, Matsumoto K, Inoue M, Satake R, Shimada K, Mukai R, Suzuki T, Iwata M, Goto F, Mori T, Mori K, Yoshimura T, Nakamura M. Analysis of drug-induced hand-foot syndrome using a spontaneous reporting system database. Ther Adv Drug Saf 2022; 13:20420986221101963. [PMID: 35646307 PMCID: PMC9136434 DOI: 10.1177/20420986221101963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/23/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose The aim of our study was to assess the clinical features of hand-foot syndrome (HFS) associated with certain systemic chemotherapeutic drugs in a real-world setting using the Japanese Adverse Drug Event Report (JADER) database. Methods HFS was defined using the preferred terms from the Medical Dictionary for Regulatory Activities. We used several indices, such as the reporting odds ratios (RORs) at 95% confidence interval (CI), the time-to-onset profile of HFS, and cluster analysis. Results Of 646,779 reports (submission period: April 2004 to September 2020), 1814 reported HFS events. The RORs (95% CI) for axitinib, capecitabine, lapatinib, regorafenib, sorafenib, and sunitinib were 14.9 (11.1-20.1), 54.6 (49.2-60.6), 130.4 (110.7-153.6), 63.3 (55.2-72.6), 29.0 (25.8-32.7), and 13.9 (11.7-16.5), respectively. The analysis of time-to-onset profiles revealed that the median values (interquartile range: 25.0-75.0%) of drug-induced HFS caused by capecitabine, cisplatin, docetaxel, everolimus, regorafenib, sorafenib, and trastuzumab were 21.0 (13.0-42.0), 15.0 (10.0-82.0), 6.0 (3.0-25.0), 86.5 (67.0-90.5), 9.0 (6.0-14.0), 9.0 (6.0-14.0), and 70.0 (15.0-189.0) days, respectively. The number of clusters was set to 4. Among these, one cluster, which included capecitabine, regorafenib, and lapatinib, exhibited a higher reporting ratio and ROR of drug-induced HFS than other drugs. Conclusions The RORs and results of time-to-onset analysis obtained in this study indicated the potential risk of HFS associated with chemotherapeutic drugs. Our results suggest that health care professionals must be aware of the potential onset of drug-induced HFS with docetaxel, regorafenib, and sorafenib for at least 4 weeks; therefore, careful observation is recommended. Plain Language Summary Elucidation of the relationship between cancer drugs and risk of hand-foot syndrome: Purpose: Hand-foot syndrome (HFS) is an adverse effect of some cancer drugs, which is characterized by symptoms such as redness, swelling, blistering, and pain in the area of palms and soles. HFS reduces the quality of life of patients and can sometimes interfere with anticancer treatment plans. It is important to understand the clinical manifestations of HFS and gain knowledge that will allow for early intervention by clinicians.Methods: In this study, we used a large-scale side effect database of real-world cases for a comprehensive investigation of anticancer-drug-induced HFS. The database contained 646,779 adverse event reports from April 2004 to September 2020; among which, we identified 1814 HFS events. Using these data, we could obtain information on the relationship between 19 types of anticancer drugs and HFS, and the onset time of HFS and HFS prognosis related to each anticancer drug. Results: Our results suggest that clinicians should monitor the risk of HFS with docetaxel, regorafenib, and sorafenib for at least the first 4 weeks after drug administration. Conclusion: These findings are crucial for improving the management of the adverse effects caused by anticancer drugs.
Collapse
Affiliation(s)
- Yu Yoshida
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Sayaka Sasaoka
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Mizuki Tanaka
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kiyoka Matsumoto
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Misaki Inoue
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Riko Satake
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuyo Shimada
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ririka Mukai
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Takaaki Suzuki
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
- Gifu Prefectural Government, Gifu, Japan
| | - Mari Iwata
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
- Kifune Pharmacy, Gifu, Japan
| | - Fumiya Goto
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Takayuki Mori
- Department of Pharmacy, Ogaki Municipal Hospital, Ogaki, Japan
| | - Koki Mori
- Department of Pharmacy, Ogaki Municipal Hospital, Ogaki, Japan
| | | | - Mitsuhiro Nakamura
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
16
|
Zhang M, Li X, Wu W, Gao J, Han Q, Sun Z, Zhao RC. Regorafenib induces the apoptosis of gastrointestinal cancer-associated fibroblasts by inhibiting AKT phosphorylation. Stem Cells Dev 2022; 31:383-394. [PMID: 35502476 DOI: 10.1089/scd.2022.0088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of tumor microenvironment and are essential for tumorigenesis and development. Regorafenib is a multikinase inhibitor that targets CAFs and suppresses tumor growth. Here, we investigated the effects of regorafenib on gastrointestinal CAFs and the underlying molecular mechanisms. First, we established two in vivo tumor models, the cancer cell line HCT116 with or without mesenchymal stem cells (MSCs) and treated them with regorafenib. We found that the application of regorafenib potently impaired tumor growth, an effect that was more pronounced in tumors with a high stromal ratio, thus demonstrating that regorafenib can inhibit CAFs proliferation and induce CAFs apoptosis in vivo. Moreover, we showed that regorafenib affected macrophage infiltration by reducing the proportion of CAFs in tumors. Afterward, we induced MSCs into CAFs with exosomes to establish an in vitro model. Then, we used MTS and flow cytometry to detect the effects of regorafenib on the proliferation and apoptosis of CAFs, and Western blot to determine the expression level of apoptosis-related proteins. We found that regorafenib inhibited the proliferation of CAFs and induced the apoptosis of CAFs in vitro. Furthermore, Western blot results showed that regorafenib down-regulated the expression of B-cell lymphoma-2 (Bcl-2) and concurrently up-regulated the expression of Bcl-2-associated X (Bax), and regorafenib inhibited the phosphorylation pathway of AKT in CAFs. In conclusion, our results provide a model in which regorafenib induces CAFs apoptosis by inhibiting the phosphorylation of AKT, and regorafenib affects macrophage infiltration by reducing the proportion of CAFs in tumor tissues.
Collapse
Affiliation(s)
- Mingjia Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Xuechun Li
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Wenjing Wu
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Jingxi Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Qin Han
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, Beijing, China;
| | - Zhao Sun
- Peking Union Medical College Hospital, 34732, Department of oncology, Dongcheng-qu, Beijing, China;
| | - Robert Chunhua Zhao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China.,Shanghai University, 34747, School of Life Sciences, Shanghai, Shanghai, China;
| |
Collapse
|
17
|
Wang C, Chu M. Advances in Drugs Targeting Lymphangiogenesis for Preventing Tumor Progression and Metastasis. Front Oncol 2022; 11:783309. [PMID: 35087755 PMCID: PMC8787832 DOI: 10.3389/fonc.2021.783309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis of cancer cells from the primary tumor to other organs and tissues in the body is the leading cause of death in patients with malignancies. One of the principal ways cancer cells travel is through lymphatic vessels, and tumor invasion into the regional lymph nodes is a hallmark of early metastasis; thus, the formation of especially peritumoral lymphatic vessels is essential for tumor transportation that gives rise to further progression. In the past few decades, tumor-induced lymphangiogenesis has been testified to its tight correlation with lymphatic metastasis and poor clinical outcomes in multiple types of human malignancies, which warrants novel potential therapeutic targets for cancer treatment. As the understanding of underlying molecular mechanisms has grown tremendously over the years, an inexorable march of anti-lymphangiogenic therapy also aroused terrific interest. As a result, a great number of drugs have entered clinical trials, and some of them exhibited predominant contributions in cancer management. Herein, this review provides an updated summary of the current advances in therapies preventing lymphatic metastasis and discusses the validity of different applications.
