1
|
Ota S, Yasui K, Ogata T, Mori Y, Nishio T, Tohyama N, Okamoto H, Kurooka M, Shimomura K, Kojima T, Onishi H. Clinical workload profile of medical physics professionals at particle therapy Centers: a National Survey in Japan. JOURNAL OF RADIATION RESEARCH 2025; 66:52-64. [PMID: 39657763 PMCID: PMC11753842 DOI: 10.1093/jrr/rrae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/30/2024] [Indexed: 12/12/2024]
Abstract
The current research on staffing models is primarily focused on conventional external photon beam therapy, which predominantly involves using linear accelerators. This emphasizes the need for comprehensive studies to understand better and define specific particle therapy facilities' staffing requirements. In a 2022 survey of 25 particle therapy facilities in Japan with an 84% response rate, significant insights were obtained regarding workload distribution, defined as the product of personnel count and task time (person-minutes), for patient-related tasks and equipment quality assurance and quality control (QA/QC). The survey revealed that machinery QA/QC tasks were particularly demanding, with an average monthly workload of 376.9 min and weekly tasks averaging 162.1 min. In comparison, patient-related workloads focused on treatment planning, exhibiting substantial time commitments, particularly for scanning and passive scattering techniques. The average workloads for treatment planning per patient were 291.3 and 195.4 min, respectively. In addition, specific patient scenarios such as pre-treatment sedation in pediatric cases require longer durations (averaging 84.5 min), which likely include the workloads of not only the physician responsible for sedation but also the radiotherapy technology and medical physics specialists providing support during sedation and the nursing staff involved in sedation care. These findings underscore the significant time investments required for machinery QA/QC and patient-specific treatment planning in particle therapy facilities, along with the need for specialized care procedures in pediatric cases. The results of this survey also emphasized the challenges and staffing requirements to ensure QA/QC in high-precision medical environments.
Collapse
Affiliation(s)
- Seiichi Ota
- Division of Radiological Technology, Department of Medical Technology, University Hospital, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Keisuke Yasui
- Division of Medical Physics, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192, Japan
| | - Toshiyuki Ogata
- Department of Radiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yutaro Mori
- Department of Radiation Oncology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Teiji Nishio
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Tohyama
- Department of Radiological Sciences, Komazawa University, 1-23-1 Komazawa, Setagaya-ku, Tokyo 154-8525, Japan
| | - Hiroyuki Okamoto
- Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masahiko Kurooka
- Department of Radiation Therapy, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Kohei Shimomura
- Department of Radiological Technology, Faculty of Medical Science, Kyoto College of Medical Science, 1-3 Sonobechooyamahigashimachi, Nantan-shi, Kyoto 622-0041, Japan
| | - Toru Kojima
- Department of Radiation Oncology, Saitama Cancer Center, 780 Komuro, Ina-machi, Saitama 362-0806, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi School of Medicine, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| |
Collapse
|
2
|
Mizumoto M, Hosaka S, Nakai K, Li Y, Oshiro Y, Iizumi T, Saito T, Inaba M, Fukushima H, Suzuki R, Shimizu S, Maruo K, Sakurai H. Systematic review and meta-analysis of photon radiotherapy versus proton beam therapy for pediatric intracranial ependymoma: TRP-ependymoma 2024. Heliyon 2024; 10:e40372. [PMID: 39634432 PMCID: PMC11616511 DOI: 10.1016/j.heliyon.2024.e40372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Proton beam therapy (PBT) may reduce the number of adverse events in treatment of patients with pediatric cancer. However, it is difficult to evaluate whether the actual therapeutic effect is truly equivalent to that of photon radiotherapy. To compare photon radiotherapy and PBT, a meta-analysis and systematic review were performed. Methods The meta-analysis used papers from 1990 to 2023 in which postoperative local photon radiotherapy or PBT was performed for pediatric intracranial ependymomas. Fifteen articles (5 PBT, 9 photon radiotherapy, one both) were selected based on administration of radiotherapy as local irradiation. Results Among the 15 chosen articles, the 1- to 5-year overall survival (OS) rates (photon radiotherapy vs. PBT) were 95.4 % (95 % confidence interval (CI) 92.8-97.1 %) vs. 97.2 % (95.7-98.2 %); 88.3 % (85.0-90.9 %) vs. 93.5 % (91.4-95.1 %); 81.2 % (76.9-84.8 %) vs. 91.1 % (88.4-93.2 %); 76.9 % (71.2-81.6 %) vs. 86.1 % (81.9-89.4 %); and 73.8 % (68.3-78.5 %) vs. 84.7 % (79.9-88.5 %), respectively. The 1- to 5-year local control (LC) rates (photon radiotherapy vs. PBT) were 90.9 % (95 % CI 83.9-94.9 %) vs. 91.0 % (88.7-92.9 %); 81.5 % (68.9-89.4 %) vs. 85.7 % (82.0-88.6 %); 77.3 % (62.8-86.8 %) vs. 82.6 % (79.1-85.5 %); 74.6 % (57.7-85.6 %) vs. 78.3 % (71.6-83.5 %); and 72.6 % (51.4-85.8 %) vs. 79.0 % (73.4-83.5 %), respectively. The meta-regression analysis identified relationships of modality (photon radiotherapy vs. PBT), age at irradiation, pathology (Grade 2 vs. Grade 3), and tumor removal (complete resection vs. none) with significantly better 3-year OS after PBT and better 1- to 5-year LC at a younger age. Conclusion In postoperative local irradiation of ependymomas in children, proton beam therapy had outcomes comparable to those of photon radiotherapy.
Collapse
Affiliation(s)
- Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, 305-8576, Japan
| | - Sho Hosaka
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kei Nakai
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, 305-8576, Japan
| | - Yinuo Li
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, 305-8576, Japan
| | - Yoshiko Oshiro
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, 305-8576, Japan
- Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki, 305-8558, Japan
| | - Takashi Iizumi
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, 305-8576, Japan
| | - Takashi Saito
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, 305-8576, Japan
| | - Masako Inaba
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Ibaraki, 305-8576, Japan
| | - Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Ibaraki, 305-8576, Japan
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8576, Japan
| | - Ryoko Suzuki
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8576, Japan
| | - Shosei Shimizu
- Department of Pediatric Radiation Therapy Center / Pediatric Proton Beam Therapy Center, Hebei Yizhou Cancer Hospital, 072750, China
| | - Kazushi Maruo
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, 305-8576, Japan
| |
Collapse
|
3
|
Chou SC, Chen YN, Huang HY, Kuo MF, Wong TT, Kuo SH, Yang SH. Contemporary Management of Pediatric Brainstem Tumors. Adv Tech Stand Neurosurg 2024; 49:231-254. [PMID: 38700687 DOI: 10.1007/978-3-031-42398-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Brain tumors are the second most common malignancy in childhood. Around 15-20% of pediatric brain tumors occur in the brainstem. The most common type of brainstem tumor are diffuse tumors in the ventral pons, whereas focal tumors tend to arise from the midbrain, medulla, and dorsal pons. Glioma is the most common pathological entity. Contemporary management consists of surgery, radiotherapy, chemotherapy, and other adjuvant treatment. Surgical options range from biopsy to radical excision. Biopsy can be performed for diagnostic and prognostic purposes, or in the setting of clinical trials, mainly for diffuse intrinsic pontine gliomas. For focal tumors, surgeons need to carefully balance clinical outcomes against possible neurological sequelae in order to achieve maximal safe resection. Radiotherapy is essential for control of high-grade tumors and may be applied to residual or recurrent low-grade tumors. Proton therapy may provide similar efficacy and less neurotoxicity in comparison to conventional photon therapy. Oncological treatment continues to evolve from conventional chemotherapy to targeted therapy, immunotherapy, and other novel treatment methods and holds great potential as adjuvant therapy for pediatric brainstem tumors.
Collapse
Affiliation(s)
- Sheng-Che Chou
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Traumatology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Ning Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu County, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Fai Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tai-Tong Wong
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Hung Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
4
|
Miguel Llordes G, Medina Pérez VM, Curto Simón B, Castells-Yus I, Vázquez Sufuentes S, Schuhmacher AJ. Epidemiology, Diagnostic Strategies, and Therapeutic Advances in Diffuse Midline Glioma. J Clin Med 2023; 12:5261. [PMID: 37629304 PMCID: PMC10456112 DOI: 10.3390/jcm12165261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Object: Diffuse midline glioma (DMG) is a highly aggressive and lethal brain tumor predominantly affecting children and young adults. Previously known as diffuse intrinsic pontine glioma (DIPG) or grade IV brain stem glioma, DMG has recently been reclassified as "diffuse midline glioma" according to the WHO CNS5 nomenclature, expanding the DMG demographic. Limited therapeutic options result in a poor prognosis, despite advances in diagnosis and treatment. Radiotherapy has historically been the primary treatment modality to improve patient survival. Methods: This systematic literature review aims to comprehensively compile information on the diagnosis and treatment of DMG from 1 January 2012 to 31 July 2023. The review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and utilized databases such as PubMed, Cochrane Library, and SciELO. Results: Currently, molecular classification of DMG plays an increasingly vital role in determining prognosis and treatment options. Emerging therapeutic avenues, including immunomodulatory agents, anti-GD2 CAR T-cell and anti-GD2 CAR-NK therapies, techniques to increase blood-brain barrier permeability, isocitrate dehydrogenase inhibitors, oncolytic and peptide vaccines, are being explored based on the tumor's molecular composition. However, more clinical trials are required to establish solid guidelines for toxicity, dosage, and efficacy. Conclusions: The identification of the H3K27 genetic mutation has led to the reclassification of certain midline tumors, expanding the DMG demographic. The field of DMG research continues to evolve, with encouraging findings that underscore the importance of highly specific and tailored therapeutic strategies to achieve therapeutic success.
