1
|
Cerón R, Martínez A, Ramos C, De la Cruz A, García A, Mendoza I, Palmeros G, Montaño Figueroa EH, Navarrete J, Jiménez-Morales S, Martinez-Murillo C, Olarte I. Overexpression of BCL2, BCL6, VEGFR1 and TWIST1 in Circulating Tumor Cells Derived from Patients with DLBCL Decreases Event-Free Survival. Onco Targets Ther 2022; 15:1583-1595. [PMID: 36606244 PMCID: PMC9809418 DOI: 10.2147/ott.s386562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous malignant lymphoid neoplasm and is the most common subtype of non-Hodgkin lymphoma in adults. More than half of patients with DLBCL can achieve remission with standard R-CHOP regimes; however, approximately 30-40% of patients are still failing this standard therapy, which remains as an important cause of progression and mortality of this disease. It is necessary to have diagnostic and monitoring tools that allow us to improve the accuracy of prognosis in these patients. Circulating tumor cells (CTCs) identification through molecular biomarkers is one of the novel strategies that have been used in other types of cancer, and we aim to use this tool to analyze the potential role in DLBCL. Patients and Methods We analyzed 138 blood samples of patients with DLBCL, of which CTCs were isolated by density gradient for subsequent detection and quantitation of molecular biomarkers using RT-qPCR with TaqMan probes. Survival analysis was performed using Kaplan-Meier curves. Results We found overexpression of ABCB1, αSMA, BCL2, BCL6 and VEGFR1 genes, as well as the presence of CK19, EpCAM, KI67, MAGE-A4, SNAIL and TWIST1 genes. CK19 and EpCAM expression were associated with a minor OS (85.7% vs 98.1%, p = 0.002). The overexpression of BCL2, BCL6, VEGFR1 and TWIST1 was related to a minor EFS (p = 0.001). Conclusion This study showed that in liquid biopsies analyzed, the presence of CTCs can be confirmed through molecular biomarkers, and it has an impact on OS and EFs, making this detection useful in the follow-up and prognosis of patients with DLBCL.
Collapse
Affiliation(s)
- Rafael Cerón
- Posgrado en Ciencias Biológicas, Biomedicina, UNAM, CDMX, México,Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Adolfo Martínez
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Christian Ramos
- Department of Medical Hematology, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Adrián De la Cruz
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Anel García
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Iveth Mendoza
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Goujon Palmeros
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | | | - Juan Navarrete
- Department of Hematopathology, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratory of Cancer Genomics, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Carlos Martinez-Murillo
- Department of Medical Hematology, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Irma Olarte
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico,Correspondence: Irma Olarte, Dr. Balmis 148, Col. Doctores, Alc. Cuauhtémoc, Mexico City, ZC. 06726, Mexico, Tel +525527892000 Ext. 1609, Email
| |
Collapse
|
2
|
Gu H, He J, Li Y, Mi D, Guan T, Guo W, Liu B, Chen Y. B-cell Lymphoma 6 Inhibitors: Current Advances and Prospects of Drug Development for Diffuse Large B-cell Lymphomas. J Med Chem 2022; 65:15559-15583. [PMID: 36441945 DOI: 10.1021/acs.jmedchem.2c01433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B-cell lymphoma 6 (BCL6) is a transcriptional repressor that regulates the differentiation of B lymphocytes and mediates the formation of germinal centers (GCs) by recruiting corepressors through the BTB domain of BCL6. Physiological processes regulated by BCL6 involve cell activation, differentiation, DNA damage, and apoptosis. BCL6 is highly expressed when the gene is mutated, leading to the malignant proliferation of cells and drives tumorigenesis. BCL6 overexpression is closely correlated with tumorigenesis in diffuse large B-cell lymphoma (DLBCL) and other lymphomas, and BCL6 inhibitors can effectively inhibit some lymphomas and overcome resistance. Therefore, targeting BCL6 might be a promising therapeutic strategy for treating lymphomas. Herein, we comprehensively review the latest development of BCL6 inhibitors in diffuse large B-cell lymphoma and discuss the overview of the pharmacophores of BCL6 inhibitors and their efficacies in vitro and in vivo. Additionally, the current advances in BCL6 degraders are provided.
