1
|
Rahimi-Farsi N, Ghorbani A, Mottaghi-Dastjerdi N, Shahbazi T, Bostanian F, Mohseni P, Yazdani F. Comprehensive systems biology analysis of microRNA-101-3p regulatory network identifies crucial genes and pathways in hepatocellular carcinoma. J Genet Eng Biotechnol 2025; 23:100471. [PMID: 40074445 PMCID: PMC11883376 DOI: 10.1016/j.jgeb.2025.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. This study aimed to explore the role of hsa-miR-101-3p in HCC pathogenesis by identifying key genes and pathways. A comprehensive bioinformatics analysis revealed twelve hub genes (ETNK1, BICRA, IL1R1, KDM3A, ARID2, GSK3β, EZH2, NOTCH1, SMARCA4, FOS, CREB1, and CASP3) and highlighted their involvement in crucial oncogenic pathways, including PI3K/Akt, mTOR, MAPK, and TGF-β. Gene expression analysis showed significant overexpression of ETNK1, KDM3A, EZH2, SMARCA4, and CASP3 in HCC tissues, correlating with poorer survival outcomes. Drug screening identified therapeutic candidates, including Tazemetostat for EZH2 and lithium compounds for GSK3β, underscoring their potential for targeted treatment. These findings provide novel insights into the complexity of HCC pathogenesis, suggesting that the identified hub genes could serve as diagnostic or prognostic biomarkers and therapeutic targets. While bioinformatics-driven, this study offers a strong basis for future clinical validation to advance precision medicine in HCC.
Collapse
Affiliation(s)
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Negar Mottaghi-Dastjerdi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Taha Shahbazi
- Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Parvin Mohseni
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fateme Yazdani
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lu Y, Yang X, Kuang Q, Wu Y, Tan X, Lan J, Qiang Z, Feng T. HBx induced upregulation of FATP2 promotes the development of hepatic lipid accumulation. Exp Cell Res 2023; 430:113721. [PMID: 37437769 DOI: 10.1016/j.yexcr.2023.113721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The hepatitis B Virus X (HBx) protein plays a crucial role in the HBV-induced hepatic steatosis. Fatty acid transport protein 2 (FATP2) is a key protein that is involved in hepatic lipogenesis, and it was found to be highly expressed in various metabolic diseases. However, Whether FATP2 is a key factor in the pathogenesis of HBx-induced hepatic steatosis remains unclear. In this study, we found that FATP2 was up-regulated by HBx in vitro and in vivo and participated in HBx-induced hepatic lipid accumulation. Treatment of HBx-expressing cell lines and mice with FATP2 inhibitor (FATP2i) lipofermata ameliorated HBx-induced lipid accumulation and reduced oxidative stress and inflammation caused by lipid accumulation. Moreover, the liver injury of mouse was restored after FATP2i treatment. In summary, our results reveal that FATP2 is a key driver factor for HBx-induced hepatic lipid accumulation, and inhibition of FATP2 can ameliorates lipid accumulation caused by HBx. This study provides new insights into the mechanism of HBV-induced hepatic steatosis.
Collapse
Affiliation(s)
- Yang Lu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyue Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Kuang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Wu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Tan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Jizhong Lan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Qiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China.