Collapse
Affiliation(s)
- Gloria Miguel Llordes
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | | | - Irene Castells-Yus
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | | | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
5
|
Mizumoto M, Fukushima H, Miyamoto T, Oshiro Y, Sumiya T, Iizumi T, Saito T, Makishima H, Numajiri H, Hosaka S, Nagatomo K, Yamaki Y, Nakai K, Sakurai H. Analysis of person-hours required for proton beam therapy for pediatric tumors. JOURNAL OF RADIATION RESEARCH 2023; 64:599-601. [PMID: 37134315 PMCID: PMC10214988 DOI: 10.1093/jrr/rrad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2023] [Accepted: 03/25/2023] [Indexed: 05/05/2023]
Abstract
Proton beam therapy (PBT) is effective for pediatric tumors, but patients may require sedation and other preparations, which extend the treatment time. Pediatric patients were classified into sedation and non-sedation cases. Adult patients were classified into three groups based on irradiation from two directions without or with respiratory synchronization and patch irradiation. Treatment person-hours were calculated as follows: (time from entering to leaving the treatment room) × (number of required personnel). A detailed analysis showed that the person-hours required for the treatment of pediatric patients are about 1.4-3.5 times greater than those required for adult patients. With the inclusion of additional time for the preparation of pediatric patients, PBT for pediatric cases is two to four times more labor-intensive than for typical adult cases.
Collapse
Affiliation(s)
- Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroko Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Toshio Miyamoto
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshiko Oshiro
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Taisuke Sumiya
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Iizumi
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Saito
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirokazu Makishima
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Haruko Numajiri
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Sho Hosaka
- Department of Pediatrics, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kumie Nagatomo
- Department of Pediatrics, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuni Yamaki
- Department of Pediatrics, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kei Nakai
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
6
|
Hwang E, Gaito S, France A, Crellin AM, Thwaites DI, Ahern V, Indelicato D, Timmermann B, Smith E. Outcomes of Patients Treated in the UK Proton Overseas Programme: Non-central Nervous System Group. Clin Oncol (R Coll Radiol) 2023; 35:292-300. [PMID: 36813694 DOI: 10.1016/j.clon.2023.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
AIMS The UK Proton Overseas Programme (POP) was launched in 2008. The Proton Clinical Outcomes Unit (PCOU) warehouses a centralised registry for collection, curation and analysis of all outcomes data for all National Health Service-funded UK patients referred and treated abroad with proton beam therapy (PBT) via the POP. Outcomes are reported and analysed here for patients diagnosed with non-central nervous system tumours treated from 2008 to September 2020 via the POP. MATERIALS AND METHODS All non-central nervous system tumour files for treatments as of 30 September 2020 were interrogated for follow-up information, and type (following CTCAE v4) and time of onset of any late (>90 days post-PBT completion) grade 3-5 toxicities. RESULTS Four hundred and ninety-five patients were analysed. The median follow-up was 2.1 years (0-9.3 years). The median age was 11 years (0-69 years). 70.3% of patients were paediatric (<16 years). Rhabdomyosarcoma (RMS) and Ewing sarcoma were the most common diagnoses (42.6% and 34.1%). 51.3% of treated patients were for head and neck (H&N) tumours. At last known follow-up, 86.1% of all patients were alive, with a 2-year survival rate of 88.3% and 2-year local control of 90.3%. Mortality and local control were worse for adults (≥25 years) than for the younger groups. The grade 3 toxicity rate was 12.6%, with a median onset of 2.3 years. Most were in the H&N region in paediatric patients with RMS. Cataracts (30.5%) were the most common, then musculoskeletal deformity (10.1%) and premature menopause (10.1%). Three paediatric patients (1-3 years at treatment) experienced secondary malignancy. Seven grade 4 toxicities occurred (1.6%), all in the H&N region and most in paediatric patients with RMS. Six related to eyes (cataracts, retinopathy, scleral disorder) or ears (hearing impairment). CONCLUSIONS This study is the largest to date for RMS and Ewing sarcoma, undergoing multimodality therapy including PBT. It demonstrates good local control, survival and acceptable toxicity rates.
Collapse
Affiliation(s)
- E Hwang
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, NSW, Australia; Institute of Medical Physics, School of Physics, University of Sydney, NSW, Australia.
| | - S Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - A France
- Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK
| | - A M Crellin
- NHS England National Clinical Lead Proton Beam Therapy, UK
| | - D I Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, NSW, Australia; Radiotherapy Research Group, Leeds Institute of Medical Research, St James's Hospital and School of Medicine, Leeds University, Leeds, UK
| | - V Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, NSW, Australia; Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - D Indelicato
- University of Florida Department of Radiation Oncology, Jacksonville, FL, USA
| | - B Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, West German Cancer Centre, German Cancer Consortium, Essen, Germany
| | - E Smith
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
7
|
Gaito S, Hwang EJ, France A, Aznar MC, Burnet N, Crellin A, Holtzman AL, Indelicato DJ, Timmerman B, Whitfield GA, Smith E. Outcomes of Patients Treated in the UK Proton Overseas Programme: Central Nervous System Group. Clin Oncol (R Coll Radiol) 2023; 35:283-291. [PMID: 36804292 DOI: 10.1016/j.clon.2023.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
AIMS In 2008, the UK National Health Service started the Proton Overseas Programme (POP), to provide access for proton beam therapy (PBT) abroad for selected tumour diagnoses while two national centres were being planned. The clinical outcomes for the patient group treated for central nervous system (CNS), base of skull, spinal and paraspinal malignancies are reported here. MATERIALS AND METHODS Since the start of the POP, an agreement between the National Health Service and UK referring centres ensured outcomes data collection, including overall survival, local tumour control and late toxicity data. Clinical and treatment-related data were extracted from this national patient database. Grade ≥3 late toxicities were reported following Common Terminology Criteria for Adverse Events (CTCAE) v 4.0 definition, occurring later than 90 days since the completion of treatment. RESULTS Between 2008 and September 2020, 830 patients were treated within the POP for the above listed malignancies. Overall survival data were available for 815 patients and local control data for 726 patients. Toxicity analysis was carried out on 702 patients, with patients excluded due to short follow-up (<90 days) and/or inadequate toxicity data available. After a median follow-up of 3.34 years (0.06-11.58), the overall survival was 91.2%. The local control rate was 85.9% after a median follow-up of 2.81 years (range 0.04-11.58). The overall grade ≥3 late toxicity incidence was 11.97%, after a median follow-up of 1.72 years (0.04-8.45). The median radiotherapy prescription dose was 54 GyRBE (34.8-79.2). CONCLUSIONS The results of this study indicate the safety of PBT for CNS tumours. Preliminary clinical outcomes following PBT for paediatric/teen and young adult and adult CNS tumours treated within the POP are encouraging, which reflects accurate patient selection and treatment quality. The rate of late effects compares favourably with published cohorts. Clinical outcomes from this patient cohort will be compared with those of UK-treated patients since the start of the national PBT service in 2018.
Collapse
Affiliation(s)
- S Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester, UK; Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK.
