1
|
Huang H, Tang Q, Li S, Qin Y, Zhu G. TGFBI: A novel therapeutic target for cancer. Int Immunopharmacol 2024; 134:112180. [PMID: 38733822 DOI: 10.1016/j.intimp.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
TGFBI, an extracellular matrix protein induced by transforming growth factor β, has been found to exhibit aberrant expression in various types of cancer. TGFBI plays a crucial role in tumor cell proliferation, angiogenesis, and apoptosis. It also facilitates invasion and metastasis in various types of cancer, including colon, head and neck squamous, renal, and prostate cancers. TGFBI, a prominent p-EMT marker, strongly correlates with lymph node metastasis. TGFBI demonstrates immunosuppressive effects within the tumor immune microenvironment. Targeted therapy directed at TGFBI shows promise as a potential strategy to combat cancer. Hence, a comprehensive review was conducted to examine the impact of TGFBI on various aspects of tumor biology, including cell proliferation, angiogenesis, invasion, metastasis, apoptosis, and the immune microenvironment. This review also delved into the underlying biochemical mechanisms to enhance our understanding of the research advancements related to TGFBI in the context of tumors.
Collapse
Affiliation(s)
- Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuexiang Qin
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Sarubo M, Mouri Y, Moromizato A, Yamada A, Jin S, Shao W, Hagita H, Miyoshi K, Kudo Y. Involvement of TGFBI-TAGLN axis in cancer stem cell property of head and neck squamous cell carcinoma. Sci Rep 2024; 14:6767. [PMID: 38514830 PMCID: PMC10957997 DOI: 10.1038/s41598-024-57478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/17/2024] [Indexed: 03/23/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a significant healthcare burden globally. Previous research using single-cell transcriptome analysis identified TGFBI as a crucial marker for the partial-epithelial-mesenchymal transition (partial-EMT) program. However, the precise role of TGFBI in HNSCC progression remains unclear. Therefore, our study aimed to clarify the impact of TGFBI on the malignant behavior of HNSCC cells. Through RNA-sequencing data from the TCGA database, we validated that increased TGFBI expression correlates with a higher occurrence of lymph node metastasis and unfavorable prognosis in HNSCC cases. Functional experiments demonstrated that TGFBI overexpression enhances the ability of sphere formation, indicating stem-cell-like properties. Conversely, TGFBI depletion reduces sphere formation and suppresses the expression of cancer stem cell (CSC) markers. RNA-sequencing analysis of TGFBI-overexpressing and control HNSCC cells revealed TAGLN as a downstream effector mediating TGFBI-induced sphere formation. Remarkably, TAGLN depletion abolished TGFBI-induced sphere formation, while its overexpression rescued the suppressed sphere formation caused by TGFBI depletion. Moreover, elevated TAGLN expression showed correlations with the expression of TGFBI and partial-EMT-related genes in HNSCC cases. In conclusion, our findings suggest that TGFBI may promote CSC properties through the upregulation of TAGLN. These novel insights shed light on the involvement of the TGFBI-TAGLN axis in HNSCC progression and hold implications for the development of targeted therapies.
Collapse
Affiliation(s)
- Motoharu Sarubo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasuhiro Mouri
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Akira Moromizato
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Azusa Yamada
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shengjan Jin
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Wenhua Shao
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroko Hagita
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keiko Miyoshi
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| |
Collapse
|
3
|
Moammeri A, Abbaspour K, Zafarian A, Jamshidifar E, Motasadizadeh H, Dabbagh Moghaddam F, Salehi Z, Makvandi P, Dinarvand R. pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic Treatment of Breast Cancer. ACS APPLIED BIO MATERIALS 2022; 5:675-690. [PMID: 35129960 PMCID: PMC8864616 DOI: 10.1021/acsabm.1c01107] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/23/2022] [Indexed: 02/09/2023]
Abstract
Combination chemotherapy has become a treatment modality for breast cancer. However, serious side effects and high cytotoxicity associated with this combination therapy make it a high-risk method for breast cancer treatment. This study evaluated the anticancer effect of decorated niosomal nanocarriers loaded with cisplatin (CIS) and epirubicin (EPI) in vitro (on SKBR3 and 4T1 breast cancer cells) and in vivo on BALB/c mice. For this purpose, polyethylene glycol (PEG) and folic acid (FA) were employed to prepare a functionalized niosomal system to improve endocytosis. FA-PEGylated niosomes exhibited desired encapsulation efficiencies of ∼91.2 and 71.9% for CIS and EPI, respectively. Moreover, cellular assays disclosed that a CIS and EPI-loaded niosome (NCE) and FA-PEGylated niosomal CIS and EPI (FPNCE) enhanced the apoptosis rate and cell migration in SKBR3 and 4T1 cells compared to CIS, EPI, and their combination (CIS+EPI). For FPNCE and NCE groups, the expression levels of Bax, Caspase3, Caspase9, and Mfn1 genes increased, whereas the expression of Bcl2, Drp1, MMP-2, and MMP-9 genes was downregulated. Histopathology results showed a reduction in the mitosis index, invasion, and pleomorphism in BALB/c inbred mice with NCE and FPNCE treatment. In this paper, for the first time, we report a niosomal nanocarrier functionalized with PEG and FA for codelivery of CIS and EPI to treat breast cancer. The results demonstrated that the codelivery of CIS and EPI through FA-PEGylated niosomes holds great potential for breast cancer treatment.