| | - Tao Feng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Testa U, Pelosi E, Castelli G. Clinical value of identifying genes that inhibit hepatocellular carcinomas. Expert Rev Mol Diagn 2022; 22:1009-1035. [PMID: 36459631 DOI: 10.1080/14737159.2022.2154658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Primary liver cancer is a major health problem being the sixth most frequent cancer in the world and the fourth most frequent cause of cancer-related death in the world. The most common histological type of liver cancer is hepatocellular carcinoma (HCC, 75-80%). AREAS COVERED Based on primary literature, this review provides an updated analysis of studies of genetic characterization of HCC at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION A detailed and comprehensive study of the genetic abnormalities characterizing different HCC subsets represents a fundamental tool for a better understanding of the disease heterogeneity and for the identification of subgroups of patients responding or resistant to targeted treatments and for the discovery of new therapeutic targets. It is expected that a comprehensive characterization of these tumors may provide a fundamental contribution to improve the survival of a subset of HCC patients. Immunotherapy represents a new fundamental strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Germana Castelli
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| |
Collapse
|
4
|
He DD, Shang XY, Wang N, Wang GX, He KY, Wang L, Han ZG. BRD4 inhibition induces synthetic lethality in ARID2-deficient hepatocellular carcinoma by increasing DNA damage. Oncogene 2022; 41:1397-1409. [PMID: 35017665 DOI: 10.1038/s41388-022-02176-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) has emerged as the third cause of cancer-related death owing to lacking effective systemic therapies. Genomic DNA sequencing revealed the high frequency of loss-of-function mutations in ARID2, which encodes a subunit of SWI/SNF chromatin remodeling complex, however, the therapeutic strategy for the HCC patients with ARID2 mutations is still completely unclear. In this study, we first performed a high-throughput screening approach using a compound library consisting of 2 180 FDA-approved drugs and other compounds, to elicit the potential drugs for synthetic lethality to target ARID2-deficient HCC cells. Interestingly, JQ1, a selective inhibitor of bromodomain protein BRD4, uniquely suppressed the growth of ARID2- deficient HCC cells. Next JQ1 is further confirmed to predominantly induce cell lethality upon ARID2 depletion through exacerbating DNA damage, especially double strand breaks (DSBs). Functional assays demonstrated that both BRD4 inhibition and ARID2 deficiency synergistically impede two main DNA damage repair pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ), through attenuating the transcription of BRCA1, RAD51, and 53BP1, which encode the core molecules responsible for DSB repair. Mechanistically, both ARID2 and BRD4 exert a synergistic effect for maintaining transcriptional enhancer-promoter loops of these genes within chromatin conformation. However, as both ARID2 and BRD4 are disrupted, the expression of these DNA repair-related genes in response to DNA damage are hindered, resulting in DSB accumulation and cell apoptosis. Taken together, this study discloses that BRD4 inhibition may induce synthetic lethality in ARID2-deficient HCC cells, which might provide a potential therapeutic strategy for HCC patients with ARID2 mutations.
Collapse
Affiliation(s)
- Dan-Dan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Ying Shang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guang-Xing Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kun-Yan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Hangzhou Innovation Institute for Systems Oncology (HIISCO), 3F Building 1, 2636 Yuhangtang Rd, Yuhang District, Hangzhou, 311121, Zhejiang Province, China.
| |
Collapse
|
5
|
Yu X, Ye Z, Hou L, Zhang X, Liu Z, Wu R, Huang F, Wang G, Geng X, Zhao H. Hepatitis B virus x gene-downregulated growth-arrest specific 5 inhibits the cell viability and invasion of hepatocellular carcinoma cell lines by activating Y-box-binding protein 1/p21 signaling. J Cell Commun Signal 2021; 16:179-190. [PMID: 34535871 DOI: 10.1007/s12079-021-00645-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
The long noncoding RNA growth-arrest specific 5 (GAS5) is a suppressor of many cancers. However, the role and mechanism of action of GAS5 in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remain unclear. Here, the expression of hepatitis B virus x gene (HBx) mRNA and GAS5 was assessed by qRT-PCR, and western blot analysis was performed to determine the protein expression levels. In addition, the cell viability and invasion of cells were confirmed using MTT assay and Transwell assay, respectively. The DNA methylation level of GAS5 was measured by methylation-specific PCR. Moreover, RIP assay and RNA pull down assay were carried out to examine the combination of Y-box-binding protein 1 (YBX1) and GAS5. First, our data proved that HBx is increased, while GAS5 is decreased in HCC cell lines. Subsequently, we found that HBx facilitates HCC cell viability and invasion by inhibiting GAS5 expression. Then, we further clarified that HBx induces the DNA methylation of GAS5 by promoting methyltransferase expression, thereby suppressing GAS5 expression. Furthermore, GAS5 binds YBX1 and promotes YBX1 and p21 expression. Finally, the functional analysis revealed that the upregulation of GAS5 could attenuate cell viability and invasion by boosting p21 expression via binding YBX1. Overall, our results demonstrated that HBx promotes HCC progression by inducing GAS5 methylation to reduce its expression. The upregulation of GAS5 suppressed HBV-related HCC by activating YBX1/p21 signaling. Our data provide novel evidence supporting the potential of GAS5 as a treatment target in HBV-related HCC.