| | - E J Hwang
- Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester, UK; Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - A France
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester, UK
| | - M C Aznar
- Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - N Burnet
- Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester, UK
| | - A Crellin
- Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK; NHS England National Clinical Lead Proton Beam Therapy, UK
| | - A L Holtzman
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - D J Indelicato
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - B Timmerman
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - G A Whitfield
- Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK; Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester, UK
| | - E Smith
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester, UK; Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK; Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester, UK
| |
Collapse
|
8
|
Li Y, Mizumoto M, Oshiro Y, Nitta H, Saito T, Iizumi T, Kawano C, Yamaki Y, Fukushima H, Hosaka S, Maruo K, Kamizawa S, Sakurai H. A Retrospective Study of Renal Growth Changes after Proton Beam Therapy for Pediatric Malignant Tumor. Curr Oncol 2023; 30:1560-1570. [PMID: 36826081 PMCID: PMC9955816 DOI: 10.3390/curroncol30020120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The purpose of this study was to analyze renal late effects after proton beam therapy (PBT) for pediatric malignant tumors. A retrospective study was performed in 11 patients under 8 years of age who received PBT between 2013 and 2018. The kidney was exposed in irradiation of the primary lesion in all cases. Kidney volume and contour were measured on CT or MRI. Dose volume was calculated with a treatment-planning system. The median follow-up was 24 months (range, 11-57 months). In irradiated kidneys and control contralateral kidneys, the median volume changes were -5.63 (-20.54 to 7.20) and 5.23 (-2.01 to 16.73) mL/year; and the median % volume changes at 1 year were -8.55% (-47.52 to 15.51%) and 9.53% (-2.13 to 38.78%), respectively. The median relative volume change for irradiated kidneys at 1 year was -16.42% (-52.21 to -4.53%) relative to control kidneys. Kidneys irradiated with doses of 10, 20, 30, 40, and 50 GyE had volume reductions of 0.16%, 0.90%, 1.24%, 2.34%, and 8.2% per irradiated volume, respectively. The larger the irradiated volume, the greater the kidney volume was lost. Volume reduction was much greater in patients aged 4-7 years than in those aged 2-3 years. The results suggest that kidneys exposed to PBT in treatment of pediatric malignant tumor show continuous atrophy in follow-up. The degree of atrophy is increased with a higher radiation dose, greater irradiated volume, and older age. However, with growth and maturation, the contralateral kidney becomes progressively larger and is less affected by radiation.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100; Fax: +81-29-853-7102
| | - Yoshiko Oshiro
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hazuki Nitta
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Takashi Saito
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Takashi Iizumi
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Chie Kawano
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Yuni Yamaki
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Sho Hosaka
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satoshi Kamizawa
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
9
|
Mizumoto M, Oshiro Y, Miyamoto T, Sumiya T, Baba K, Murakami M, Shimizu S, Iizumi T, Saito T, Makishima H, Numajiri H, Nakai K, Okumura T, Maruo K, Sakae T, Sakurai H. Light flash and odor during proton beam therapy for pediatric patients: a prospective observational study. Front Oncol 2022; 12:863260. [PMID: 35978807 PMCID: PMC9376462 DOI: 10.3389/fonc.2022.863260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Light flash and odor during radiation therapy are well-known phenomena, but the details are poorly understood, particularly in pediatric patients. Therefore, we conducted a prospective observational study of these events in pediatric patients (age ≤20 years old) who received radiotherapy at our center from January 2019 to November 2021. Light flash and odor were evaluated using a patient-reported checklist including the presence, strength, and duration of the phenomenon, and color of light or type of odor. 53 patients who received proton therapy (n=47) and photon radiotherapy (n=6) were enrolled in this study. The median age of the patients was 10, ranged from 5 to 20. The patients who was able to see the light flash was 4, and all of them received retina irradiation. This was equivalent to 57% of the patients who received radiotherapy to retina (n=7). The light was bright and colored mainly blue and purple, which seemed to be consistent with Cherenkov light. Odor was sensed by 9 (17%) patients, and seven patients of the 9 received nasal cavity irradiation. This was equivalent to 41% of the patients who received nasal cavity irradiation (n=17). Other 2 patients received proton therapy to brain tumor. The odors were mainly described as plastic, burnt and disinfectant, which may be caused by ozone generated during irradiation. These data suggest that pediatric patients with retinal and nasal cavity irradiation frequently sense light flashes or odor. So adequate care is necessary so that these patients are not worried about this phenomenon.
Collapse
|
10
|
Spiotto MT, McGovern SL, Gunn GB, Grosshans D, McAleer MF, Frank SJ, Paulino AC. Proton Radiotherapy to Reduce Late Complications in Childhood Head and Neck Cancers. Int J Part Ther 2021; 8:155-167. [PMID: 34285943 PMCID: PMC8270100 DOI: 10.14338/ijpt-20-00069.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
In most childhood head and neck cancers, radiotherapy is an essential component of treatment; however, it can be associated with problematic long-term complications. Proton beam therapy is accepted as a preferred radiation modality in pediatric cancers to minimize the late radiation side effects. Given that childhood cancers are a rare and heterogeneous disease, the support for proton therapy comes from risk modeling and a limited number of cohort series. Here, we discuss the role of proton radiotherapy in pediatric head and neck cancers with a focus on reducing radiation toxicities. First, we compare the efficacy and expected toxicities in proton and photon radiotherapy for childhood cancers. Second, we review the benefit of proton radiotherapy in reducing acute and late radiation toxicities, including risks for secondary cancers, craniofacial development, vision, and cognition. Finally, we review the cost effectiveness for proton radiotherapy in pediatric head and neck cancers. This review highlights the benefits of particle radiotherapy for pediatric head and neck cancers to improve the quality of life in cancer survivors, to reduce radiation morbidities, and to maximize efficient health care use.
Collapse
Affiliation(s)
- Michael T Spiotto
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G Brandon Gunn
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven J Frank
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arnold C Paulino
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Takagi D, Morikawa Y, Kamei M, Ogino H, Iwata H, Maeda N, Akita N, Fukumoto T, Sasaki R, Kondo S. The first pediatric case of sacral Ewing sarcoma treated with space-making particle therapy. Pediatr Blood Cancer 2021; 68:e28842. [PMID: 33314634 DOI: 10.1002/pbc.28842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Daisuke Takagi
- Department of Pediatric Surgery, Nagoya City University Hospital, Nagoya, Japan
| | - Yuri Morikawa
- Department of Pediatric Surgery, Nagoya City University Hospital, Nagoya, Japan
| | - Michi Kamei
- Department of Neonatology and Pediatrics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Naoko Maeda
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Nobuhiro Akita
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Kondo
- Department of Pediatric Surgery, Nagoya City University Hospital, Nagoya, Japan
| |
Collapse
|
12
|
Mizumoto M, Oshiro Y, Tsujino K, Shimizu S, Iizumi T, Numajiri H, Nakai K, Okumura T, Soejima T, Sakurai H. Photon or Proton Therapy for Adolescent and Young Adult Tumors Focused on Long-Term Survivors. Cureus 2021; 13:e14627. [PMID: 34055504 PMCID: PMC8144073 DOI: 10.7759/cureus.14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background This study was conducted to evaluate late toxicities in adolescent and young adult (AYA) patients who received photon or proton therapy. Methodology A total of 106 AYA patients who received proton and photon therapy and were followed-up for more than two years were retrospectively evaluated. The median age of patients was 22 years (range, 15-29 years). A total of 47 patients were male and 59 were female. A total of 35 and 71 patients received photon and proton therapy, respectively. All but one patient received radiotherapy with curative intent. The target disease was benign and malignant in 28 and 78 patients, respectively. Results The median follow-up period in all patients was 62 months (range: 24-293 months). Grade 3 or higher toxicity was observed in 20 patients. There was one case of grade 5 toxicity (myelodysplastic syndrome), which was probably due to chemotherapy. No other secondary cancers were observed. Regarding life events, 15 and 88 patients were married and unmarried at the start of radiotherapy, respectively. Of the 88 unmarried patients, five were married after radiotherapy. Occupation and education were evaluated in 71 patients. Of the 71 patients, 33 were students, 21 were employed, and 16 were unemployed. Of the 33 students, eight were employed and 11 were at a higher educational grade after radiotherapy. Of the 21 employed patients, 17 had the same jobs and four had lost their jobs after radiotherapy. For the 16 unemployed patients, all remained unemployed. Conclusions This study is one of the largest studies to focus on life after radiation therapy among AYAs and suggests that cancer treatment has an influence on life events.
Collapse
Affiliation(s)
- Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, JPN
| | - Yoshiko Oshiro
- Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba, JPN
| | - Kayoko Tsujino
- Department of Radiation Oncology, Hyogo Cancer Center, Akashi, JPN
| | - Shosei Shimizu
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, JPN
| | - Takashi Iizumi
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, JPN
| | - Haruko Numajiri
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, JPN
| | - Kei Nakai
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, JPN
| | - Toshiyuki Okumura
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, JPN
| | | | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, JPN
| |
Collapse
|
13
|
Mizumoto M, Fuji H, Miyachi M, Soejima T, Yamamoto T, Aibe N, Demizu Y, Iwata H, Hashimoto T, Motegi A, Kawamura A, Terashima K, Fukushima T, Nakao T, Takada A, Sumi M, Oshima J, Moriwaki K, Nozaki M, Ishida Y, Kosaka Y, Ae K, Hosono A, Harada H, Ogo E, Akimoto T, Saito T, Fukushima H, Suzuki R, Takahashi M, Matsuo T, Matsumura A, Masaki H, Hosoi H, Shigematsu N, Sakurai H. Proton beam therapy for children and adolescents and young adults (AYAs): JASTRO and JSPHO Guidelines. Cancer Treat Rev 2021; 98:102209. [PMID: 33984606 DOI: 10.1016/j.ctrv.2021.102209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 11/19/2022]
Abstract
Children and adolescents and young adults (AYAs) with cancer are often treated with a multidisciplinary approach. This includes use of radiotherapy, which is important for local control, but may also cause adverse events in the long term, including second cancer. The risks for limited growth and development, endocrine dysfunction, reduced fertility and second cancer in children and AYAs are reduced by proton beam therapy (PBT), which has a dose distribution that decreases irradiation of normal organs while still targeting the tumor. To define the outcomes and characteristics of PBT in cancer treatment in pediatric and AYA patients, this document was developed by the Japanese Society for Radiation Oncology (JASTRO) and the Japanese Society of Pediatric Hematology/Oncology (JSPHO).