Collapse
Affiliation(s)
- Ali Moammeri
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Koorosh Abbaspour
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Alireza Zafarian
- Faculty
of Medicine, Isfahan University of Medical
Sciences, Isfahan 8174673461, Iran
| | - Elham Jamshidifar
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
| | - Hamidreza Motasadizadeh
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
- Nanotechnology
Research Center, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1316943551, Iran
| | - Farnaz Dabbagh Moghaddam
- Department
of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Zeinab Salehi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Center for Materials Interfaces, Pontedera, Pisa 56025, Italy
| | - Rassoul Dinarvand
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
- Nanotechnology
Research Center, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1316943551, Iran
| |
Collapse
|
4
|
Shang D, Li G, Zhang C, Liu Y. Synergistic Inhibitory Effects of 5-Aza-2'-Deoxycytidine and Cisplatin on Urothelial Carcinoma Growth via Suppressing TGFBI-MAPK Signaling Pathways. Biochem Cell Biol 2021; 100:115-124. [PMID: 34890285 DOI: 10.1139/bcb-2021-0277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study is to reveal the gene transcriptional alteration, possible molecular mechanism, and pathways involved in the synergy of 5-aza-2'-deoxycytidine (DAC) and CDDP in UC. Two UC cell lines, 5637 and T24, were used in the study. A cDNA microarray was carried out to identify critical genes in the synergistic mechanism of both agents against UC cells. The results showed that several key regulatory genes, such as interleukin 24(IL24), fibroblast growth factor 1(FGF1), and transforming growth factor beta-induced (TGFBI), were identified and may play critical roles in the synergy of DAC and CDDP in UC. Pathway enrichment suggested that many carcinogenesis-related pathways, such as ECM-receptor interaction and MAPK signaling pathways, may participate in the synergy of both agents. Our results suggested that TGF-β1 stimulates the phosphorylation levels of ERK1/2 and p38 via increasing TGFBI expression, TGFBI-MAPK signaling pathway plays an important role in the synergy of DAC and CDDP against UC. Therefore, we revealed the synergistic mechanism of DAC and CDDP in UC, several key regulatory genes play critical roles in the synergy of combined treatment, and TGFBI-MAPK signaling pathway may be an important potential target of these two agents.
Collapse
Affiliation(s)
- Donghao Shang
- Capital Medical University, 12517, Department of Urology, Beijing, China;
| | - Gang Li
- Cancer Hospital of China Medical University, 74665, Department of Urology, Shenyang, China;
| | - Caixing Zhang
- Capital Medical University, 12517, Department of Urology, Beijing, China;
| | - Yuting Liu
- Capital Medical University, 12517, Department of Pathology, Beijing, China;
| |
Collapse
|
5
|
Qiong L, Yin J. Orosomucoid 1 promotes epirubicin resistance in breast cancer by upregulating the expression of matrix metalloproteinases 2 and 9. Bioengineered 2021; 12:8822-8832. [PMID: 34654351 PMCID: PMC8806942 DOI: 10.1080/21655979.2021.1987067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Orosomucoid 1 (ORM1) has been shown to be upregulated in the serum of breast cancer patients; however, the expression and function of ORM1 in breast cancer remains unknown. We measured the expression of ORM1 in breast cancer tissues and cell lines using qRT-PCR. A colony formation assay was done to assess cell proliferation and Transwell and wound healing assays were performed to determine the migration and invasion capacity of the cells, respectively. In addition, a CCK-8 assay was used to measure epirubicin cytotoxicity and western blot assays were done to analyze the putative mechanisms of epirubicin sensitivity. We found that the expression of ORM1 was upregulated in breast cancer tissues and cell lines. The expression of ORM1 enhanced the proliferation and migration of the cell lines. In contrast, down-regulation of ORM1 inhibited the expression of MMP-2 and MMP-9 and activation of the AKT/ERK signaling pathway. Therefore, ORM1 may represent a potential therapeutic target for breast cancer and promote epirubicin resistance by regulating the expression of MMP-2 and MMP-9, as well as activating the AKT/ERK signaling pathway.