Collapse
Affiliation(s)
- Chuqi Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
18
|
Ahn KH, Kim S, Yang M, Lee DW. A Pillar-Based High-Throughput Myogenic Differentiation Assay to Assess Drug Safety. Molecules 2021; 26:molecules26195805. [PMID: 34641349 PMCID: PMC8510049 DOI: 10.3390/molecules26195805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
High-throughput, pillar-strip-based assays have been proposed as a drug-safety screening tool for developmental toxicity. In the assay described here, muscle cell culture and differentiation were allowed to occur at the end of a pillar strip (eight pillars) compatible with commercially available 96-well plates. Previous approaches to characterize cellular differentiation with immunostaining required a burdensome number of washing steps; these multiple washes also resulted in a high proportion of cellular loss resulting in poor yield. To overcome these limitations, the approach described here utilizes cell growth by easily moving the pillars for washing and immunostaining without significant loss of cells. Thus, the present pillar-strip approach is deemed suitable for monitoring high-throughput myogenic differentiation. Using this experimental high-throughput approach, eight drugs (including two well-known myogenic inhibitory drugs) were tested at six doses in triplicate, which allows for the generation of dose–response curves of nuclei and myotubes in a 96-well platform. As a result of comparing these F-actin (an actin-cytoskeleton protein), nucleus, and myotube data, two proposed differentiation indices—curve-area-based differentiation index (CA-DI) and maximum-point-based differentiation index (MP-DI) were generated. Both indices successfully allowed for screening of high-myogenic inhibitory drugs, and the maximum-point-based differentiation index (MP-DI) experimentally demonstrated sensitivity for quantifying drugs that inhibited myogenic differentiation.
Collapse
Affiliation(s)
- Kyeong Hwan Ahn
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Korea; (K.H.A.); (S.K.)
| | - Sooil Kim
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Korea; (K.H.A.); (S.K.)
| | - Mihi Yang
- Department of Toxicology, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (M.Y.); (D.W.L.); Tel.: +82-10-2546-9586 (D.W.L.)
| | - Dong Woo Lee
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Korea; (K.H.A.); (S.K.)
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd., Suwon 16229, Korea
- Correspondence: (M.Y.); (D.W.L.); Tel.: +82-10-2546-9586 (D.W.L.)
| |
Collapse
|
19
|
Higashi Y, Yusoff FM, Kishimoto S, Maruhashi T. Regenerative medicine for radiation emergencies. JOURNAL OF RADIATION RESEARCH 2021; 62:i21-i29. [PMID: 33978185 PMCID: PMC8114226 DOI: 10.1093/jrr/rraa091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 05/12/2023]
Abstract
Hiroshima University is a 'medical institution for tertiary radiation emergencies' and a 'medical support organization as a part of the International Atomic Emergency Agency Emergency Preparedness Response-Response and Assistance Network (IAEA EPR-RANET)'. To establish a system of regenerative medicine for radiation emergencies with treatment by implantation of various types of cells derived from induced pluripotent stem (iPS) cells, it is necessary to establish methods of defense against and treatment for radiation-induced damage from nuclear power plant accidents and nuclear terrorism. It is also necessary to develop cell therapy, cellular repair technology and regenerative biotechnology as regenerative medicine for radiation emergencies. Such applications have not been established yet. To develop a regenerative medical system, by using the existing one, for radiation emergencies, we will attempt to manage the cell-processing center to establish a safe and secured iPS cell bank for radiation medicine. By using this iPS cell bank as the central leverage, we will develop an education program for radiation emergency medicine and construct a network of regenerative medicine for radiation emergency medicine.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Japan
- Corresponding author. Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan. Tel: +81-82-257-5831; Fax: +81-82-257-5831;
| | - Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| |
Collapse
|
20
|
He M, He Q, Cai X, Chen Z, Lao S, Deng H, Liu X, Zheng Y, Liu X, Liu J, Xie Z, Yao M, Liang W, He J. Role of lymphatic endothelial cells in the tumor microenvironment-a narrative review of recent advances. Transl Lung Cancer Res 2021; 10:2252-2277. [PMID: 34164274 PMCID: PMC8182726 DOI: 10.21037/tlcr-21-40] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background As lymphatic vessel is a major route for solid tumor metastasis, they are considered an essential part of tumor drainage conduits. Apart from forming the walls of lymphatic vessels, lymphatic endothelial cells (LECs) have been found to play multiple other roles in the tumor microenvironment, calling for a more in-depth review. We hope that this review may help researchers gain a detailed understanding of this fast-developing field and shed some light upon future research. Methods To achieve an informative review of recent advance, we carefully searched the Medline database for English literature that are openly published from the January 1995 to December 2020 and covered the topic of LEC or lymphangiogenesis in tumor progression and therapies. Two different authors independently examined the literature abstracts to exclude possible unqualified ones, and 310 papers with full texts were finally retrieved. Results In this paper, we discussed the structural and molecular basis of tumor-associated LECs, together with their roles in tumor metastasis and drug therapy. We then focused on their impacts on tumor cells, tumor stroma, and anti-tumor immunity, and the molecular and cellular mechanisms involved. Special emphasis on lung cancer and possible therapeutic targets based on LECs were also discussed. Conclusions LECs can play a much more complex role than simply forming conduits for tumor cell dissemination. Therapies targeting tumor-associated lymphatics for lung cancer and other tumors are promising, but more research is needed to clarify the mechanisms involved.