Collapse
Affiliation(s)
- Xiaojun Yu
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China
| | - Zhenghui Ye
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China
| | - Liujin Hou
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China
| | - Xinghua Zhang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China
| | - Zimei Liu
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China
| | - Ruolin Wu
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China
| | - Guobin Wang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China
| | - Xiaoping Geng
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China. .,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Hefei, 230022, Anhui, China.
| |
Collapse
|
6
|
Hu J, Gao Q, Yang Y, Xia J, Zhang W, Chen Y, Zhou Z, Chang L, Hu Y, Zhou H, Liang L, Li X, Long Q, Wang K, Huang A, Tang N. Hexosamine biosynthetic pathway promotes the antiviral activity of SAMHD1 by enhancing O-GlcNAc transferase-mediated protein O-GlcNAcylation. Am J Cancer Res 2021; 11:805-823. [PMID: 33391506 PMCID: PMC7738853 DOI: 10.7150/thno.50230] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Viruses hijack the host cell machinery to promote viral replication; however, the mechanism by which metabolic reprogramming regulates innate antiviral immunity in the host remains elusive. Herein, we explore how the hexosamine biosynthesis pathway (HBP) and O-linked-N-acetylglucosaminylation (O-GlcNAcylation) regulate host antiviral response against hepatitis B virus (HBV) in vitro and in vivo. Methods: We conducted a metabolomics assay to evaluate metabolic responses of host cells to HBV infection. We systematically explored the role of HBP and protein O-GlcNAcylation in regulating HBV infection in cell and mouse models. O-linked N-acetylglucosamine (O-GlcNAc) target proteins were identified via liquid chromatography-tandem mass spectrometry (LC-MS) and co-immunoprecipitation assays. Additionally, we also examined uridine diphosphate (UDP)-GlcNAc biosynthesis and O-GlcNAcylation levels in patients with chronic hepatitis B (CHB). Results: HBV infection upregulated GLUT1 expression on the hepatocyte surface and facilitated glucose uptake, which provides substrates to HBP to synthesize UDP-GlcNAc, leading to an increase in protein O-GlcNAcylation. Pharmacological or transcriptional inhibition of HBP and O-GlcNAcylation promoted HBV replication. Mechanistically, O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation of sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1) on Ser93 stabilizes SAMHD1 and enhances its antiviral activity. Analysis of clinical samples revealed that UDP-GlcNAc level was increased, and SAMHD1 was O-GlcNAcylated in patients with CHB. Conclusions: HBP-mediated O-GlcNAcylation positively regulates host antiviral response against HBV in vitro and in vivo. The findings reveal a link between HBP, O-GlcNAc modification, and innate antiviral immunity by targeting SAMHD1.