Collapse
Affiliation(s)
- Luo Qiong
- Department of Breast and Thyroid Surgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, People's Republic of China
| | - Jun Yin
- Department of Breast and Thyroid Surgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, People's Republic of China
| |
Collapse
|
6
|
Bortot B, Apollonio M, Rampazzo E, Valle F, Brucale M, Ridolfi A, Ura B, Addobbati R, Di Lorenzo G, Romano F, Buonomo F, Ripepi C, Ricci G, Biffi S. Small extracellular vesicles from malignant ascites of patients with advanced ovarian cancer provide insights into the dynamics of the extracellular matrix. Mol Oncol 2021; 15:3596-3614. [PMID: 34614287 PMCID: PMC8637559 DOI: 10.1002/1878-0261.13110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
The exact role of malignant ascites in the development of intraperitoneal metastases remains unclear, and the mechanisms by which extracellular vesicles (EVs) promote tumor progression in the pre-metastatic niche have not been fully discovered. In this study, we characterized ascites from high-grade epithelial ovarian cancer patients. Small-EVs (30-150 nm) were isolated from two sources-the bulk ascites and the ascitic fluid-derived tumor cell cultures-and assessed with a combination of imaging, proteomic profiling, and protein expression analyses. In addition, Gene Ontology and pathway analysis were performed using different databases and bioinformatic tools. The results proved that the small-EVs derived from the two sources exhibited significantly different stiffness and size distributions. The bulk ascitic fluid-derived small-EVs were predominantly involved in the complement and coagulation cascade. Small-EVs derived from ascites cell cultures contained a robust proteomic profile of extracellular matrix remodeling regulators, and we observed an increase in transforming growth factor-β-I (TGFβI), plasminogen activator inhibitor 1 (PAI-1), and fibronectin expression after neoadjuvant chemotherapy. When measured in the two sources, we demonstrated that fibronectin exhibited opposite expression patterns in small-EVs in response to chemotherapy. These findings highlight the importance of an ascites cell isolation workflow in investigating the treatment-induced cancer adaption processes.
Collapse
Affiliation(s)
- Barbara Bortot
- Department of Medical Genetics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Maura Apollonio
- Pediatric Department, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Enrico Rampazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Italy
| | - Francesco Valle
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Firenze, Italy.,Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNRISMN), Bologna, Italy
| | - Marco Brucale
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Firenze, Italy.,Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNRISMN), Bologna, Italy
| | - Andrea Ridolfi
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Firenze, Italy.,Department of Chemistry, University of Firenze, Italy
| | - Blendi Ura
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Riccardo Addobbati
- Department of Clinical Toxicology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Di Lorenzo
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Federico Romano
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Francesca Buonomo
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Chiara Ripepi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.,Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - Stefania Biffi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
7
|
Qiu Z, Ma X, Xie J, Liu Z, Zhang Y, Xia C. miR-1307-5p regulates proliferation and apoptosis of chondrocytes in osteoarthritis by specifically inhibiting transforming growth factor beta-induced gene. Am J Transl Res 2021; 13:7756-7766. [PMID: 34377252 PMCID: PMC8340226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/08/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To explore the effect of miR-1307-5p which specifically inhibits transforming growth factor beta-induced gene (TGFBI) on the biologic behavior of osteoarthritis (OA) chondrocytes. METHODS We detected miR-1307-5p and TGFBI expression in the cartilage tissue specimens of OA patients and mice, respectively. RNA22 was applied to predict the target gene of miR-1307-5p, and we further verified the relationship by performing a dual luciferase reporter experiment. Enzyme-linked immunosorbent assay was used to measure the expression of matrix metalloproteinase inhibitor-1 (TIMP-1), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the culture medium of mouse chondrocytes. Quantitative reverse transcription-polymerase chain reaction and western blot were used to measure the expression of Bax and Bcl-2. MTT method was applied to detect the proliferation activity of chondrocytes, while flow cytometry was implemented to detect the apoptosis of chondrocytes. RESULTS The expression of miR-1307-5p in cartilage tissue specimens of OA patients was up-regulated, while TGFBI expression was down-regulated. Compared with normal mice cartilage tissue specimens, the expression of miR-1307-5p in cartilage tissue specimens of OA mouse was increased, while TGFBI expression was decreased (both P<0.05). The results of the dual luciferase reporter experiment showed that TGFBI was a target gene of miR-1307-5p. In cell experiments, compared with the normal group, TIMP-1 and Bcl-2 expression, and cell proliferation activities in all model groups were decreased. IL-1β, IL-6, TNF-α, Bax expression, and cell apoptosis rates were increased (all P<0.05). Compared with the blank group, TIMP-1 and Bcl-2 expression, and cell proliferation activities in the miR-1307-5p inhibitor group and the TGFBI group were increased, while IL-1β, IL-6, TNF-α, and Bax expression, and cell apoptosis rates were decreased (all P<0.05). The changes in all indicators in the miR-1307-5p mimic group were opposite to those of the miR-1307-5p inhibitor group (all P<0.05). There were no significant differences concerning all indicators between the blank group and the NC group, and between the blank group and the miR-1307-5p mimic + TGFBI group (all P>0.05). CONCLUSION The suppression of miR-1307-5p expression can increase TGFBI expression, promoting the proliferation of chondrocytes in OA mice, while inhibiting their apoptosis.