Collapse
Affiliation(s)
- Masashi Mizumoto
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Fuji
- Department of Radiology and National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Toshinori Soejima
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Norihiro Aibe
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Demizu
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Aichi, Japan
| | - Takayuki Hashimoto
- Department of Radiation Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Motegi
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Atsufumi Kawamura
- Department of Neurosurgery, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Keita Terashima
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Fukushima
- Department of Pediatric Hematology and Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Tomohei Nakao
- Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Akinori Takada
- Department of Radiology, Mie University Hospital, Tsu-shi, Mie, Japan
| | - Minako Sumi
- Department of Radiation Oncology and Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Radiation Oncology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | | | - Kensuke Moriwaki
- Department of Medical Statistics, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Miwako Nozaki
- Department of Radiology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Yuji Ishida
- Department of Pediatrics, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Keisuke Ae
- Department of Orthopaedic Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ako Hosono
- Department of Pediatric Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hideyuki Harada
- Division of Radiation Therapy, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Etsuyo Ogo
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuo Akimoto
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Takashi Saito
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroko Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryoko Suzuki
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mitsuru Takahashi
- Department of Orthopaedic Oncology, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Medicine, Nagasaki, Japan
| | - Akira Matsumura
- Departments of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hidekazu Masaki
- Proton Therapy Center, Aizawa Hospital, Matsumoto, Nagano, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Naoyuki Shigematsu
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Sakurai
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
14
|
Ozawa N, Fukuzawa R, Furuya K. Mothers' Experiences about Decisions to Use Children's Proton Beam Therapy. CHILDREN-BASEL 2021; 8:children8040274. [PMID: 33918337 PMCID: PMC8066003 DOI: 10.3390/children8040274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
Recently, proton beam therapy has been recommended in radiation therapy for child-hood cancer. However, facilities for children are limited, and parents who choose this treatment for their children face a variety of challenges. This study reveals mothers’ experiences about the decision to use the aforementioned therapy. A semi-structured interview was conducted with 16 mothers of children who received proton beam therapy in Japan, and a grounded theory approach was adopted. The results revealed that mothers were very worried about late complications concerning their children due to radiation. While the mothers strongly expected proton beam therapy to reduce the risk of late complications, they felt uncertainty and anxiety throughout the entire decision-making process. Despite having to deal with their feelings, they had to transfer to another hospital and prepare support for their children to begin treatment, and this put a lot of strain on them. From decision-making to start of treatment, these emotional fluctuations and the need for psychological support became apparent.
Collapse
Affiliation(s)
- Noriko Ozawa
- Faculty of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan;
- Correspondence:
| | - Rieko Fukuzawa
- Faculty of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan;
| | - Kayuri Furuya
- Faculty of Global Nursing, Iryo Sosei University, Chiba 277-0803, Japan;
| |
Collapse
|
15
|
An Analysis of Vertebral Body Growth after Proton Beam Therapy for Pediatric Cancer. Cancers (Basel) 2021; 13:cancers13020349. [PMID: 33477867 PMCID: PMC7832908 DOI: 10.3390/cancers13020349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Radiotherapy has a key role in treatment of pediatric cancer and has greatly improved survival in recent years. However, vertebrae are often included in the irradiated area, and this may affect growth after treatment. In this study, we examined the relationship of the dose of proton beam therapy with subsequent growth of 353 vertebral bodies in 23 children (10 boys, 13 girls) with a median age at treatment of 4 years old and a median observation period of 13.9 months. Most importantly, we found that the growth rate of vertebral bodies decreased even at a low proton beam therapy dose, which indicates the need for careful planning of the irradiation area in this patient population. Growth inhibition was clearly dose-dependent, and proton beam therapy had the same growth inhibitory effect as photon radiotherapy, at least within the irradiated field. Abstract Impairment of bone growth after radiotherapy for pediatric bone cancer is a well-known adverse event. However, there is limited understanding of the relationship between bone growth and irradiation dose. In this study, we retrospectively analyzed bone growth impairment after proton beam therapy for pediatric cancer. A total of 353 vertebral bodies in 23 patients under 12 years old who received proton beam therapy were evaluated. Compared to the non-irradiated vertebral body growth rate, the irradiated vertebral body rate (%/year) was significantly lower: 77.2%, 57.6%, 40.8%, 26.4%, and 14.1% at 10, 20, 30, 40, and 50 Gy (RBE) irradiation, respectively. In multivariate analysis, radiation dose was the only factor correlated with vertebral body growth. Age, gender, and vertebral body site were not significant factors. These results suggest that the growth rate of the vertebral body is dose-dependent and decreases even at a low irradiated dose. This is the first report to show that proton beam therapy has the same growth inhibitory effect as photon radiotherapy within the irradiated field.
Collapse
|
16
|
Kimura M, Asai K, Iwata H, Ogino H, Ito Y, Kamei M, Takagi D, Maeda N, Shibamoto Y. Impact on dose distribution and volume changes of a bioabsorbable polyglycolic acid spacer during chemo-proton therapy for a pediatric Ewing sarcoma. JOURNAL OF RADIATION RESEARCH 2020; 61:952-958. [PMID: 32960269 PMCID: PMC7674708 DOI: 10.1093/jrr/rraa087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 05/04/2023]
Abstract
The clinical utility of a recently developed bioabsorbable polyglycolic acid (PGA) spacer has not yet been established in pediatric patients; therefore, we aimed to investigate its utility during chemo-proton therapy for pediatric cancer. Proton depth-dose curves were obtained in a water phantom with or without the spacer. Computed tomography (CT) scans were performed for the PGA spacer immersed in saline for 2 weeks to measure CT numbers and estimate the relative stopping power (RSP) for the proton beams. The spacer was placed in a patient with sacral Ewing sarcoma receiving 55.8 Gy [relative biological effectiveness (RBE)] in 31 fractions and was evaluated using CT scans performed every other week. In addition, the images were used to quantitatively evaluate changes in volume and RSP of the spacer and dose distributions in normal tissues. The spacer immersed in saline had a CT number of 91 ± 7 (mean ± standard deviation) Hounsfield units, and the corresponding RSP was predicted to be 1.07 ± 0.01. The measured RSP agreed with the predicted one. The volumes of the large bowel and rectum receiving ≥45 Gy(RBE) (V45Gy) were significantly reduced by placing the spacer; V45Gy without and with the spacer were 48.5 and 0.01%, respectively, for the rectum and 7.2 and 0%, respectively, for the large bowel. The volume of the spacer and RSP decreased at rates of 4.6 and 0.44% per week, respectively, whereas the target dose coverage was maintained until the end of treatment. The PGA spacer was considered effective for pediatric cancer patients undergoing chemo-proton therapy.
Collapse
Affiliation(s)
- Mitsuhiro Kimura
- Corresponding author. Tel: +81-52-991-8588; Fax: +81-52-991-8599.
| | - Kumiko Asai
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Hirate-cho 1-1-1, Kita-ku, Nagoya 462-8508, Japan
| | - Hiromitsu Iwata
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Hirate-cho 1-1-1, Kita-ku, Nagoya 462-8508, Japan
| | - Hiroyuki Ogino
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Hirate-cho 1-1-1, Kita-ku, Nagoya 462-8508, Japan
| | - Yasuhiko Ito
- Department of Pediatric Oncology, Nagoya City West Medical Center, Hirate-cho 1-1-1, Kita-ku, Nagoya 462-8508, Japan
| | - Michi Kamei
- Department of Neonatology and Pediatrics, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Daisuke Takagi
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Naoko Maeda
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Sannomaru 4-1-1, Naka-ku, Nagoya 460-0001, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
17
|
Sertorio M, Nowrouzi A, Akbarpour M, Chetal K, Salomonis N, Brons S, Mascia A, Ionascu D, McCauley S, Kupneski T, Köthe A, Debus J, Perentesis JP, Abdollahi A, Zheng Y, Wells SI. Differential transcriptome response to proton versus X-ray radiation reveals novel candidate targets for combinatorial PT therapy in lymphoma. Radiother Oncol 2020; 155:293-303. [PMID: 33096164 DOI: 10.1016/j.radonc.2020.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Knowledge of biological responses to proton therapy (PT) in comparison to X-ray remains in its infancy. Identification of PT specific molecular signals is an important opportunity for the discovery of biomarkers and synergistic drugs to advance clinical application. Since PT is used for the treatment of lymphoma, we report here transcriptomic responses of lymphoma cell lines to PT vs X-ray and identify potential therapeutic targets. MATERIALS AND METHODS Two lymphoma cell lines of human (BL41) and murine (J3D) origin were irradiated by X-ray and PT. Differential transcriptome regulation was quantified by RNA sequencing for each radiation type at 12 hours post irradiation. Gene-set enrichment analysis revealed deregulated molecular pathways and putative targets for lymphoma cell sensitization to PT. RESULTS Transcriptomic gene set enrichment analyses uncovered pathways that contribute to the unfolded protein response (UPR) and mitochondrial transport. Functional validation at multiple time points demonstrated increased UPR activation and decreased protein translation, perhaps due to increased oxidative stress and oxidative protein damage after PT. PPARgamma was identified as a potential regulator of the PT transcriptomic response. Inhibition of PPARgamma by two compounds, T0070907 and SR2595, sensitized lymphoma cells to PT. CONCLUSIONS Proton vs X-ray radiation leads to the transcriptional regulation of a specific subset of genes in line with diminished protein translation and UPR activation that may be due to oxidative stress. This study demonstrates that different radiation qualities trigger distinct cellular responses in lymphoma cells, and identifies PPARgamma inhibition as a potential strategy for the sensitization of lymphoma to PT.