Collapse
Affiliation(s)
- Miao He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qihua He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuyu Cai
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zisheng Chen
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Shen Lao
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Deng
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiwen Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongmei Zheng
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maojin Yao
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,The First People Hospital of Zhaoqing, Zhaoqing, China
| | - Jianxing He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Naito T, Yuge R, Kitadai Y, Takigawa H, Higashi Y, Kuwai T, Kuraoka K, Tanaka S, Chayama K. Mesenchymal stem cells induce tumor stroma formation and epithelial‑mesenchymal transition through SPARC expression in colorectal cancer. Oncol Rep 2021; 45:104. [PMID: 33907853 PMCID: PMC8072806 DOI: 10.3892/or.2021.8055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Tumor-stroma interactions serve a crucial role in the development of colorectal cancer (CRC), in which secreted protein acidic and rich in cysteine (SPARC) has been implicated. Due to interactions between cancer and stromal cells [mesenchymal stem cells (MSCs)], SPARC gene expression is markedly upregulated in CRC cells. The present study investigated the role of SPARC in CRC development and its potential as a biomarker. Specifically, the present study examined the association between SPARC expression and clinicopathological characteristics in 42 cases of CRC. SPARC expression in cancer cells was associated with T grade, N grade (TNM classification), stage and poor prognosis. Furthermore, the area of fibroblast-activating protein-positive staining around the cancer cells was increased in SPARC-positive compared with SPARC-negative cases. Proliferation and wound healing assays in SPARC-silenced KM12SM cells [short hairpin RNA SPARC (shSPARC)], the reduced SPARC expression of which was demonstrated by reverse transcription-quantitative PCR, revealed that the proliferative and migratory capacity of shSPARC cells did not differ from that of wild-type (WT) cells. However, it was markedly reduced when co-cultured with MSCs. Furthermore, in vivo, immunohistological analysis and RNA sequencing were conducted in an orthotopic implanted mouse model. Tumor growth and lymph node metastasis were markedly suppressed in shSPARC-transplanted tumors compared with WT-transplanted tumors, with a more marked suppression observed following shSPARC co-transplantation with MSCs. Immunohistological examination further revealed that the stromal reaction and epithelial-mesenchymal transition (EMT) were markedly suppressed in tumors co-transplanted with shSPARC and MSCs, and these results were consistent with RNA sequencing using RNA extracted from orthotopic tumors. Overall, these results suggested that SPARC expression in CRC cells is dependent on the interaction between cancer cells and stromal cells to induce EMT and promote stromal formation in the tumor microenvironment, suggesting its suitability as a novel target molecule for CRC treatment.
Collapse
Affiliation(s)
- Toshikatsu Naito
- Department of Gastroenterology and Metabolism, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Ryo Yuge
- Department of Endoscopy and Medicine, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Yasuhiko Kitadai
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima 734‑8558, Japan
| | - Hidehiko Takigawa
- Department of Gastroenterology and Metabolism, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Physiology and Medicine, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Toshio Kuwai
- Department of Gastroenterology, National Hospital Organization Kure Medical Center, Hiroshima 737‑0023, Japan
| | - Kazuya Kuraoka
- Department of Pathology, National Hospital Organization Kure Medical Center, Hiroshima 737‑0023, Japan
| | - Shinji Tanaka
- Department of Endoscopy and Medicine, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University, Hiroshima 734‑8551, Japan
| |
Collapse
|
22
|
Kudo M. Sequential Therapy for Hepatocellular Carcinoma after Failure of Atezolizumab plus Bevacizumab Combination Therapy. Liver Cancer 2021; 10:85-93. [PMID: 33977086 PMCID: PMC8077462 DOI: 10.1159/000514312] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/08/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- Masatoshi Kudo
- *Masatoshi Kudo, Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka 589-8511 (Japan),
| |
Collapse
|
23
|
Li H, Zhou L, Zhou J, Li Q, Ji Q. Underlying mechanisms and drug intervention strategies for the tumour microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:97. [PMID: 33722297 PMCID: PMC7962349 DOI: 10.1186/s13046-021-01893-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Cancer occurs in a complex tissue environment, and its progression depends largely on the tumour microenvironment (TME). The TME has a highly complex and comprehensive system accompanied by dynamic changes and special biological characteristics, such as hypoxia, nutrient deficiency, inflammation, immunosuppression and cytokine production. In addition, a large number of cancer-associated biomolecules and signalling pathways are involved in the above bioprocesses. This paper reviews our understanding of the TME and describes its biological and molecular characterization in different stages of cancer development. Furthermore, we discuss in detail the intervention strategies for the critical points of the TME, including chemotherapy, targeted therapy, immunotherapy, natural products from traditional Chinese medicine, combined drug therapy, etc., providing a scientific basis for cancer therapy from the perspective of key molecular targets in the TME.
Collapse
Affiliation(s)
- Haoze Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lihong Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
24
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
25
|
Brodowicz T, Liegl-Atzwanger B, Penel N, Mir O, Blay JY, Kashofer K, Le Cesne A, Decoupigny E, Wallet J, Hamacher R, Le Deley MC. Assessing Prognostic and Predictive Biomarkers of Regorafenib Response in Patients with Advanced Soft Tissue Sarcoma: REGOSARC Study. Cancers (Basel) 2020; 12:cancers12123746. [PMID: 33322802 PMCID: PMC7763753 DOI: 10.3390/cancers12123746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
: Regorafenib significantly prolonged progression-free survival (PFS) in pretreated patients with advanced non-adipocytic sarcoma (HR = 0.46; p < 0.001) in a placebo-controlled, randomized, phase-II trial (NCT01900743). Thus, here, we assessed the prevalence of 57 biomarkers and their prognostic and predictive values for PFS and overall survival (OS). We analyzed 134/182 patients included in this trial, treated with regorafenib (n = 71, 53%) or placebo (n = 63, 47%). Mutational analyses were performed via full coding sequence analysis for 10 genes, and mutation hotspot panel for 50 genes (four genes in common). H19 was studied with RNA in-situ hybridization. The prognostic and predictive biomarkers' values were studied only for biomarkers found positive/mutated in at least 10 patients. Overall, 25 out of 57 studied biomarkers, including five out of seven genes involved in angiogenesis, were found mutated/positive in at least one patient, of which 23 biomarkers had low prevalence (fewer than eight out of 134 patients), contrasting with H19 (n = 24, 18%), and TP53 (n = 35, 26%). However, in multivariable models of PFS and OS, including treatment effects and interactions, no significant prognostic or predictive values of the tested biomarkers were observed. Though several promising biomarkers were found to be positive/mutated, none of them were identified as viable predictive and prognostic biomarkers.
Collapse
Affiliation(s)
- Thomas Brodowicz
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna–General Hospital, 1090 Vienna, Austria;
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Institute of Pathology, Comprehensive Cancer Center, Subunit Sarcoma, Medical University of Graz, 8036 Graz, Austria; (B.L.-A.); (K.K.)
| | - Nicolas Penel
- Medical School & Medical Oncology Department, Université de Lille & Centre Oscar Lambret, 59000 Lille, France
- Direction of Research and Innovation, Centre Oscar Lambret, 59000 Lille, France; (E.D.); (J.W.); (M.-C.L.D.)
- Correspondence: ; Tel.: +33-(0)320-295-920
| | - Olivier Mir
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (O.M.); (A.L.C.)