Collapse
Affiliation(s)
- Haijun Gu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jia He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuzhan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tian Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weikai Guo
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Bo Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Guo W, Xing Y, Zhang Q, Xie J, Huang D, Gu H, He P, Zhou M, Xu S, Pang X, Liu M, Yi Z, Chen Y. Synthesis and Biological Evaluation of B-Cell Lymphoma 6 Inhibitors of N-Phenyl-4-pyrimidinamine Derivatives Bearing Potent Activities against Tumor Growth. J Med Chem 2020; 63:676-695. [PMID: 31895575 DOI: 10.1021/acs.jmedchem.9b01618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcriptional repressor B-cell lymphoma 6 (BCL6) is frequently misregulated in diffuse large B-cell lymphoma (DLBCL) and has emerged as an attractive drug target for the treatments of lymphoma. In this article, a series of N-phenyl-4-pyrimidinamine derivatives were designed and synthesized as potent BCL6 inhibitors by optimizing hit compound N4-(3-chloro-4-methoxyphenyl)-N2-isobutyl-5-fluoro-2,4-pyrimidinediamine on the basis of the structure-activity relationship. Among them, compound 14j displayed the most potent activities, which significantly blocked the interaction of BCL6 with its corepressors, reactivated BCL6 target genes in a dose-dependent manner, and had better effects compared with the two positive controls. Further studies indicated that a low dose of 14j could effectively inhibit germinal center formation. More importantly, 14j not only showed potent inhibition of DLBCL cell proliferation in vitro but also strongly suppressed the growth of DLBCL in vivo.
Collapse
Affiliation(s)
- Weikai Guo
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Yajing Xing
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Qiansen Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Jiuqing Xie
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Dongxia Huang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Haijun Gu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Peng He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Miaoran Zhou
- Shanghai University of Traditional Chinese Medicine , Shanghai 200030 , China
| | - Shifen Xu
- Shanghai University of Traditional Chinese Medicine , Shanghai 200030 , China
| | - Xiufeng Pang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Yihua Chen
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| |
Collapse
|
4
|
Janz S, Zhan F, Sun F, Cheng Y, Pisano M, Yang Y, Goldschmidt H, Hari P. Germline Risk Contribution to Genomic Instability in Multiple Myeloma. Front Genet 2019; 10:424. [PMID: 31139207 PMCID: PMC6518313 DOI: 10.3389/fgene.2019.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Genomic instability, a well-established hallmark of human cancer, is also a driving force in the natural history of multiple myeloma (MM) - a difficult to treat and in most cases fatal neoplasm of immunoglobulin producing plasma cells that reside in the hematopoietic bone marrow. Long recognized manifestations of genomic instability in myeloma at the cytogenetic level include abnormal chromosome numbers (aneuploidy) caused by trisomy of odd-numbered chromosomes; recurrent oncogene-activating chromosomal translocations that involve immunoglobulin loci; and large-scale amplifications, inversions, and insertions/deletions (indels) of genetic material. Catastrophic genetic rearrangements that either shatter and illegitimately reassemble a single chromosome (chromotripsis) or lead to disordered segmental rearrangements of multiple chromosomes (chromoplexy) also occur. Genomic instability at the nucleotide level results in base substitution mutations and small indels that affect both the coding and non-coding genome. Sometimes this generates a distinctive signature of somatic mutations that can be attributed to defects in DNA repair pathways, the DNA damage response (DDR) or aberrant activity of mutator genes including members of the APOBEC family. In addition to myeloma development and progression, genomic instability promotes acquisition of drug resistance in patients with myeloma. Here we review recent findings on the genetic predisposition to myeloma, including newly identified candidate genes suggesting linkage of germline risk and compromised genomic stability control. The role of ethnic and familial risk factors for myeloma is highlighted. We address current research gaps that concern the lack of studies on the mechanism by which germline risk alleles promote genomic instability in myeloma, including the open question whether genetic modifiers of myeloma development act in tumor cells, the tumor microenvironment (TME), or in both. We conclude with a brief proposition for future research directions, which concentrate on the biological function of myeloma risk and genetic instability alleles, the potential links between the germline genome and somatic changes in myeloma, and the need to elucidate genetic modifiers in the TME.