Collapse
Affiliation(s)
- Mathieu Sertorio
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| | - Ali Nowrouzi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - Mahdi Akbarpour
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Stephan Brons
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, USA
| | - Dan Ionascu
- Department of Radiation Oncology, University of Cincinnati College of Medicine, USA
| | - Shelby McCauley
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Taylor Kupneski
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Andreas Köthe
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Amir Abdollahi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - Yi Zheng
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| |
Collapse
|
18
|
[Proton therapy-a chance in the treatment of tumors of the head and neck and base of skull]. Radiologe 2020; 60:1058-1065. [PMID: 33025134 DOI: 10.1007/s00117-020-00762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Radiotherapy (RT) is an integral part of the treatment of many tumors located in the vicinity of sensitive organs and structures, including tumors of the head and neck and base of skull in particular. Due to the risk of side effects associated with RT, the use of highly conformal RT techniques is favored. For many indications, proton therapy (PT) is therefore already part of the modern treatment standard. OBJECTIVE This article presents an overview of current indications for PT with emphasis on tumors in the head and neck region and the base of skull. Furthermore, a summary and discussion of relevant results and current developments are included. MATERIALS AND METHODS The work comprises an evaluation of relevant studies and an overview of current issues related to PT of tumors in the areas of the head, neck, and base of skull. RESULTS Overall, the studies on PT show promising results. In addition to dosimetric studies, clinical studies also point to advantages of PT, especially with regard to the reduction of side effects. DISCUSSION Currently, use of the model-based approach is being discussed. This is intended to identify those patients who benefit most from PT based on the normal tissue complication probability (NTCP). PT for re-RT is also discussed.
Collapse
|
19
|
Timmermann B. [Proton therapy-a chance in the treatment of tumors of the head and neck and base of skull]. HNO 2020; 68:640-647. [PMID: 32780222 DOI: 10.1007/s00106-020-00915-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Radiotherapy (RT) is an integral part of the treatment of many tumors located in the vicinity of sensitive organs and structures, including tumors of the head and neck and base of skull in particular. Due to the risk of side effects associated with RT, the use of highly conformal RT techniques is favored. For many indications, proton therapy (PT) is therefore already part of the modern treatment standard. OBJECTIVE This article presents an overview of current indications for PT with emphasis on tumors in the head and neck region and the base of skull. Furthermore, a summary and discussion of relevant results and current developments are included. MATERIALS AND METHODS The work comprises an evaluation of relevant studies and an overview of current issues related to PT of tumors in the areas of the head, neck, and base of skull. RESULTS Overall, the studies on PT show promising results. In addition to dosimetric studies, clinical studies also point to advantages of PT, especially with regard to the reduction of side effects. DISCUSSION Currently, use of the model-based approach is being discussed. This is intended to identify those patients who benefit most from PT based on the normal tissue complication probability (NTCP). PT for re-RT is also discussed.
Collapse
Affiliation(s)
- Beate Timmermann
- Klinik für Partikeltherapie, Westdeutsches Protonentherapiezentrum Essen, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| |
Collapse
|
20
|
Age as a decisive factor in general anaesthesia use in paediatric proton beam therapy. Sci Rep 2020; 10:15096. [PMID: 32934278 PMCID: PMC7493927 DOI: 10.1038/s41598-020-72223-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022] Open
Abstract
Proton therapy for paediatric cancer patients is an effective treatment; however, young children have may have difficulties staying still during irradiation. This study investigated the indication of general anaesthesia in paediatric proton therapy. Background information and anaesthesia/treatment protocols were retrospectively extracted from the medical records of cancer patients under 15 years who underwent proton therapy at Southern TOHOKU General Hospital, Fukushima, Japan between April 2016 and December 2018. The anaesthesia and non-anaesthesia groups were compared to evaluate factors determining the need for general anaesthesia. Thirty-two patients who received 285 irradiations were analysed. The median age was 5 years old (range: 1–15), and 13 patients (40.6%) were female. Twelve (37.5%) patients received general anaesthesia. In the general anaesthesia group, airway management using a laryngeal mask was performed in 11 patients (91.6%). Patient age was significantly lower in the general anaesthesia group than in the non-anaesthetised group (p < 0.001). Considering all background factors, only age was strongly associated with anaesthesia in the univariate logistic regression model (odds ratio 0.55 [95% confidence interval 0.35–0.86]; P < 0.01). Thus, age is one of the most important factors determining the need for general anaesthesia during proton therapy in children.
Collapse
|
21
|
Saini G, Shukla R, Sood KS, Shukla SK, Chandra R. Role of Proton Beam Therapy in Current Day Radiation Oncology Practice. ASIAN JOURNAL OF ONCOLOGY 2020. [DOI: 10.1055/s-0040-1713703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
AbstractProton beam therapy (PBT), because of its unique physics of no–exit dose deposition in the tissue, is an exciting prospect. The phenomenon of Bragg peak allows protons to deposit their almost entire energy towards the end of the path of the proton and stops any further dose delivery. Braggs peak equips PBT with superior dosimetric advantage over photons or electrons because PBT doesn’t traverse the target/body but is stopped sharply at an energy dependent depth in the target/body. It also has no exit dose. Because of no exit dose and normal tissue sparing, PBT is hailed for its potential to bring superior outcomes. Pediatric malignancies is the most common malignancy where PBT have found utmost application. Nowadays, PBT is also being used in the treatment of other malignancies such as carcinoma prostate, carcinoma breast, head and neck malignancies, and gastrointestinal (GI) malignancies. Despite advantages of PBT, there is not only a high cost of setting up of PBT centers but also a lack of definitive phase-III data. Therefore, we review the role of PBT in current day practice of oncology to bring out the nuances that must guide the practice to choose suitable patients for PBT.
Collapse
Affiliation(s)
- Gagan Saini
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| | - Rashmi Shukla
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| | - Kanika S. Sood
- Department of Radiation Oncology, Dharamshila Narayana Superspeciality Hospital, New Delhi, India
| | - Sujit K. Shukla
- Department of Radiation Oncology, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Ritu Chandra
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe current advances in pediatric precision therapy through innovations in technology and engineering. A multimodal approach of chemotherapy, surgery and/or radiation therapy has improved survival outcomes for pediatric cancer but with significant early and late toxicities. The pediatric population is particularly vulnerable given their age during treatment. Advances in precision interventions discussed include image guidance, ablation techniques, radiation therapy and novel drug delivery mechanisms that offer the potential for more targeted approach approaches with improved efficacy while limiting acute and late toxicities. RECENT FINDINGS Image-guidance provides improved treatment planning, real time monitoring and targeting when combined with ablative techniques and radiation therapy. Advances in drug delivery including radioisotopes, nanoparticles and antibody drug conjugates have shown benefit in adult malignancies with increasing use in pediatrics. These therapies alone and combined may lead to augmented local antitumor effect while sparing systemic exposure and potentially limiting early and late toxicities. SUMMARY Pediatric cancer medicine often requires a multimodal approach, each with early and late toxicities. Precision interventions and therapies offer promise for more targeted approaches in treating pediatric malignancies and require further investigation to determine long-term benefit.