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard & Université Claude Bernard Lyon I, 69000 Lyon, France;
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Comprehensive Cancer Center, Subunit Sarcoma, Medical University of Graz, 8036 Graz, Austria; (B.L.-A.); (K.K.)
| | - Axel Le Cesne
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (O.M.); (A.L.C.)
| | - Emilie Decoupigny
- Direction of Research and Innovation, Centre Oscar Lambret, 59000 Lille, France; (E.D.); (J.W.); (M.-C.L.D.)
| | - Jennifer Wallet
- Direction of Research and Innovation, Centre Oscar Lambret, 59000 Lille, France; (E.D.); (J.W.); (M.-C.L.D.)
| | - Rainer Hamacher
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 47057 Duisburg, Germany;
| | - Marie-Cecile Le Deley
- Direction of Research and Innovation, Centre Oscar Lambret, 59000 Lille, France; (E.D.); (J.W.); (M.-C.L.D.)
- Paris-Saclay University, Paris-Sud University, UVSQ, CESP, INSERM, 94800 Villejuif, France
| |
Collapse
|
26
|
Yorita N, Yuge R, Takigawa H, Ono A, Kuwai T, Kuraoka K, Kitadai Y, Tanaka S, Chayama K. Stromal reaction inhibitor and immune-checkpoint inhibitor combination therapy attenuates excluded-type colorectal cancer in a mouse model. Cancer Lett 2020; 498:111-120. [PMID: 33129954 DOI: 10.1016/j.canlet.2020.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022]
Abstract
Despite recent advances in cancer immunotherapy, the efficacy of colorectal cancer (CRC) immunotherapy regimens is limited. This study evaluated the combined effect of an anti-PD-1 antibody and a platelet-derived growth factor receptor inhibitor (imatinib) on CRC progression using an orthotopic transplanted mouse model that reproduced the three histological phenotypes of CRC (inflamed-, excluded-, and desert-type). The frequency of each of these phenotypes in 196 human CRC tissue samples was also evaluated. Excluded-type CRC had the highest frequency in human tissue samples. In the mouse model, imatinib suppressed stromal reaction and increased sensitivity to anti-PD-1 treatment in excluded-type CRC. Antitumor effect was observed in mice with excluded-type tumors only after concomitant administration of anti-PD-1 antibody and imatinib. Immunohistological analysis revealed a reduction in stromal volume and an increase in the number of CD8-positive T cells in the tumor nest following combination therapy. RNA sequencing revealed significant activation of immune-related pathways and suppression of stromal-related pathways in transplanted tumors treated with combination therapy compared with tumors treated with anti-PD-1 antibody monotherapy. This combination therapy may prove effective for CRC cases that are unresponsive to anti-PD-1 antibody monotherapy.
Collapse
Affiliation(s)
- Naoki Yorita
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Yuge
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan.
| | - Hidehiko Takigawa
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshio Kuwai
- Department of Gastroenterology, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Kazuya Kuraoka
- Department of Anatomical Pathology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yasuhiko Kitadai
- Department of Health and Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
27
|
Lin Z, Chen B, Hung Y, Huang P, Shen Y, Shao Y, Hsu C, Cheng A, Lee R, Chao Y, Hsu C. A Multicenter Phase II Study of Second-Line Axitinib for Patients with Advanced Hepatocellular Carcinoma Failing First-Line Sorafenib Monotherapy. Oncologist 2020; 25:e1280-e1285. [PMID: 32271494 PMCID: PMC7485356 DOI: 10.1634/theoncologist.2020-0143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
LESSONS LEARNED For patients with advanced hepatocellular carcinoma after failure of first-line sorafenib monotherapy, second-line axitinib provides modest efficacy with tolerable toxicity. The discrepant tumor responses and survival outcomes in trials using axitinib as salvage therapy highlight the importance of optimal patient selection with the aid of clinical biomarkers. BACKGROUND Multikinase inhibitors have been effective treatment for hepatocellular carcinoma (HCC). This multicenter phase II study explored the efficacy and safety of second-line axitinib for advanced HCC. METHODS Patients with advanced HCC and Child-Pugh A liver function, experiencing progression on first-line sorafenib monotherapy, were eligible. Axitinib 5 mg twice daily was given continuously with allowed dose escalation. Tumor assessment was performed according to RECIST version 1.1. The primary endpoint was rate of disease control. RESULTS From April 2011 to March 2016, 45 patients were enrolled. Thirty-seven patients (82%) tested positive for hepatitis B surface antigen. The disease control rate was 62.2%, and the response rate was 6.7%, according to RECIST criteria. Median progression-free survival (PFS) and overall survival (OS) were 2.2 months and 10.1 months, respectively. Treatment-related adverse events were compatible with previous reports of axitinib. CONCLUSION Second-line axitinib has moderate activity and acceptable toxicity for patients with advanced HCC after failing the first-line sorafenib monotherapy.
Collapse
Affiliation(s)
- Zhong‐Zhe Lin
- Department of Medical Oncology, National Taiwan University Cancer CenterTaipeiTaiwan
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Department of Internal Medicine, National Taiwan University College of MedicineTaipeiTaiwan
| | - Bang‐Bin Chen
- Department of Radiology, National Taiwan University HospitalTaipeiTaiwan
| | - Yi‐Ping Hung
- Department of Oncology, Taipei Veterans General HospitalTaipeiTaiwan
| | - Po‐Hsiang Huang
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
| | - Ying‐Chun Shen
- Department of Medical Oncology, National Taiwan University Cancer CenterTaipeiTaiwan
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oncology, National Taiwan University College of MedicineTaipeiTaiwan
| | - Yu‐Yun Shao
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oncology, National Taiwan University College of MedicineTaipeiTaiwan
| | - Chih‐Hung Hsu
- Department of Medical Oncology, National Taiwan University Cancer CenterTaipeiTaiwan
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oncology, National Taiwan University College of MedicineTaipeiTaiwan
| | - Ann‐Lii Cheng
- Department of Medical Oncology, National Taiwan University Cancer CenterTaipeiTaiwan
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Department of Internal Medicine, National Taiwan University College of MedicineTaipeiTaiwan
- Graduate Institute of Oncology, National Taiwan University College of MedicineTaipeiTaiwan
| | - Rheun‐Chuan Lee
- Department of Radiology, Taipei Veterans General HospitalTaipeiTaiwan
| | - Yee Chao
- Department of Oncology, Taipei Veterans General HospitalTaipeiTaiwan
- School of Medicine, National Yang‐Ming UniversityTaipeiTaiwan
| | - Chiun Hsu
- Department of Medical Oncology, National Taiwan University Cancer CenterTaipeiTaiwan
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oncology, National Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
28
|
Fondevila F, Méndez-Blanco C, Fernández-Palanca P, González-Gallego J, Mauriz JL. Anti-tumoral activity of single and combined regorafenib treatments in preclinical models of liver and gastrointestinal cancers. Exp Mol Med 2019; 51:1-15. [PMID: 31551425 PMCID: PMC6802659 DOI: 10.1038/s12276-019-0308-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
Regorafenib is a sorafenib-derived chemotherapy drug belonging to the multikinase inhibitor family. This agent effectively targets a wide range of tyrosine kinases involved in cancer biology, such as those implicated in oncogenesis, angiogenesis, and tumor microenvironment control. The beneficial effects of regorafenib in clinical trials of patients who suffer from advanced hepatocellular carcinoma (HCC), colorectal cancer (CRC) or gastrointestinal stromal tumors (GISTs) refractory to standard treatments led to regorafenib monotherapy approval as a second-line treatment for advanced HCC and as a third-line treatment for advanced CRC and GISTs. Multiple in vitro and in vivo studies have been performed over the last decade to reveal the molecular mechanisms of the favorable actions exerted by regorafenib in patients. Given the hypothetical loss of sensitivity to regorafenib in tumor cells, preclinical research is also searching for novel therapeutic approaches consisting of co-administration of this drug plus other agents as a strategy to improve regorafenib effectiveness. This review summarizes the anti-tumor effects of regorafenib in single or combined treatment in preclinical models of HCC, CRC and GISTs and discusses both the global and molecular effects that account for its anti-cancer properties in the clinical setting. The cancer drug regorafenib exhibits a broad range of anti-tumor activities that could be enhanced by combination with other treatments. A team led by José L. Mauriz from the University of León, Spain, review the ways in which regorafenib, blocking several enzymes involved in cancer biology, has been shown to shrink tumors in different models of liver, colon and gastrointestinal cancer. Its mechanisms of action include blockade of new blood vessel formation, induction of cell death and modulation of the immune microenvironment. Research studies show that co-administration of regorafenib with other drugs directed at various molecular targets or immune pathways produces synergistic effects against cancer cells. The preclinical data highlights the potential of combination drug regimens to improve outcomes among patients eligible for regorafenib treatment.