Collapse
|
7
|
Hu B, Lin JZ, Yang XB, Sang XT. The roles of mutated SWI/SNF complexes in the initiation and development of hepatocellular carcinoma and its regulatory effect on the immune system: A review. Cell Prolif 2020; 53:e12791. [PMID: 32162380 PMCID: PMC7162795 DOI: 10.1111/cpr.12791] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy with a high global prevalence and a dismal prognosis. Studies are urgently needed to examine the molecular pathogenesis and biological characteristics of HCC. Chromatin remodelling, an integral component of the DNA damage response, protects against DNA damage‐induced genome instability and tumorigenesis by triggering the signalling events that activate the interconnected DNA repair pathways. The SWI/SNF complexes are one of the most extensively investigated adenosine triphosphate‐dependent chromatin remodelling complexes, and mutations in genes encoding SWI/SNF subunits are frequently observed in various human cancers, including HCC. The mutated SWI/SNF complex subunits exert dual functions by accelerating or inhibiting HCC initiation and progression. Furthermore, the abnormal SWI/SNF complexes influence the transcription of interferon‐stimulated genes, as well as the differentiation, activation and recruitment of several immune cell types. In addition, they exhibit synergistic effects with immune checkpoint inhibitors in the treatment of diverse tumour types. Therefore, understanding the mutations and deficiencies of the SMI/SNF complexes, together with the associated functional mechanisms, may provide a novel strategy to treat HCC through targeting the related genes or modulating the tumour microenvironment.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Zhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Identification of a novel gene signature for the prediction of recurrence in HCC patients by machine learning of genome-wide databases. Sci Rep 2020; 10:4435. [PMID: 32157118 PMCID: PMC7064516 DOI: 10.1038/s41598-020-61298-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor in China. In the present study, we aimed to construct and verify a prediction model of recurrence in HCC patients using databases (TCGA, AMC and Inserm) and machine learning methods and obtain the gene signature that could predict early relapse of HCC. Statistical methods, such as feature selection, survival analysis and Chi-Square test in R software, were used to analyze and select mutant genes related to disease free survival (DFS), race and vascular invasion. In addition, whole-exome sequencing was performed on 10 HCC patients recruited from our center, and the sequencing results were compared with the databases. Using the databases and machine learning methods, the prediction model of recurrence was constructed and optimized, and the selected mutant genes were verified in the test group. The accuracy of prediction was 74.19%. Moreover, these 10 patients from our center were used to verify these mutant genes and the prediction model, and a success rate of 80% was achieved. Collectively, we discovered recurrence-related genes and established recurrence prediction model of recurrence for HCC patients, which could provide significant guidance for clinical prediction of recurrence.
Collapse
|
9
|
Gao Q, Zhang G, Zheng Y, Yang Y, Chen C, Xia J, Liang L, Lei C, Hu Y, Cai X, Zhang W, Tang H, Chen Y, Huang A, Wang K, Tang N. SLC27A5 deficiency activates NRF2/TXNRD1 pathway by increased lipid peroxidation in HCC. Cell Death Differ 2020; 27:1086-1104. [PMID: 31367013 PMCID: PMC7206086 DOI: 10.1038/s41418-019-0399-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Solute carrier family 27 member 5 (SLC27A5/FATP5) is involved in fatty acid transport and bile acid metabolism; however, little is known about its role in human diseases. Here, we first show that SLC27A5 expression is downregulated in hepatocellular carcinoma (HCC) by DNA hypermethylation, and reduced SCL27A5 expression contributes to tumor progression and poor prognosis. Both gain- and loss-of-function studies demonstrated that SLC27A5 has an antiproliferative effect on HCC cells in vitro and in vivo. Knockout of SLC27A5 increases polyunsaturated lipids, leading to increased NADP+/NADPH ratio, ROS production as well as lipid peroxidation and the subsequent accumulation of 4-hydroxy-2-nonenal (4-HNE) in hepatoma cells. Mass spectrometry analysis found that 4-HNE directly modifies cysteine residues (Cys513, 518) on KEAP1, thus leading KEAP1/NRF2 pathway activation and increases the expression levels of NRF2 target genes, such as TXNRD1. Further, SLC27A5 expression negatively correlates with TXNRD1 expression in hepatoma cells and clinical HCC samples, and blockade of NRF2/TXNRD1 using genetic approaches or inhibitors sensitizes SLC27A5-deficient hepatoma cells to sorafenib treatment. Collectively, we demonstrated that SLC27A5 acts as a novel tumor suppressor by suppressing TXNRD1 expression via the KEAP1/NRF2 pathway in HCC. Combination therapy of sorafenib and NRF2/TXNRD1 inhibitors may be a promising strategy in personalized HCC treatment.