Collapse
|
23
|
Komori K, Saito S, Araya M, Morita D, Kurata T, Hirabayashi K, Tanaka M, Koiwai K, Tauchi K, Masaki H, Nakazawa Y. Proton Beam Therapy for Adolescent Primary Central Nervous System Lymphoma With Residual Tumor After Intensive Chemotherapy: A Case Report. Pract Radiat Oncol 2019; 9:333-337. [PMID: 31128305 DOI: 10.1016/j.prro.2019.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Kazutoshi Komori
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan; Department of Hematology/Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Masayuki Araya
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Daisuke Morita
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Kurata
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan; Department of Hematology/Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Koichi Hirabayashi
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Miyuki Tanaka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Keiichiro Koiwai
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Katsunori Tauchi
- Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Hidekazu Masaki
- Department of Radiology, Kameda General Hospital, Kamogawa, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
24
|
Mulder RL, Bresters D, Van den Hof M, Koot BGP, Castellino SM, Loke YKK, Post PN, Postma A, Szőnyi LP, Levitt GA, Bardi E, Skinner R, van Dalen EC, Cochrane Childhood Cancer Group. Hepatic late adverse effects after antineoplastic treatment for childhood cancer. Cochrane Database Syst Rev 2019; 4:CD008205. [PMID: 30985922 PMCID: PMC6463806 DOI: 10.1002/14651858.cd008205.pub3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Survival rates have greatly improved as a result of more effective treatments for childhood cancer. Unfortunately, the improved prognosis has been accompanied by the occurrence of late, treatment-related complications. Liver complications are common during and soon after treatment for childhood cancer. However, among long-term childhood cancer survivors, the risk of hepatic late adverse effects is largely unknown. To make informed decisions about future cancer treatment and follow-up policies, it is important to know the risk of, and associated risk factors for, hepatic late adverse effects. This review is an update of a previously published Cochrane review. OBJECTIVES To evaluate all the existing evidence on the association between antineoplastic treatment (that is, chemotherapy, radiotherapy involving the liver, surgery involving the liver and BMT) for childhood cancer and hepatic late adverse effects. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2018, Issue 1), MEDLINE (1966 to January 2018) and Embase (1980 to January 2018). In addition, we searched reference lists of relevant articles and scanned the conference proceedings of the International Society of Paediatric Oncology (SIOP) (from 2005 to 2017) and American Society of Pediatric Hematology/Oncology (ASPHO) (from 2013 to 2018) electronically. SELECTION CRITERIA All studies, except case reports, case series, and studies including fewer than 10 patients that examined the association between antineoplastic treatment for childhood cancer (aged 18 years or less at diagnosis) and hepatic late adverse effects (one year or more after the end of treatment). DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection and 'risk of bias' assessment. The 'risk of bias' assessment was based on earlier checklists for observational studies. For the original version of the review, two review authors independently performed data extraction. For the update of the review, the data extraction was performed by one reviewer and checked by another reviewer. MAIN RESULTS Thirteen new studies were identified for the update of this review. In total, we included 33 cohort studies including 7876 participants investigating hepatic late adverse effects after antineoplastic treatment (especially chemotherapy and radiotherapy) for different types of childhood cancer, both haematological and solid malignancies. All studies had methodological limitations. The prevalence of hepatic late adverse effects, all defined in a biochemical way, varied widely, between 0% and 84.2%. Selecting studies where the outcome of hepatic late adverse effects was well-defined as alanine aminotransferase (ALT) above the upper limit of normal, indicating cellular liver injury, resulted in eight studies. In this subgroup, the prevalence of hepatic late adverse effects ranged from 5.8% to 52.8%, with median follow-up durations varying from three to 23 years since cancer diagnosis in studies that reported the median follow-up duration. A more stringent selection process using the outcome definition of ALT as above twice the upper limit of normal, resulted in five studies, with a prevalence ranging from 0.9% to 44.8%. One study investigated biliary tract injury, defined as gamma-glutamyltransferase (γGT) above the upper limit of normal and above twice the upper limit of normal and reported a prevalence of 5.3% and 0.9%, respectively. Three studies investigated disturbance in biliary function, defined as bilirubin above the upper limit of normal and reported prevalences ranging from 0% to 8.7%. Two studies showed that treatment with radiotherapy involving the liver (especially after a high percentage of the liver irradiated), higher BMI, and longer follow-up time or older age at evaluation increased the risk of cellular liver injury in multivariable analyses. In addition, there was some suggestion that busulfan, thioguanine, hepatic surgery, chronic viral hepatitis C, metabolic syndrome, use of statins, non-Hispanic white ethnicity, and higher alcohol intake (> 14 units per week) increase the risk of cellular liver injury in multivariable analyses. Chronic viral hepatitis was shown to increase the risk of cellular liver injury in six univariable analyses as well. Moreover, one study showed that treatment with radiotherapy involving the liver, higher BMI, higher alcohol intake (> 14 units per week), longer follow-up time, and older age at cancer diagnosis increased the risk of biliary tract injury in a multivariable analysis. AUTHORS' CONCLUSIONS The prevalence of hepatic late adverse effects among studies with an adequate outcome definition varied considerably from 1% to 53%. Evidence suggests that radiotherapy involving the liver, higher BMI, chronic viral hepatitis and longer follow-up time or older age at follow-up increase the risk of hepatic late adverse effects. In addition, there may be a suggestion that busulfan, thioguanine, hepatic surgery, higher alcohol intake (>14 units per week), metabolic syndrome, use of statins, non-Hispanic white ethnicity, and older age at cancer diagnosis increase the risk of hepatic late adverse effects. High-quality studies are needed to evaluate the effects of different therapy doses, time trends, and associated risk factors after antineoplastic treatment for childhood cancer.
Collapse
Affiliation(s)
- Renée L Mulder
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25UtrechtNetherlands3584 CS
- Emma Children's Hospital, Amsterdam UMC, University of AmsterdamDepartment of Paediatric OncologyP.O. Box 22660AmsterdamNetherlands1100 DD
| | - Dorine Bresters
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25UtrechtNetherlands3584 CS
- Leiden University Medical CenterWillem Alexander Children's HospitalPO Box 9600LeidenNetherlands2300 RC
| | - Malon Van den Hof
- Emma Children's Hospital, Amsterdam UMC, University of AmsterdamDepartment of Paediatric OncologyP.O. Box 22660AmsterdamNetherlands1100 DD
| | - Bart GP Koot
- Emma Children's Hospital, Amsterdam UMC, University of AmsterdamDepartment of Paediatric Gastroenterology and NutritionP.O. Box 22660AmsterdamNetherlands1100 DD
| | - Sharon M Castellino
- Emory School of MedicineDepartment of Pediatrics, Division Hematology/OncologyAtlanta, GAUSA
| | | | - Piet N Post
- Dutch Institute for Healthcare Improvement CBOPO Box 20064UtrechtNetherlands3502 LB
| | - Aleida Postma
- University Medical Center Groningen and University of Groningen, Beatrix Children's HospitalDepartment of Paediatric OncologyPostbus 30.000GroningenNetherlands9700 RB
| | - László P Szőnyi
- King Feisal Specialist HospitalOrgan Transplant CentreRiyadhSaudi Arabia11211
| | - Gill A Levitt
- Great Ormond Street Hospital for Children NHS Foundation TrustOncologyGt Ormond StLondonUK
| | - Edit Bardi
- Kepler UniversitätsklinikumMed Campus IV26‐30 KrankenhausstraßeLinzAustria4020
| | - Roderick Skinner
- Great North Children’s HospitalDepartment of Paediatric and Adolescent Haematology / OncologyQueen Victoria RoadNewcastle upon TyneUKNE1 4LP
| | - Elvira C van Dalen
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25UtrechtNetherlands3584 CS
- Emma Children's Hospital, Amsterdam UMC, University of AmsterdamDepartment of Paediatric OncologyP.O. Box 22660AmsterdamNetherlands1100 DD
| | | |
Collapse
|
25
|
Vernimmen FJ, Fredericks S, Wallace ND, Fitzgerald AP. Long-Term Follow-up of Patients Treated at a Single Institution Using a Passively Scattered Proton Beam; Observations Around the Occurrence of Second Malignancies. Int J Radiat Oncol Biol Phys 2019; 103:680-685. [DOI: 10.1016/j.ijrobp.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/01/2018] [Accepted: 10/19/2018] [Indexed: 02/01/2023]
|
26
|
Steinmeier T, Schulze Schleithoff S, Timmermann B. Evolving Radiotherapy Techniques in Paediatric Oncology. Clin Oncol (R Coll Radiol) 2019; 31:142-150. [PMID: 30639254 DOI: 10.1016/j.clon.2018.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022]
Abstract
AIMS Childhood cancer is rare and survival of childhood cancer has increased up to 80% at 5 years after diagnosis. Radiotherapy is an important element of the multimodal treatment concept. However, due to growing tissue, children are particularly sensitive to radiation-related side-effects and the induction of secondary malignancies. However, radiotherapy techniques have continuously progressed. In addition, modern treatment concepts have been improved in order to minimise long-term effects. Today, radiotherapy is used for various tumour types in childhood, such as sarcomas and tumours of the central nervous system. MATERIALS AND METHODS External beam therapy with either photons or protons and brachytherapy are predominantly used for the treatment of childhood tumours. Technical developments and features, as well as clinical outcomes, for several tumour entities are presented. RESULTS The development of radiotherapy techniques, as well as risk-adapted therapy concepts, resulted in promising outcome regarding tumour control, survival and therapy-related side-effects. It is assumed that proton therapy will be increasingly used for treating children in the future. However, more data have to be collected through multi-institutional registries in order to strengthen the evidence. CONCLUSION The development of radiotherapy techniques is beneficial for children in terms of reducing dose exposure. As compared with other modern and highly conformal techniques, particularly proton therapy may achieve high survival rates and tumour control rates while decreasing the risk for side-effects. However, clinical evidence for modern radiotherapy techniques is still limited today. An optimal patient triaging with the selection of the most appropriate radiation technique for each individual patient will be an important goal for the future.