Collapse
Affiliation(s)
- Flavia Fondevila
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paula Fernández-Palanca
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Javier González-Gallego
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - José L Mauriz
- Institute of Biomedicine, University of León, León, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| |
Collapse
|
29
|
Callebout E, Ribeiro SM, Laurent S, De Man M, Ferdinande L, Claes KBM, Van der Meulen J, Geboes KP. Long term response on Regorafenib in non-V600E BRAF mutated colon cancer: a case report. BMC Cancer 2019; 19:567. [PMID: 31185985 PMCID: PMC6560823 DOI: 10.1186/s12885-019-5763-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Non-V600E BRAF mutated colorectal cancer (CRC) is a rare disease entity with specific clinical features. These tumors are less likely to have microsatellite instability than CRC with a V600E BRAF mutation and often harbor a KRAS or NRAS mutation. Notably, median overall survival is longer than in wild-type BRAF CRC. Little is known about treatment possibilities in these patients. Case presentation We present the case of a 59 year old patient with a rare mutation in BRAF codon 594, who progressed rapidly on all classical therapies but experienced a clear and long lasting response on treatment with Regorafenib. Conclusion Little is known about therapies that can be effective in the rare non-V600E BRAF mutated CRCs. We present a patient who had a definite response to treatment with Regorafenib. There are no predictive markers that define a subset of CRC patients who benefit most from Regorafenib. The specific features of this non-V600E BRAF mutated CRC may be relevant in the exploration of predictive biomarkers for the efficacy of Regorafenib.
Collapse
Affiliation(s)
- Eduard Callebout
- Department of Gastroenterology, University Hospital Ghent, C Heymanslaan 10, 9000, Ghent, Belgium.
| | - Suzane Moura Ribeiro
- Department of Gastroenterology, University Hospital Ghent, C Heymanslaan 10, 9000, Ghent, Belgium
| | - Stephanie Laurent
- Department of Gastroenterology, University Hospital Ghent, C Heymanslaan 10, 9000, Ghent, Belgium
| | - Marc De Man
- Department of Gastroenterology, University Hospital Ghent, C Heymanslaan 10, 9000, Ghent, Belgium
| | - Liesbeth Ferdinande
- Department of Pathology, University Hospital Ghent, C Heymanslaan 10, 9000, Ghent, Belgium
| | - Kathleen B M Claes
- Centre for Medical Genetics, University Hospital Ghent, C Heymanslaan 10, 9000, Ghent, Belgium
| | - Joni Van der Meulen
- Molecular Diagnostics, University Hospital Ghent, C Heymanslaan 10, 9000, Ghent, Belgium
| | - Karen P Geboes
- Department of Gastroenterology, University Hospital Ghent, C Heymanslaan 10, 9000, Ghent, Belgium
| |
Collapse
|
30
|
Ramucirumab and GSK1838705A Enhance the Inhibitory Effects of Low Concentration Sorafenib and Regorafenib Combination on HCC Cell Growth and Motility. Cancers (Basel) 2019; 11:cancers11060787. [PMID: 31181647 PMCID: PMC6627995 DOI: 10.3390/cancers11060787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Several new multikinase inhibitors have recently been introduced into clinical practice for hepatocellular carcinoma (HCC) therapy. Small increases in survival were reported as well as considerable toxicity. There is thus a need for effective therapies with lower toxicities. We examined whether a combination of sorafenib and regorafenib might also be effective at very low concentrations, with resulting potential for lessened clinical toxicity. MTT test, clonogenic assay, Ki67 staining and cell cycle analysis were assessed for cell proliferation and Annexin V and western blotting analysis relative to the expression of cleaved Caspase-3 and BID for cell apoptosis. In these experimental conditions cell growth and migration were potently inhibited and apoptosis induced even in HCC cells producing high alpha fetoprotein (AFP) levels (clinically worse prognosis). The combination also inhibited levels of the two HCC biomarkers, AFP and des gamma carboxy prothrombin (DCP). Additional inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR) or Insulin-like Growth Factor 1 Receptor (IGF1R) enhanced effects on AFP and DCP levels, cell growth inhibition and MAPK and PI3K/Akt signaling inhibition due to sorafenib/regorafenib combination. These combinations have the potential for decreased toxicity while simultaneously enhancing therapeutic effects. This potential decrease in toxicity is being explored in ongoing studies.