Collapse
Affiliation(s)
- Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guiji Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaqiu Zheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chong Lei
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Wu M, Duan Q, Liu X, Zhang P, Fu Y, Zhang Z, Liu L, Cheng J, Jiang H. MiR-155-5p promotes oral cancer progression by targeting chromatin remodeling gene ARID2. Biomed Pharmacother 2020; 122:109696. [PMID: 31918270 DOI: 10.1016/j.biopha.2019.109696] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dysregulation of miRNAs is associated with aberrant migration and invasion by suppressing relevant target genes in multiple cancers, including oral squamous cell carcinoma (OSCC). Accumulating evidence suggests that microRNA-155-5p is involved in carcinogenesis and tumor progression. However, the exact function and molecular mechanism of miR-155-5p in OSCC remain unclear. This study aimed to investigate the function of miR-155-5p and the molecular mechanisms underlying the influencing progression of OSCC. METHODS The miR-155-5p expression level in the OSCC tissues and oral cancer cell lines were determined by the qRT-PCR. Gain-of-function and knockdown approach were used to examine the effect of miR-155-5p on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of OSCC. The luciferase reporter assay was applied to confirm the AT-rich interactive domain 2 (ARID2) as a potential target of miR-155-5p, and the rescue experiment was employed to verify the roles of the miRNA-155-5p-ARID2 axis in OSCC progression. Immunohistochemical staining was used to detect ARID2 expression in another cohort sample tissues from OSCC patients. RESULTS MiR-155-5p was significantly upregulated in OSCC tissues and cell lines. The miR-155-5p expression level was positively correlated with tumor size, TNM stage, histological grade and lymph node metastasis of OSCC patients. Functional assays demonstrated that miR-155-5p enhanced OSCC cell proliferation, migration and invasion. Mechanistically, ARID2 was identified as a direct target and functional effector of miR-155-5p in OSCC. Furthermore, ARID2 overexpression could rescue the aberrant biological function by overexpressed miR-155-5p in OSCC cells. Notably, we showed that ARID2 could be used as an independent prognosis factor in OSCC. CONCLUSIONS Our results suggest that miR-155-5p facilitates tumor progression of OSCC by targeting ARID2, and miR-155-5p-ARID2 axis may be a potential therapeutic target of OSCC.
Collapse
Affiliation(s)
- Meng Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, China.
| | - Qingyun Duan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Xue Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Zhenxing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Laikui Liu
- Department of Oral Pathology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
11
|
Fan K, Gravemeyer J, Ritter C, Rasheed K, Gambichler T, Moens U, Shuda M, Schrama D, Becker JC. MCPyV Large T Antigen-Induced Atonal Homolog 1 Is a Lineage-Dependency Oncogene in Merkel Cell Carcinoma. J Invest Dermatol 2019; 140:56-65.e3. [PMID: 31283928 DOI: 10.1016/j.jid.2019.06.135] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/21/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Despite the fact that the transcription factor ATOH1 is a master regulator of Merkel cell development, its role in Merkel cell carcinoma (MCC) carcinogenesis remains controversial. Here, we provide several lines of evidence that ATOH1 is a lineage-dependent oncogene in MCC. Luciferase assays revealed binding of ATOH1 and subsequent activation to the promoter of miR-375, which is one of the most abundant microRNAs in MCCs. Overexpression of ATOH1 in variant MCC cell lines and fibroblasts induced miR-375 expression, whereas ATOH1 knockdown in classical MCC cell lines reduced miR-375 expression. Moreover, ATOH1 overexpression in these cells changed their growth characteristics from adherent to suspension and/orspheroidal growth, that is, resembling the neuroendocrine growth pattern of classical MCC cell lines. Notably, ectopic expression of different Merkel cell polyomavirus (MCPyV)-derived truncated large T antigens induced ATOH1 expression in fibroblasts, which was paralleled by miR-375 expression and similar morphologic changes. In summary, MCPyV-associated carcinogenesis is likely to induce the characteristic neuroendocrine features of MCC via induction of ATOH1; thus, ATOH1 can be regarded as a lineage-dependent oncogene in MCC.