Collapse
Affiliation(s)
- T Steinmeier
- Clinic for Particle Therapy, University Hospital Essen, Essen, Germany; West German Proton Therapy Center Essen (WPE), Essen, Germany; West German Cancer Center (WTZ), Essen, Germany
| | - S Schulze Schleithoff
- Clinic for Particle Therapy, University Hospital Essen, Essen, Germany; West German Proton Therapy Center Essen (WPE), Essen, Germany; West German Cancer Center (WTZ), Essen, Germany
| | - B Timmermann
- Clinic for Particle Therapy, University Hospital Essen, Essen, Germany; West German Proton Therapy Center Essen (WPE), Essen, Germany; West German Cancer Center (WTZ), Essen, Germany; German Cancer Consortium (DKTK), Essen/Düsseldorf, Germany.
| |
Collapse
|
27
|
Imaoka T, Nishimura M, Daino K, Takabatake M, Moriyama H, Nishimura Y, Morioka T, Shimada Y, Kakinuma S. Risk of second cancer after ion beam radiotherapy: insights from animal carcinogenesis studies. Int J Radiat Biol 2019; 95:1431-1440. [PMID: 30495977 DOI: 10.1080/09553002.2018.1547848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Purpose: To review recent studies to better understand the risk of second cancer after ion beam radiotherapy and to clarify the importance of animal radiobiology therein. Results: Risk of developing second cancer after radiotherapy is a concern, particularly for survivors of childhood tumors. Ion beam radiotherapy is expected to reduce the risk of second cancer by reducing exposure of normal tissues to radiation. Large uncertainty lies, however, in the choice of relative biological effectiveness (RBE) of high linear energy transfer (LET) radiation (e.g. carbon ions and neutrons) in cancer induction, especially for children. Studies have attempted to predict the risk of second cancer after ion beam radiotherapy based on an assessment of radiation dose, the risk of low LET radiation, and assumptions about RBE. Animal experiments have yielded RBE values for selected tissues, radiation types, and age at the time of irradiation; the results indicate potentially variable RBE which depends on tissues, ages, and dose levels. Animal studies have also attempted to identify genetic alterations in tumors induced by high LET radiation. Conclusions: Estimating the RBE value for cancer induction is important for understanding the risk of second cancer after ion beam radiotherapy. More comprehensive animal radiobiology studies are needed.
Collapse
Affiliation(s)
- Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan.,QST Advanced Study Laboratory, QST , Chiba , Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Masaru Takabatake
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan
| | - Hitomi Moriyama
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | | | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| |
Collapse
|
28
|
Rhabdomyosarcoma and Extraosseous Ewing Sarcoma. CHILDREN-BASEL 2018; 5:children5120165. [PMID: 30544742 PMCID: PMC6306718 DOI: 10.3390/children5120165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
Rhabdomyosarcoma (RMS) is a malignant tumor that represents the most common form of pediatric soft tissue sarcoma. It arises from mesenchymal origin and forms part of the group of small round blue cell tumors of childhood. It has a constant annual incidence of 4.5 cases per 1,000,000 children. The known histological diagnosis of the two major subtypes (embryonal and alveolar) has been recently enhanced by tumor biological markers and molecular differentiation diagnostic tools that have improved not only the updated classification based on risk stratification, but also the treatment approach based on the clinical group. Ewing sarcoma (ES) is a round cell tumor, highly malignant and poorly differentiated that is currently the second most common malignant bone tumor in children. In rare instances, it develops from an extraskeletal origin, classified as extraosseous Ewing sarcoma (EES). We provide an updated, evidence-based and comprehensive review of the molecular diagnosis, clinical and diagnostic approach and a multidisciplinary medical and surgical management according to the latest standard of care for the treatment of pediatric RMS and EES.
Collapse
|
29
|
Boria AJ, Uh J, Pirlepesov F, Stuckey JC, Axente M, Gargone MA, Hua CH. Interplay Effect of Target Motion and Pencil-Beam Scanning in Proton Therapy for Pediatric Patients. Int J Part Ther 2018; 5:1-10. [PMID: 30800718 PMCID: PMC6383772 DOI: 10.14338/ijpt-17-00030.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Purpose: To investigate the effect of interplay between spot-scanning proton beams and respiration-induced tumor motion on internal target volume coverage for pediatric patients. Materials and Methods: Photon treatments for 10 children with representative tumor motions (1–13 mm superior-inferior) were replanned to simulate single-field uniform dose–optimized proton therapy. Static plans were designed by using average computed tomography (CT) data sets created from 4D CT data to obtain nominal dose distributions. The motion interplay effect was simulated by assigning each spot in the static plan delivery sequence to 1 of 10 respiratory-phase CTs, using the actual patient breathing trace and specifications of a synchrotron-based proton system. Dose distributions for individual phases were deformed onto the space of the average CT and summed to produce the accumulated dose distribution, whose dose-volume histogram was compared with the one from the static plan. Results: Tumor motion had minimal impact on the internal target volume hot spot (D2), which deviated by <3% from the nominal values of the static plans. The cold spot (D98) was also minimally affected, except in 2 patients with diaphragmatic tumor motion exceeding 10 mm. The impact on tumor coverage was more pronounced with respect to the V99 rather than the V95. Decreases of 10% to 49% in the V99 occurred in multiple patients for whom the beam paths traversed the lung-diaphragm interface and were, therefore, more sensitive to respiration-induced changes in the water equivalent path length. Fractionation alone apparently did not mitigate the interplay effect beyond 6 fractions. Conclusion: The interplay effect is not a concern when delivering scanning proton beams to younger pediatric patients with tumors located in the retroperitoneal space and tumor motion of <5 mm. Children and adolescents with diaphragmatic tumor motion exceeding 10 mm require special attention, because significant declines in target coverage and dose homogeneity were seen in simulated treatments of such patients.
Collapse
Affiliation(s)
- Andrew J Boria
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.,School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Fakhriddin Pirlepesov
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James C Stuckey
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Physics, Rhodes College, Memphis, TN, USA
| | - Marian Axente
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa A Gargone
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
30
|
Osteogenic sarcoma of the skull: long-term outcome of a rare tumor. Childs Nerv Syst 2018; 34:2149-2153. [PMID: 30120533 DOI: 10.1007/s00381-018-3937-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/26/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Osteogenic sarcoma of the skull is uncommon and long-term outcome is not well defined. We review the literature and present a pediatric case of calvarial osteogenic sarcoma with good long-term oncological and cosmetic outcome and excellent quality of life. This case presented major surgical challenges, which are detailed. CASE DESCRIPTION A 6-year-old boy presented with a painless 5 cm × 5 cm lump over the vertex region. He was neurologically normal. Imaging showed an extensive bony lesion with intradural extension. After incisional biopsy showed probable low grade osteosarcoma, a complete en bloc resection with margins was attempted via a concentric craniotomy around the lesion after embolization to reduce blood loss. Invasion of the brain by the tumor precluded the complete en bloc resection, but gross total resection was achieved. The final pathology was consistent with a low-grade osteosarcoma and adjuvant chemotherapy was provided. Follow-up for 8 years has shown no recurrence with good cosmetic and functional outcome.
Collapse
|
31
|
Huynh M, Marcu LG, Giles E, Short M, Matthews D, Bezak E. Current status of proton therapy outcome for paediatric cancers of the central nervous system - Analysis of the published literature. Cancer Treat Rev 2018; 70:272-288. [PMID: 30326423 DOI: 10.1016/j.ctrv.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION The most common solid tumours that develop in children are cancers of the central nervous system. Due to the increased rate of survival over the past decades, greater focus has been placed on the minimisation of long term side effects. In childhood cancer survivors, over 60% report one or more radiation-related late toxicities while half of these adverse events are graded as life-threatening or severe. Proton therapy enables high conformity with the planning target volume and a reduction in dose to areas beyond the target. Owing to the unique nature of dose delivery with proton therapy a reduction of low doses to normal tissues is achievable, and is believed to allow for a decrease in long-term treatment-related side effects. This paper aims to review the published literature around the effectiveness of proton therapy for the treatment of paediatric cancers of the central nervous system, with a focus on treatment outcomes and treatment-related toxicities. METHODS A search strategy utilising the Medline database was created with the intent of including all articles reporting on proton therapy, paediatric cancers, CNS tumours and treatment outcomes. The final search strategy included the following limitations: limited to humans, English, published from 2000 onwards. The final article count total was 74. RESULTS AND CONCLUSIONS Proton therapy for the treatment of paediatric cancers of the central nervous system was found to provide survival and tumour control outcomes comparable to photon therapy. Reduced incidence of severe acute and late toxicities was also reported with the use of proton therapy. This includes reduced severity of endocrine, neurological, IQ and QoL deficits. Currently, extensive follow-up of proton patient populations still needs to be made to determine incidences of late-onset toxicities and secondary malignancies. Current evidence surrounding proton therapy use in paediatric patients supports its effectiveness and potential benefits in reducing the incidence of severe toxicities in later life.