Collapse
Affiliation(s)
- Zhiyang Qiu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian UniversityDalian, Liaoning Province, China
| | - Xiaowei Ma
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian UniversityDalian, Liaoning Province, China
| | - Jian Xie
- Department of Basic Medical Teaching and Research, Liaoning Vocational College of MedicineShenyang, Liaoning Province, China
| | - Zhaofa Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian UniversityDalian, Liaoning Province, China
| | - Yu Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian UniversityDalian, Liaoning Province, China
| | - Chongjun Xia
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian UniversityDalian, Liaoning Province, China
| |
Collapse
|
8
|
Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal 2021; 84:110028. [PMID: 33940163 DOI: 10.1016/j.cellsig.2021.110028] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
The secreted extracellular protein, transforming growth factor beta induced (TGFBI or βIGH3), has roles in regulating numerous biological functions, including cell adhesion and bone formation, both during embryonic development and during the pathogenesis of human disease. TGFBI has been most studied in the context of hereditary corneal dystrophies, where mutations in TGFBI result in accumulation of TGFBI in the cornea. In cancer, early studies focused on TGFBI as a tumor suppressor, in part by promoting chemotherapy sensitivity. However, in established tumors, TGFBI largely has a role in promoting tumor progression, with elevated levels correlating to poorer clinical outcomes. As an important regulator of cancer progression, TGFBI expression and function is tightly regulated by numerous mechanisms including epigenetic silencing through promoter methylation and microRNAs. Mechanisms to target TGFBI have potential clinical utility in treating advanced cancers, while assessing TGFBI levels could be a biomarker for chemotherapy resistance and tumor progression.
Collapse
Affiliation(s)
- Armando Corona
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA; Department of Medicine, Duke University Medical Center, USA.
| |
Collapse
|
9
|
Lang K, Kahveci S, Bonberg N, Wichert K, Behrens T, Hovanec J, Roghmann F, Noldus J, Tam YC, Tannapfel A, Käfferlein HU, Brüning T. TGFBI Protein Is Increased in the Urine of Patients with High-Grade Urothelial Carcinomas, and Promotes Cell Proliferation and Migration. Int J Mol Sci 2019; 20:ijms20184483. [PMID: 31514337 PMCID: PMC6770034 DOI: 10.3390/ijms20184483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023] Open
Abstract
Here, we discovered TGFBI as a new urinary biomarker for muscle invasive and high-grade urothelial carcinoma (UC). After biomarker identification using antibody arrays, results were verified in urine samples from a study population consisting of 303 patients with UC, and 128 urological and 58 population controls. The analyses of possible modifying factors (age, sex, smoking status, urinary leukocytes and erythrocytes, and history of UC) were calculated by multiple logistic regression. Additionally, we performed knockdown experiments with TGFBI siRNA in bladder cancer cells and investigated the effects on proliferation and migration by wound closure assays and BrdU cell cycle analysis. TGFBI concentrations in urine are generally increased in patients with UC when compared to urological and population controls (1321.0 versus 701.3 and 475.6 pg/mg creatinine, respectively). However, significantly increased TGFBI was predominantly found in muscle invasive (14,411.7 pg/mg creatinine), high-grade (8190.7 pg/mg) and de novo UC (1856.7 pg/mg; all p < 0.0001). Knockdown experiments in vitro led to a significant decline of cell proliferation and migration. In summary, our results suggest a critical role of TGFBI in UC tumorigenesis and particularly in high-risk UC patients with poor prognosis and an elevated risk of progression on the molecular level.