Collapse
Affiliation(s)
- Kaiji Fan
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Jan Gravemeyer
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cathrin Ritter
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kashif Rasheed
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Thilo Gambichler
- Department of Dermatology, Ruhr-Universität Bochum, Bochum, Germany
| | - Ugo Moens
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Masahiro Shuda
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, University Hospital Essen, Essen, Germany.
| |
Collapse
|
12
|
Tuo L, Xiang J, Pan X, Hu J, Tang H, Liang L, Xia J, Hu Y, Zhang W, Huang A, Wang K, Tang N. PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27 Kip1 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:50. [PMID: 30717766 PMCID: PMC6360696 DOI: 10.1186/s13046-019-1029-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/07/2019] [Indexed: 01/08/2023]
Abstract
Background Altered glucose metabolism endows tumor cells with metabolic flexibility for biosynthesis requirements. Phosphoenolpyruvate carboxykinase 1 (PCK1), a key enzyme in the gluconeogenesis pathway, is downregulated in hepatocellular carcinoma (HCC) and predicts poor prognosis. Overexpression of PCK1 has been shown to suppress liver tumor growth, but the underlying mechanism remains unclear. Methods mRNA and protein expression patterns of PCK1, AMPK, pAMPK, and the CDK/Rb/E2F pathway were determined using qRT-PCR and western blotting. Cell proliferation ability and cell cycle were assessed by MTS assay and flow cytometric analysis. The effect of PCK1 on tumor growth was examined in xenograft implantation models. Results Both gain and loss-of-function experiments demonstrated that PCK1 deficiency promotes hepatoma cell proliferation through inactivation of AMPK, suppression of p27Kip1 expression, and stimulation of the CDK/Rb/E2F pathway, thereby accelerating cell cycle transition from the G1 to S phase under glucose-starved conditions. Overexpression of PCK1 reduced cellular ATP levels and enhanced AMPK phosphorylation and p27Kip1 expression but decreased Rb phosphorylation, leading to cell cycle arrest at G1. AMPK knockdown significantly reversed G1-phase arrest and growth inhibition of PCK1-expressing SK-Hep1 cells. In addition, the AMPK activator metformin remarkably suppressed the growth of PCK1-knockout PLC/PRF/5 cells and inhibited tumor growth in an orthotropic HCC mouse model. Conclusion This study revealed that PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis and supports a potential therapeutic and protective effect of metformin on HCC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1029-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Tuo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuanming Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jieli Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuan Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
13
|
Huang W, Skanderup AJ, Lee CG. Advances in genomic hepatocellular carcinoma research. Gigascience 2018; 7:5232228. [PMID: 30521023 PMCID: PMC6335342 DOI: 10.1093/gigascience/giy135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the cancer with the second highest mortality in the world due to its late presentation and limited treatment options. As such, there is an urgent need to identify novel biomarkers for early diagnosis and to develop novel therapies. The availability of next-generation sequencing (NGS) data from tumors of liver cancer patients has provided us with invaluable resources to better understand HCC through the integration of data from different sources to facilitate the identification of promising biomarkers or therapeutic targets. Findings Here, we review key insights gleaned from more than 20 NGS studies of HCC tumor samples, comprising approximately 582 whole genomes and 1,211 whole exomes mainly from the East Asian population. Through consolidation of reported somatic mutations from multiple studies, we identified genes with different types of somatic mutations, including single nucleotide variations, insertion/deletions, structural variations, and copy number alterations as well as genes with multiple frequent viral integration. Pathway analysis showed that this curated list of somatic mutations is critically involved in cancer-related pathways, viral carcinogenesis, and signaling pathways. Lastly, we addressed the future directions of HCC research as more NGS datasets become available. Conclusions Our review is a comprehensive resource for the current NGS research in HCC, consolidating published articles, potential gene candidates, and their related biological pathways.