Collapse
|
31
|
Terasaki M, Masaka S, Fukada C, Houzaki M, Endo T, Tanaka T, Maeda H, Miyashita K, Mutoh M. Salivary Glycine Is a Significant Predictor for the Attenuation of Polyp and Tumor Microenvironment Formation by Fucoxanthin in AOM/DSS Mice. In Vivo 2019; 33:365-374. [PMID: 30804114 DOI: 10.21873/invivo.11483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/11/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
Background/ Aim: A high polar xanthophyll of Fucoxanthin (Fx) is abundantly contained in edible brown algae, and it has chemopreventive effects in mouse cancer models, however, the underlying mechanisms of these effects are not well understood. Thus, we aimed to investigate the effects of Fx on the tumor microenvironment in cancer model mice. MATERIALS AND METHODS We investigated the effect of Fx (30 mg/kg body weight) in a variety of cell types within the tumor microenvironment of α mouse preclinical colorectal cancer model and analyzed the mouse saliva in search of predictors for cancer chemopreventive effects. RESULTS Fx administration significantly decreased the number of colorectal polyps and tended to decrease colonic lesions compared to untreated control mice. In addition, Fx administration showed significantly lower numbers of colorectal cancer stem cells-like CD44high/EpCAMhigh cells, cancer-associated fibroblasts-like αSMAhigh cells, tumor-associated macrophages-like and dendritic cells-like CD206high cells by 0.6-, 0.5- and 0.6-fold, respectively, compared to untreated control mice. Moreover, the treatment also showed significantly lower levels of salivary glycine by 0.5-fold. CONCLUSION Our results suggest that salivary glycine may be a predictor representing the chemopreventive effect of Fx in mice.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan .,Cancer Prevention Laboratories, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Saki Masaka
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Chinami Fukada
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Mayu Houzaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Tetsuya Endo
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Kazuo Miyashita
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Michihiro Mutoh
- Epidemiology and Preventions Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
32
|
Uschner FE, Schueller F, Nikolova I, Klein S, Schierwagen R, Magdaleno F, Gröschl S, Loosen S, Ritz T, Roderburg C, Vucur M, Kristiansen G, Lammers T, Luedde T, Trebicka J. The multikinase inhibitor regorafenib decreases angiogenesis and improves portal hypertension. Oncotarget 2018; 9:36220-36237. [PMID: 30546838 PMCID: PMC6281422 DOI: 10.18632/oncotarget.26333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
Background and Aims Angiogenesis is critically involved in the development of liver fibrosis, portal hypertension (PHT) and hepatocellular carcinoma (HCC). Regorafenib is a novel second-line therapy for HCC, but might also be beneficial in fibrosis and PHT even in absence of HCC. This study investigated the effects of regorafenib in experimental models without HCC. Methods Fibrosis (in vivo and in vitro), inflammation, liver damage (aminotransferases), angiogenesis (matrigel implantation) and in vivo systemic and portal hemodynamics were assessed in different mouse and rat models (bile duct ligation, CCl4, partial portal vein ligation) after acute and chronic treatment with regorafenib. Results Long-term treatment with regorafenib improved portal hypertension most likely due to blunted angiogenesis, without affecting fibrosis progression or regression. Interestingly, acute administration of regorafenib also ameliorated portal hemodynamics. Although regorafenib treatment led to hepatotoxic side effects in long-term treated fibrotic animals, in partial portal vein ligated rats, no liver toxicity due to regorafenib was observed. Discussion Regorafenib might be especially suitable as therapy in patients with PHT and preserved liver function.
Collapse
Affiliation(s)
- Frank Erhard Uschner
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| | - Florian Schueller
- Department of Internal Medicine III, University of Aachen, Aachen, Germany
| | - Ivelina Nikolova
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,Institute of Cellular Medicine, Fibrosis Research Group, Newcastle upon Tyne, United Kingdom.,Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| | | | | | - Stefanie Gröschl
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Sven Loosen
- Department of Internal Medicine III, University of Aachen, Aachen, Germany
| | - Thomas Ritz
- Department of Internal Medicine III, University of Aachen, Aachen, Germany
| | | | - Michael Vucur
- Department of Internal Medicine III, University of Aachen, Aachen, Germany
| | | | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University of Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Internal Medicine III, University of Aachen, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,Institute of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain.,Institute for Bioengineering of Catalonia, Barcelona, Spain.,Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
33
|
Combination Therapy with EpCAM-CAR-NK-92 Cells and Regorafenib against Human Colorectal Cancer Models. J Immunol Res 2018; 2018:4263520. [PMID: 30410941 PMCID: PMC6205314 DOI: 10.1155/2018/4263520] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Adoptive chimeric antigen receptor-modified T or NK cells (CAR-T or CAR-NK) offer new options for cancer treatment. CAR-T therapy has achieved encouraging breakthroughs in the treatment of hematological malignancies. However, their therapeutic efficacy against solid tumors is limited. New regimens, including combinations with chemical drugs, need to be studied to enhance the therapeutic efficacy of CAR-T or NK cells for solid tumors. An epithelial cell adhesion molecule- (EpCAM-) specific second-generation CAR was constructed and transduced into NK-92 cells by lentiviral vectors. Immune effects, including cytokine release and cytotoxicity of the CAR-NK-92 cells against EpCAM-positive colon cancer cells, were evaluated in vitro. Synergistic effects of regorafenib and CAR-NK-92 cells were analyzed in a mouse model with human colorectal cancer xenografts. The CAR-NK-92 cells can specifically recognize EpCAM-positive colorectal cancer cells and release cytokines, including IFN-γ, perforin, and granzyme B, and show specific cytotoxicity in vitro. The growth suppression efficacy of combination therapy with regorafenib and CAR-NK-92 cells on established EpCAM-positive tumor xenografts was more significant than that of monotherapy with CAR-NK-92 cells or regorafenib. Our results provided a novel strategy to treat colorectal cancer and enhance the therapeutic efficacy of CAR-modified immune effector cells for solid tumors.
Collapse
|
34
|
Tan HY, Wang N, Lam W, Guo W, Feng Y, Cheng YC. Targeting tumour microenvironment by tyrosine kinase inhibitor. Mol Cancer 2018; 17:43. [PMID: 29455663 PMCID: PMC5817793 DOI: 10.1186/s12943-018-0800-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour microenvironment (TME) is a key determinant of tumour growth and metastasis. TME could be very different for each type and location of tumour and TME may change constantly during tumour growth. Multiple counterparts in surrounding microenvironment including mesenchymal-, hematopoietic-originated cells as well as non-cellular components affect TME. Thus, therapeutics that can disrupt the tumour-favouring microenvironment should be further explored for cancer therapy. Previous efforts in unravelling the dysregulated mechanisms of TME components has identified numerous protein tyrosine kinases, while its corresponding inhibitors have demonstrated potent modulatory effect on TME. Recent works have demonstrated that beyond the direct action on cancer cells, tyrosine kinase inhibitors (TKIs) have been implicated in inactivation or normalization of dysregulated TME components leading to cancer regression. Either through re-sensitizing the tumour cells or reversing the immunological tolerance microenvironment, the emergence of these TME modulatory mechanism of TKIs supports the combinatory use of TKIs with current chemotherapy or immunotherapy for cancer therapy. Therefore, an appropriate understanding on TME modulation by TKIs may offer another mode of action of TKIs for cancer treatment. This review highlights mode of kinase activation or paracrine ligand production from TME components and summarises the findings on the potential use of various TKIs on regulating TME components. At last, the combination use of current TKIs with immunotherapy in the perspectives of efficacy and safety are discussed.