Collapse
Affiliation(s)
- Kerstin Lang
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Selcan Kahveci
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Nadine Bonberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Katharina Wichert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Jan Hovanec
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Florian Roghmann
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany.
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany.
| | - Yu Chun Tam
- Institute of Pathology, Georgius Agricola Stiftung Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Andrea Tannapfel
- Institute of Pathology, Georgius Agricola Stiftung Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Heiko U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| |
Collapse
|
10
|
Zhu H, Chen H, Wang J, Zhou L, Liu S. Collagen stiffness promoted non-muscle-invasive bladder cancer progression to muscle-invasive bladder cancer. Onco Targets Ther 2019; 12:3441-3457. [PMID: 31123405 PMCID: PMC6511250 DOI: 10.2147/ott.s194568] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: Bladder cancer (BCa) is generally considered one of the most prevalent deadly diseases worldwide. Patients suffering from muscle-invasive bladder cancer (MIBC) possess dismal prognoses, while those with non-muscle-invasive bladder cancer (NMIBC) generally have a favorable outcome after local treatment. However, some NMIBCs relapse and progress to MIBC, with an unclarified mechanism. Hence, insight into the genetic drivers of BCa progression has tremendous potential benefits for precision therapeutics, risk stratification, and molecular diagnosis. Methods: In this study, three cohorts profile datasets (GSE13507, GSE32584, and GSE89) consisting of NMIBC and MIBC samples were integrated to address the differently expressed genes (DEGs). Subsequently, the protein-protein interaction (PPI) network and pathway enrichment analysis of DGEs were performed. Results: Six collagen members (COL1A1, COL1A2, COL5A2, COL6A1, COL6A2, and COL6A3) were up-regulated and gathered in the ECM-receptor interaction signal pathway identified by KEGG pathway analysis and GSEA. Evidence derived from the Oncomine and TCGA databases indicated that the 6 collagen genes promote the progression of BCa and are negatively associated with patient prognosis. Moreover, taking COL1A1 as a further research object, the results showed that COL1A1 was up-regulated in MIBC and its knockdown significantly inhibited the proliferation, migration, and invasion of 5637 and T24 cells by inhibiting epithelial-mesenchymal transition (EMT) process and the TGF-β signaling pathway. Conclusion: With integrated bioinformatic analysis and cell experiments, we showed that 6 collagen family members are high progression risk factors and that they can be used as independent effective diagnostic and prognostic biomarkers for BCa.
Collapse
Affiliation(s)
- Huier Zhu
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510150, People's Republic of China
| | - Hui Chen
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510150, People's Republic of China
| | - Jizhong Wang
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510150, People's Republic of China
| | - Ling Zhou
- Special Clinic Center, Zhongshan People's Hospital of Guangdong Province, Zhongshan, 528403, People's Republic of China
| | - Shaoyan Liu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510150, People's Republic of China
| |
Collapse
|
11
|
Shang D, Song B, Liu Y. Epirubicin suppresses proliferative and metastatic potential by downregulating transforming growth factor-β-induced expression in urothelial carcinoma. Cancer Sci 2018; 109:980-987. [PMID: 28940965 PMCID: PMC5891197 DOI: 10.1111/cas.13403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor‐β‐induced (TGFΒI) is considered to be a vital gene in several carcinomas. In this study we determined the effect of TGFBI on the proliferative and metastatic potential of human urothelial carcinoma (UC) cells as well as its mRNA and protein expression, which were detected by RT‐PCR and western blot, respectively. UC cell proliferation was analyzed by WST‐1 assay and Hoechst 33258 staining. The effect of TGFBI on UC cell metastasis was analyzed using adhesion, migration and invasion assays. We found that TGFBI increased the proliferation of UC cells. Moreover, TGFBI enhanced the adhesion, migration and invasion of UC cells by upregulating MMP‐2, MMP‐9 and calpain‐2 expression. We evaluated the effect of Epirubicin (EPI) on the regulation of TGFBI expression and found that TGFBI acts as a downstream target of EPI and is suppressed by EPI in UC cells. EPI is more effective in inhibiting the proliferation and metastasis of UC cells with high TGFBI expression. This study demonstrates that TGFBI might lead to tumorigenesis and progression of UC and those cells with high TGFBI expression may be vulnerable to relapse. EPI could prove to be a therapeutic option in patients with high TGFBI expressing UC cells.
Collapse
Affiliation(s)
- Donghao Shang
- Department of Urology, Friendship Hospital, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Capital Medical University, Beijing, China
| | - Bo Song
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuting Liu
- Department of Pathology, Capital Medical University, Beijing, China
| |
Collapse
|