Collapse
Affiliation(s)
- Weitai Huang
- Computational and Systems Biology, Agency for Science Technology and Research, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.,Graduate School of Integrative Sciences and Engineering, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 117456, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Anders Jacobsen Skanderup
- Computational and Systems Biology, Agency for Science Technology and Research, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Caroline G Lee
- Graduate School of Integrative Sciences and Engineering, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 117456, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.,Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Singapore 169610, Singapore.,Duke-NUS Graduate Medical School Singapore, Singapore 169547, Singapore
| |
Collapse
|
14
|
Wang Y, Chang W, Chang W, Chang X, Zhai S, Pan G, Dang S. MicroRNA-376c-3p Facilitates Human Hepatocellular Carcinoma Progression via Repressing AT-Rich Interaction Domain 2. J Cancer 2018; 9:4187-4196. [PMID: 30519319 PMCID: PMC6277610 DOI: 10.7150/jca.27939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC), accounting for approximately 90% of liver cancer, is the most lethal malignant tumors in the world. Large amount of evidence indicate that microRNAs (miRNAs) contribute to the tumorigenesis and progression of HCC. Among them, miR-376c-3p was recently identified as a tumor-related miRNA and is up-regulated in HBV-related HCC. But, the clinical significance of miR-376c-3p and its biological function in HCC progression are still unclear. Here, we confirmed that miR-376c-3p expression level in HCC was markedly higher than that in noncancerous tissues. Up-regulation of miR-376c-3p was detected in four different HCC cell lines. High miR-376c-3p expression correlated with poor prognostic features, such as large tumor size and venous infiltration. Follow-up data indicated that high miR-376c-3p level evidently correlated with poor clinical outcomes of HCC patients. Moreover, knockdown of miR-376c-3p repressed HCC cell growth, migration and invasion in vitro. miR-376c-3p overexpression facilitated these malignant behaviors of Bel-7402 cells. Mechanistically, miR-376c-3p posttranscriptionally repressed ARID2 expression by directly interacting with its 3'-UTR. Furthermore, an obvious negative correlation between miR-376c-3p and ARID2 mRNA expression in HCC tissues was confirmed. Notably, miR-376c-3p knockdown suppressed HCC growth and metastasis in nude mice. Gain-of-function experiments showed that ARID2 inhibited cell growth and mobility of Hep3B cells. Subsequently, ARID2 knockdown rescued miR-376c-3p silencing attenuated Hep3B cell proliferation and mobility. Our results suggest that miR-376c-3p exerts an oncogenic role in HCC progression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, China
| | - Weiping Chang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Medical University, 48 Fenghao West Road, Xi'an 710077, China
| | - Wanli Chang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Medical University, 48 Fenghao West Road, Xi'an 710077, China
| | - Xiaowei Chang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Medical University, 48 Fenghao West Road, Xi'an 710077, China
| | - Song Zhai
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, China
| | - Guoying Pan
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, China
| | - Shuangsuo Dang
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, China
| |
Collapse
|
15
|
Gao Q, Wang K, Chen K, Liang L, Zheng Y, Zhang Y, Xiang J, Tang N. HBx protein-mediated ATOH1 downregulation suppresses ARID2 expression and promotes hepatocellular carcinoma. Cancer Sci 2017; 108:1328-1337. [PMID: 28498550 PMCID: PMC5497798 DOI: 10.1111/cas.13277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/10/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus X protein plays a crucial role in the pathogenesis of hepatocellular carcinoma. We previously showed that the tumor suppressor ARID2 inhibits hepatoma cell cycle progression and tumor growth. Here, we evaluated whether hepatitis B virus X protein was involved in the modulation of ARID2 expression and hepatocarcinogenesis associated with hepatitis B virus infection. ARID2 expression was downregulated in HBV‐replicative hepatoma cells, HBV transgenic mice, and HBV‐related clinical HCC tissues. The expression levels of HBx were negatively associated with those of ARID2 in hepatocellular carcinoma tissues. Furthermore, HBx suppressed ARID2 at transcriptional level. Mechanistically, the promoter region of ARID2 gene inhibited by HBx was located at nt‐1040/nt‐601 and contained potential ATOH1 binding elements. In addition, ectopic expression of ATOH1 or mutation of ATOH1 binding sites within ARID2 promoter partially abolished HBx‐triggered ARID2 transcriptional repression. Functionally, ARID2 abrogated HBx‐enhanced migration and proliferation of hepatoma cells, whereas depletion of ATOH1 enhanced tumorigenecity of HCC cells. Therefore, our findings suggested that deregulation of ARID2 by HBx through ATOH1 may be involved in HBV‐related hepatocellular carcinoma development.
Collapse
Affiliation(s)
- Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaqiu Zheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yunzhi Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Zhejiang University, Hangzhou, China
| |
Collapse
|