Collapse
Affiliation(s)
- Myxuan Huynh
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Loredana Gabriela Marcu
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; Faculty of Science, University of Oradea, Oradea 410087, Romania
| | - Eileen Giles
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Michala Short
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Donna Matthews
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; School of Physical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
32
|
|
33
|
Dosanjh M, Amaldi U, Mayer R, Poetter R. ENLIGHT: European network for Light ion hadron therapy. Radiother Oncol 2018; 128:76-82. [DOI: 10.1016/j.radonc.2018.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/11/2018] [Indexed: 12/20/2022]
|
34
|
Mizumoto M, Murayama S, Akimoto T, Demizu Y, Fukushima T, Ishida Y, Oshiro Y, Numajiri H, Fuji H, Okumura T, Shirato H, Sakurai H. Preliminary results of proton radiotherapy for pediatric rhabdomyosarcoma: a multi-institutional study in Japan. Cancer Med 2018; 7:1870-1874. [PMID: 29605967 PMCID: PMC5943484 DOI: 10.1002/cam4.1464] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 12/18/2022] Open
Abstract
To evaluate preliminary results of proton radiotherapy (PRT) for pediatric patients with rhabdomyosarcoma (RMS). From 1987 to 2014, PRT was conducted as initial radiotherapy in 55 patients (35 males, 20 females, median age 5 years, range 0–19) with RMS at four institutes in Japan. Thirty‐one, 18, and six patients had embryonal, alveolar, and other RMS, respectively. One, 11, 37, and six patients were in IRSG groups I, II, III, and IV, respectively, and the COG risk group was low, intermediate, and high for nine, 39, and seven patients, respectively. The irradiation dose was 36–60 GyE (median: 50.4 GyE). The median follow‐up period was 24.5 months (range: 1.5–320.3). The 1‐ and 2‐year overall survival rates were 91.9% (95% CI: 84.3–99.5%) and 84.8% (95% CI 75.2–94.3%), respectively, and these rates were 100% and 100%, 97.1% and 90.1%, and 57.1% and 42.9% for COG low‐, intermediate‐, and high‐risk groups, respectively. There were 153 adverse events of Grade ≥3, including 141 hematologic toxicities in 48 patients (87%) and 12 radiation‐induced toxicities in nine patients (16%). Proton‐specific toxicity was not observed. PRT has the same treatment effect as photon radiotherapy with tolerable acute radiation‐induced toxicity.
Collapse
Affiliation(s)
- Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeyuki Murayama
- Division of Proton Therapy, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Yusuke Demizu
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Takashi Fukushima
- Department of Child Health, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Ishida
- Division of Pediatrics, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Yoshiko Oshiro
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruko Numajiri
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Fuji
- Department of Radiology, National Center for Child Health and Development, Tokyo, Japan
| | - Toshiyuki Okumura
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroki Shirato
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
35
|
Jones B, McMahon SJ, Prise KM. The Radiobiology of Proton Therapy: Challenges and Opportunities Around Relative Biological Effectiveness. Clin Oncol (R Coll Radiol) 2018; 30:285-292. [PMID: 29454504 DOI: 10.1016/j.clon.2018.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 01/31/2023]
Abstract
With the current UK expansion of proton therapy there is a great opportunity for clinical oncologists to develop a translational interest in the associated scientific base and clinical results. In particular, the underpinning controversy regarding the conversion of photon dose to proton dose by the relative biological effectiveness (RBE) must be understood, including its important implications. At the present time, the proton prescribed dose includes an RBE of 1.1 regardless of tissue, tumour and dose fractionation. A body of data has emerged against this pragmatic approach, including a critique of the existing evidence base, due to choice of dose, use of only acute-reacting in vivo assays, analysis methods and the reference radiations used to determine the RBE. Modelling systems, based on the best available scientific evidence, and which include the clinically useful biological effective dose (BED) concept, have also been developed to estimate proton RBEs for different dose and linear energy transfer (LET) values. The latter reflect ionisation density, which progressively increases along each proton track. Late-reacting tissues, such as the brain, where α/β = 2 Gy, show a higher RBE than 1.1 at a low dose per fraction (1.2-1.8 Gy) at LET values used to cover conventional target volumes and can be much higher. RBE changes with tissue depth seem to vary depending on the method of beam delivery used. To reduce unexpected toxicity, which does occasionally follow proton therapy, a more rational approach to RBE allocation, using a variable RBE that depends on dose per fraction and the tissue and tumour radiobiological characteristics such as α/β, is proposed.
Collapse
Affiliation(s)
- B Jones
- Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK.
| | - S J McMahon
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| | - K M Prise
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
36
|
Abstract
Denser ionisation clustering and complex DNA damage in proton Bragg peaks far exceeds that seen with conventional X-rays. This results in more efficient cell sterilisation, quantified by the relative biological effectiveness (RBE). Currently, a 1.1 RBE is used to determine the clinical proton doses by dividing the usual X-rays dose by this amount. This number, derived from short-term experiments, has been criticised as being irrelevant to late normal tissue (NT) effects following radiotherapy and included many control irradiations using lower voltage X-rays (with elevated RBE values) than those used in the clinic. In principle, an increased RBE could be used for each organ at risk, by using extensions of the clinically successful linear quadratic model. Protons undoubtedly reduce or eliminate NT radiation dose in tissues distantly located from a tumour, but the necessity to include NT margins around a tumour can result in a higher volume of NT than tumour being irradiated. Deleterious side-effects can follow if the NT RBE exceeds 1.1, including in tissue very close to these margins and which are only partially spared. Use of a constant 1.1 RBE can ‘overdose’ NT, which may require a greater dose reduction such as 1.2 in the brain; some tumours may be ‘under-dosed’ (since they might require a lesser or no reduction in dose). More sophisticated proton experiments show that RBE values of 1.1–1.5 and higher occur in some situations. There are now mathematical models of varying degrees of complexity that can estimate the RBE from the dose, LET and the low-LET radiosensitivities. True multidisciplinary cooperation is required to implement such new ideas in proton therapy in order to improve safety and effectiveness.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, The University of Oxford, ORCRB - Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
37
|
Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas AG. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis. Cancers (Basel) 2017; 9:cancers9070091. [PMID: 28718816 PMCID: PMC5532627 DOI: 10.3390/cancers9070091] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.
Collapse
Affiliation(s)
- Ifigeneia V Mavragani
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Maria P Souli
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Asef Aziz
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Somaira Nowsheen
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Khaled Aziz
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA.
| | - Emmy Rogakou
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, 11527 Athens, Greece.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
38
|
Mizumoto M, Oshiro Y, Yamamoto T, Kohzuki H, Sakurai H. Proton Beam Therapy for Pediatric Brain Tumor. Neurol Med Chir (Tokyo) 2017; 57:343-355. [PMID: 28603224 PMCID: PMC5566707 DOI: 10.2176/nmc.ra.2017-0003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cancer is a major cause of childhood death, with central nervous system (CNS) neoplasms being the second most common pediatric malignancy, following hematological cancer. Treatment of pediatric CNS malignancies requires multimodal treatment using a combination of surgery, chemotherapy, and radiotherapy, and advances in these treatments have given favorable results and longer survival. However, treatment-related toxicities have also occurred, particularly for radiotherapy, after which secondary cancer, reduced function of irradiated organs, and retarded growth are significant problems. Proton beam therapy (PBT) is a particle radiotherapy with excellent dose localization that permits treatment of liver and lung cancer by administration of a high dose to the tumor while minimizing damage to surrounding normal tissues. Thus, PBT has the potential advantages for pediatric cancer. In this context, we review the current knowledge on PBT for treatment of pediatric CNS malignancies.
Collapse
Affiliation(s)
| | - Yoshiko Oshiro
- Department of Radiation Oncology, University of Tsukuba.,Department of Radiation Oncology, Tsukuba Medical Center Hospital
| | | | | | | |
Collapse
|
39
|
Mizumoto M, Murayama S, Akimoto T, Demizu Y, Fukushima T, Ishida Y, Oshiro Y, Numajiri H, Fuji H, Okumura T, Shirato H, Sakurai H. Long-term follow-up after proton beam therapy for pediatric tumors: a Japanese national survey. Cancer Sci 2017; 108:444-447. [PMID: 28004469 PMCID: PMC5378281 DOI: 10.1111/cas.13140] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 01/22/2023] Open
Abstract
Proton beam therapy (PBT) is a potential new alternative to treatment with photon radiotherapy that may reduce the risk of late toxicity and secondary cancer, especially for pediatric tumors. The goal of this study was to evaluate the long‐term benefits of PBT in cancer survivors. A retrospective observational study of pediatric patients who received PBT was performed at four institutions in Japan. Of 343 patients, 62 were followed up for 5 or more years. These patients included 40 males and 22 females, and had a median age of 10 years (range: 0–19 years) at the time of treatment. The irradiation dose ranged from 10.8 to 81.2 GyE (median: 50.4 GyE). The median follow‐up period was 8.1 years (5.0–31.2 years). The 5‐, 10‐ and 20‐year rates for grade 2 or higher late toxicities were 18%, 35% and 45%, respectively, and those for grade 3 or higher late toxicities were 6%, 17% and 17% respectively. Univariate analysis showed that the irradiated site (head and neck, brain) was significantly associated with late toxicities. No malignant secondary tumors occurred within the irradiated field. The 10‐ and 20‐year cumulative rates for all secondary tumors, malignant secondary tumors, and malignant nonhematologic secondary tumors were 8% and 16%, 5% and 13%, and 3% and 11%, respectively. Our data indicate that PBT has the potential to reduce the risk of late mortality and secondary malignancy. Longer follow‐up is needed to confirm the benefits of PBT for pediatric tumors.
Collapse
Affiliation(s)
- Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| | - Shigeyuki Murayama
- Division of Proton Therapy, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Yusuke Demizu
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | | | - Yuji Ishida
- Division of Pediatrics, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Yoshiko Oshiro
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| | - Haruko Numajiri
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Fuji
- National Center for Child Health and Development, Tokyo, Japan
| | - Toshiyuki Okumura
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| | - Hiroki Shirato
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|