Collapse
Affiliation(s)
- Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
35
|
Refolo MG, D’Alessandro R, Lippolis C, Carella N, Cavallini A, Messa C, Carr BI. IGF-1R tyrosine kinase inhibitors and Vitamin K1 enhance the antitumor effects of Regorafenib in HCC cell lines. Oncotarget 2017; 8:103465-103476. [PMID: 29262576 PMCID: PMC5732742 DOI: 10.18632/oncotarget.21403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
The recent RESORCE trial showed that treatment with Regorafenib after Sorafenib failure provided a significant improvement in overall survival in HCC patients. Preclinical and clinical trial data showed that Regorafenib is a more potent drug than Sorafenib. In this study we aimed at improving Regorafenib actions and at reducing its toxicity, by targeting parallel pathways or by combination with Vitamins K (VKs). We investigated the effects of Regorafenib administrated at low concentrations and in combination with either VK1 and/or with GSK1838705A or OSI-906, two IGF1-R inhibitors, on HCC cell growth and motility. Our results showed that both IGF1-R inhibitors potentiated the antiproliferative and pro-apoptotic effects of Regorafenib and/or VK1 in HCC cell lines. Moreover we provide evidence that the combined treatment with IG1-R antagonists and Regorafenib (and/or VK1) also caused a significant reduction and depolymerization of actin resulting in synergistic inhibition exerted on cell migration. Thus, simultaneous blocking of MAPK and PI3K/Akt cascades with IGF1-R inhibitors plus Regorafenib could represent a more potent approach for HCC treatment.
Collapse
Affiliation(s)
- Maria Grazia Refolo
- Laboratory of Cellular and Molecular Biology, Department of Clinical Pathology, National Institute of Gastroenterology, “S. De Bellis” Research Hospital, Castellana Grotte, BA, Italy
| | - Rosalba D’Alessandro
- Laboratory of Cellular and Molecular Biology, Department of Clinical Pathology, National Institute of Gastroenterology, “S. De Bellis” Research Hospital, Castellana Grotte, BA, Italy
| | - Catia Lippolis
- Laboratory of Cellular and Molecular Biology, Department of Clinical Pathology, National Institute of Gastroenterology, “S. De Bellis” Research Hospital, Castellana Grotte, BA, Italy
| | - Nicola Carella
- Laboratory of Cellular and Molecular Biology, Department of Clinical Pathology, National Institute of Gastroenterology, “S. De Bellis” Research Hospital, Castellana Grotte, BA, Italy
| | - Aldo Cavallini
- Laboratory of Cellular and Molecular Biology, Department of Clinical Pathology, National Institute of Gastroenterology, “S. De Bellis” Research Hospital, Castellana Grotte, BA, Italy
| | - Caterina Messa
- Laboratory of Cellular and Molecular Biology, Department of Clinical Pathology, National Institute of Gastroenterology, “S. De Bellis” Research Hospital, Castellana Grotte, BA, Italy
| | - Brian Irving Carr
- Visiting Professor, Program for Targeted Experimental Therapeutics, Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
36
|
Mayer B, Karakhanova S, Bauer N, Liu L, Zhu Y, Philippov PP, Werner J, Bazhin AV. A marginal anticancer effect of regorafenib on pancreatic carcinoma cells in vitro, ex vivo, and in vivo. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:1125-1134. [PMID: 28779210 DOI: 10.1007/s00210-017-1412-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/27/2017] [Indexed: 12/13/2022]
Abstract
Activation of receptor tyrosine kinases is recognized as a hallmark of cancer. Vascular endothelial growth factor (VEGF) and its receptor VEGFR are the prominent players in the induction of tumor neoangiogenesis. Strategies to inhibit VEGF and VEGFR are under intensive investigation in preclinical and clinical settings. Regorafenib is a multikinase inhibitor targeting some VEGFR and other receptor kinases. Preclinical results led to the FDA approval of regorafenib for treatment of metastatic colorectal cancer patients. Effects of this drug in pancreatic ductal adenocarcinoma (PDAC) have not been investigated yet. Gene expression was assessed with real-time PCR analysis. In vitro cell viability, proliferation, apoptosis, necrosis, migration, and invasion of the PDAC cells were assessed after regorafenib treatment. Ex vivo anti-tumor effects of regorafenib were investigated in a spheroid model of PDAC. In vivo anti-tumor effects of the drug were evaluated in a fertilized chicken egg model. In this work, we have demonstrated only a marginal anticancer effect of regorafenib in PDAC in vitro and ex vivo. However, in the egg model of PDAC, this drug reduced tumor volume. Besides, regorafenib is capable of modulating the expression of cancer stem cell (CSC) markers and epithelial-to-mesenchymal transition (EMT) markers on PDAC cells. We found out that effects of regorafenib on the expression of CSC and EMT markers are very heterogeneous and depend obviously on original expression of these markers. We concluded that regorafenib might be a potential drug for PDAC and it should be investigated in future clinical trials.
Collapse
Affiliation(s)
- Barbara Mayer
- Department of General, Visceral, and Transplantation Surgery, University Hospital of the LMU, Marchioninistr. 15, 81377, Munich, Germany
| | - Svetlana Karakhanova
- Section Surgical Research, University of Heidelberg, Heidelberg, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Nathalie Bauer
- Section Surgical Research, University of Heidelberg, Heidelberg, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Li Liu
- Section Surgical Research, University of Heidelberg, Heidelberg, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yifan Zhu
- Department of Oncology, Henan University Huaihe Hospital, Kai Feng, People's Republic of China
- International Joint Research Laboratory for Cell Medical Engineering of Henan, Zhengzhou, People's Republic of China
| | - Pavel P Philippov
- Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Jens Werner
- Department of General, Visceral, and Transplantation Surgery, University Hospital of the LMU, Marchioninistr. 15, 81377, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplantation Surgery, University Hospital of the LMU, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
37
|
Takigawa H, Kitadai Y, Shinagawa K, Yuge R, Higashi Y, Tanaka S, Yasui W, Chayama K. Mesenchymal Stem Cells Induce Epithelial to Mesenchymal Transition in Colon Cancer Cells through Direct Cell-to-Cell Contact. Neoplasia 2017; 19:429-438. [PMID: 28433772 PMCID: PMC5402629 DOI: 10.1016/j.neo.2017.02.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 01/13/2023] Open
Abstract
We previously reported that in an orthotopic nude mouse model of human colon cancer, bone marrow-derived mesenchymal stem cells (MSCs) migrated to the tumor stroma and promoted tumor growth and metastasis. Here, we evaluated the proliferation and migration ability of cancer cells cocultured with MSCs to elucidate the mechanism of interaction between cancer cells and MSCs. Proliferation and migration of cancer cells increased following direct coculture with MSCs but not following indirect coculture. Thus, we hypothesized that direct contact between cancer cells and MSCs was important. We performed a microarray analysis of gene expression in KM12SM colon cancer cells directly cocultured with MSCs. Expression of epithelial-mesenchymal transition (EMT)-related genes such as fibronectin (FN), SPARC, and galectin 1 was increased by direct coculture with MSCs. We also confirmed the upregulation of these genes with real-time polymerase chain reaction. Gene expression was not elevated in cancer cells indirectly cocultured with MSCs. Among the EMT-related genes upregulated by direct coculture with MSCs, we examined the immune localization of FN, a well-known EMT marker. In coculture assay in chamber slides, expression of FN was seen only at the edges of cancer clusters where cancer cells directly contacted MSCs. FN expression in cancer cells increased at the tumor periphery and invasive edge in orthotopic nude mouse tumors and human colon cancer tissues. These results suggest that MSCs induce EMT in colon cancer cells via direct cell-to-cell contact and may play an important role in colon cancer metastasis.