Collapse
Affiliation(s)
- Siegfried Janz
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fenghuang Zhan
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States.,Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - Fumou Sun
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yan Cheng
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Pisano
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Interdisciplinary Graduate Program in Immunology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, China.,Ministry of Education's Key Laboratory of Acupuncture and Medicine Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hartmut Goldschmidt
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Agnarelli A, Chevassut T, Mancini EJ. IRF4 in multiple myeloma—Biology, disease and therapeutic target. Leuk Res 2018; 72:52-58. [DOI: 10.1016/j.leukres.2018.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/29/2023]
|
6
|
Krushkal J, Zhao Y, Hose C, Monks A, Doroshow JH, Simon R. Longitudinal Transcriptional Response of Glycosylation-Related Genes, Regulators, and Targets in Cancer Cell Lines Treated With 11 Antitumor Agents. Cancer Inform 2017; 16:1176935117747259. [PMID: 29276373 PMCID: PMC5734428 DOI: 10.1177/1176935117747259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/18/2017] [Indexed: 01/25/2023] Open
Abstract
Cellular glycosylation processes are vital to cell functioning. In malignant cells, they are profoundly altered. We used time-course gene expression data from the NCI-60 cancer cell lines treated with 11 antitumor agents to analyze expression changes of genes involved in glycosylation pathways, genes encoding glycosylation targets or regulators, and members of cancer pathways affected by glycosylation. We also identified glycosylation genes for which pretreatment expression levels or changes after treatment were correlated with drug sensitivity. Their products are involved in N-glycosylation and O-glycosylation, fucosylation, biosynthesis of poly-N-acetyllactosamine, removal of misfolded proteins, binding to hyaluronic acid and other glycans, and cell adhesion. Tumor cell sensitivity to multiple agents was correlated with transcriptional response of C1GALT1C1, FUCA1, SDC1, MUC1; members of the MGAT, GALNT, B4GALT, B3GNT, MAN, and EDEM families; and other genes. These genes may be considered as potential candidates for drug targeting in combination therapy to enhance treatment response.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Curtis Hose
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Anne Monks
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Richard Simon
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
7
|
Tahara K, Takizawa M, Yamane A, Osaki Y, Ishizaki T, Mitsui T, Yokohama A, Saitoh T, Tsukamoto N, Matsumoto M, Murakami H, Nojima Y, Handa H. Overexpression of B-cell lymphoma 6 alters gene expression profile in a myeloma cell line and is associated with decreased DNA damage response. Cancer Sci 2017; 108:1556-1564. [PMID: 28544233 PMCID: PMC5543477 DOI: 10.1111/cas.13283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/22/2017] [Accepted: 05/10/2017] [Indexed: 01/02/2023] Open
Abstract
B-cell lymphoma 6 (BCL6) attenuates DNA damage response (DDR) through gene repression and facilitates tolerance to genomic instability during immunoglobulin affinity maturation in germinal center (GC) B cells. Although BCL6 expression is repressed through normal differentiation of GC B cells into plasma cells, a recent study showed the ectopic expression of BCL6 in primary multiple myeloma (MM) cells. However, the functional roles of BCL6 in MM cells are largely unknown. Here, we report that overexpression of BCL6 in a MM cell line, KMS12PE, induced transcriptional repression of ataxia telangiectasia mutated (ATM), a DDR signaling kinase, which was associated with a reduction in γH2AX formation after DNA damage. In contrast, transcription of known targets of BCL6 in GC B cells was not affected, suggesting a cell type-specific function of BCL6. To further investigate the effects of BCL6 overexpression on the MM cell line, we undertook mRNA sequence analysis and found an upregulation in the genomic mutator activation-induced cytidine deaminase (AID) with alteration in the gene expression profile, which is suggestive of de-differentiation from plasma cells. Moreover, interleukin-6 exposure to KMS12PE led to upregulation of BCL6 and AID, downregulation of ATM, and attenuation of DDR, which were consistent with the effects of BCL6 overexpression in this MM cell line. Taken together, these results indicated that overexpression of BCL6 alters gene expression profile and confers decreased DDR in MM cells. This phenotypic change could be reproduced by interleukin-6 stimulation, suggesting an important role of external stimuli in inducing genomic instability, which is a hallmark of MM cells.
Collapse
Affiliation(s)
- Kenichi Tahara
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Makiko Takizawa
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Arito Yamane
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Yohei Osaki
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Takuma Ishizaki
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Takeki Mitsui
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Akihiko Yokohama
- Division of Blood Transfusion ServiceGunma University HospitalGunmaJapan
| | - Takayuki Saitoh
- Department of Laboratory SciencesGunma University Graduate School of Health SciencesGunmaJapan
| | | | - Morio Matsumoto
- Department of HematologyNational Hospital Organization Nishigunma National HospitalGunmaJapan
| | - Hirokazu Murakami
- Department of Laboratory SciencesGunma University Graduate School of Health SciencesGunmaJapan
| | - Yoshihisa Nojima
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Hiroshi Handa
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| |
Collapse
|