Collapse
Affiliation(s)
- Hidehiko Takigawa
- Department of Gastroenterology and Metabolism, Hiroshima University, Hiroshima, Japan
| | - Yasuhiko Kitadai
- Department of Health and Science, Prefectural University of Hiroshima, Hiroshima, Japan.
| | | | - Ryo Yuge
- Department of Endoscopy and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Physiology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy and Medicine, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan.; Laboratory for Digestive Diseases, RIKEN Center for Integrative Medical Sciences, Hiroshima, Japan
| |
Collapse
|
38
|
Sagami S, Ueno Y, Tanaka S, Fujita A, Niitsu H, Hayashi R, Hyogo H, Hinoi T, Kitadai Y, Chayama K. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency. PLoS One 2017; 12:e0169681. [PMID: 28095507 PMCID: PMC5241147 DOI: 10.1371/journal.pone.0169681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.
Collapse
Affiliation(s)
- Shintaro Sagami
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima, Japan
- * E-mail: (SS); (YU)
| | - Yoshitaka Ueno
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail: (SS); (YU)
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Akira Fujita
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Niitsu
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryohei Hayashi
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Hideyuki Hyogo
- Department of Gastroenterology, Hiroshima General Hospital, Hiroshima, Japan
| | - Takao Hinoi
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Surgery, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chu-goku Cancer Center, Hiroshima, Japan
| | - Yasuhiko Kitadai
- Department of Life Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
39
|
Zhang WJ, Li Y, Wei MN, Chen Y, Qiu JG, Jiang QW, Yang Y, Zheng DW, Qin WM, Huang JR, Wang K, Zhang WJ, Wang YJ, Yang DH, Chen ZS, Shi Z. Synergistic antitumor activity of regorafenib and lapatinib in preclinical models of human colorectal cancer. Cancer Lett 2016; 386:100-109. [PMID: 27864115 DOI: 10.1016/j.canlet.2016.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/25/2016] [Accepted: 11/08/2016] [Indexed: 01/11/2023]
Abstract
Regorafenib significantly prolongs overall survival in patients with metastatic colorectal cancer (mCRC), but the overall clinical efficacy of regorafenib remains quite limited. Combination chemotherapy is a potentially promising approach to enhance anticancer activity, overcome drug resistance, and improve disease-free and overall survival. The current study investigates the antitumor activity of regorafenib in combination with lapatinib in preclinical models of human CRC. Our results show improved antitumor efficacy when regorafenib is combined with lapatinib both in vitro and in vivo. Furthermore, pharmacokinetic analyses revealed that regorafenib and lapatinib do not influence on each plasma concentration. The finding that regorafenib in combination with lapatinib have synergistic activity warrants further clinical investigation of this beneficial combination as a potential treatment strategy for CRC patients.
Collapse
Affiliation(s)
- Wen-Ji Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yong Li
- Department of Gastrointestinal Surgery & General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Meng-Ning Wei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yao Chen
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jian-Ge Qiu
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qi-Wei Jiang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Di-Wei Zheng
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wu-Ming Qin
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jia-Rong Huang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Kun Wang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wen-Juan Zhang
- Department of Preventive Medicine, College of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
40
|
Takigawa H, Kitadai Y, Shinagawa K, Yuge R, Higashi Y, Tanaka S, Yasui W, Chayama K. Multikinase inhibitor regorafenib inhibits the growth and metastasis of colon cancer with abundant stroma. Cancer Sci 2016; 107:601-8. [PMID: 26865419 PMCID: PMC5001714 DOI: 10.1111/cas.12907] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 01/29/2016] [Accepted: 02/06/2016] [Indexed: 12/19/2022] Open
Abstract
Interaction between tumor cells and stromal cells plays an important role in the growth and metastasis of colon cancer. We previously found that carcinoma-associated fibroblasts (CAFs) expressed platelet-derived growth factor receptor-β (PDGFR-β) and that PDGFR targeted therapy using imatinib or nilotinib inhibited stromal reaction. Bone marrow-derived mesenchymal stem cells (MSCs) migrate to tumor stroma and differentiate into CAFs. A novel oral multikinase inhibitor regorafenib inhibits receptor tyrosine kinases expressed on stromal cells (vascular endothelial growth factor receptor 1-3, TIE2, PDGFR-β, and fibroblast growth factors) and tumor cells (c-KIT, RET, and BRAF). These molecules are involved in tumor growth, angiogenesis, lymphangiogenesis, and stromal activation. Therefore, we examined whether regorafenib impaired the tumor-promoting effect of CAFs/MSCs. KM12SM human colon cancer cells alone or KM12SM cells with MSCs were transplanted into the cecal wall of nude mice. Co-implantation of KM12SM cells with MSCs into the cecal wall of nude mice produced tumors with abundant stromal component and promoted tumor growth and lymph node metastasis. Single treatment with regorafenib inhibited tumor growth and metastasis by inhibiting both tumor cells and stromal reaction. This tumor-inhibitory effect of regorafenib was more obvious in tumors developed by co-implanting KM12SM cells with MSCs. Our data suggested that targeting of the tumor microenvironment with regorafenib affected tumor cell-MSC interaction, which in turn inhibited the growth and metastasis of colon cancer.
Collapse
Affiliation(s)
- Hidehiko Takigawa
- Department of Gastroenterology and MetabolismHiroshima UniversityHiroshimaJapan
| | - Yasuhiko Kitadai
- Department of Gastroenterology and MetabolismHiroshima UniversityHiroshimaJapan
| | - Kei Shinagawa
- Department of EndoscopyHiroshima Prefectural HospitalHiroshimaJapan
| | - Ryo Yuge
- Department of Gastroenterology and MetabolismHiroshima UniversityHiroshimaJapan
| | - Yukihito Higashi
- Department of Cardiovascular Physiology and MedicineHiroshima UniversityHiroshimaJapan
| | - Shinji Tanaka
- Department of EndoscopyHiroshima University HospitalHiroshimaJapan
| | - Wataru Yasui
- Department of Molecular PathologyHiroshima UniversityHiroshimaJapan
| | - Kazuaki Chayama
- Department of Gastroenterology and MetabolismHiroshima UniversityHiroshimaJapan
| |
Collapse
|