1
|
Liu X, Janknecht R, Asadbeigi SN, Perry L, Naqash AR, Ding WQ, McBride JD. The Influence of Melanoma Extracellular Vesicles on Benign Melanocytes: A Role for PRAME in Modulation of the Tumor Microenvironment. J Invest Dermatol 2024:S0022-202X(24)02959-2. [PMID: 39608669 DOI: 10.1016/j.jid.2024.10.612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Melanoma is an aggressive skin cancer with a high tendency for metastasis and resistance to conventional therapies. This study explores the role of preferentially expressed antigen in melanoma (PRAME), a cancer-testis antigen, in melanoma progression, focusing on its function in melanoma-derived extracellular vesicles (EVs) and its impact on benign melanocytes. We show that PRAME is highly expressed in melanoma cell lines, tissues, and patient plasma and is present in EVs. These EVs transfer PRAME protein and mRNA to benign melanocytes, leading to significant alterations in gene expression, increased cell proliferation, and a more malignant phenotype. Knockout of PRAME in melanoma cells reduces these protumorigenic effects on melanocytes, emphasizing PRAME's role in EV-mediated communication. The detection of PRAME in plasma EVs suggests its potential as a biomarker for monitoring disease progression and therapy response, including in rare melanoma subtypes. These findings highlight PRAME as a key player in melanoma progression and suggest targeting PRAME-containing EVs as a potential therapeutic strategy to inhibit melanoma progression and metastasis.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ralf Janknecht
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Cancer Biology Research Program, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Sepideh Nikki Asadbeigi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lisa Perry
- Department of Hematology-Oncology, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Abdul-Rafeh Naqash
- Department of Hematology-Oncology, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Cancer Biology Research Program, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Jeffrey D McBride
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Cancer Biology Research Program, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
2
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
3
|
Ruocco MR, Gisonna A, Acampora V, D’Agostino A, Carrese B, Santoro J, Venuta A, Nasso R, Rocco N, Russo D, Cavaliere A, Altobelli GG, Masone S, Avagliano A, Arcucci A, Fiume G. Guardians and Mediators of Metastasis: Exploring T Lymphocytes, Myeloid-Derived Suppressor Cells, and Tumor-Associated Macrophages in the Breast Cancer Microenvironment. Int J Mol Sci 2024; 25:6224. [PMID: 38892411 PMCID: PMC11172575 DOI: 10.3390/ijms25116224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancers (BCs) are solid tumors composed of heterogeneous tissues consisting of cancer cells and an ever-changing tumor microenvironment (TME). The TME includes, among other non-cancer cell types, immune cells influencing the immune context of cancer tissues. In particular, the cross talk of immune cells and their interactions with cancer cells dramatically influence BC dissemination, immunoediting, and the outcomes of cancer therapies. Tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) represent prominent immune cell populations of breast TMEs, and they have important roles in cancer immunoescape and dissemination. Therefore, in this article we review the features of TILs, TAMs, and MDSCs in BCs. Moreover, we highlight the mechanisms by which these immune cells remodel the immune TME and lead to breast cancer metastasis.
Collapse
Affiliation(s)
- Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Armando Gisonna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Anna D’Agostino
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Jessie Santoro
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Nicola Rocco
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Daniela Russo
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | | | - Giovanna Giuseppina Altobelli
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| |
Collapse
|
4
|
Jia W, Liang S, Jin M, Li S, Yuan J, Zhang J, Lin W, Wang Y, Nie S, Ling C, Cheng B. Oleanolic acid inhibits hypoxic tumor-derived exosomes-induced premetastatic niche formation in hepatocellular carcinoma by targeting ERK1/2-NFκB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155208. [PMID: 38387275 DOI: 10.1016/j.phymed.2023.155208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Pulmonary premetastatic niche (PMN) formation plays a key role in the lung metastasis of hepatocellular carcinoma (HCC). Hypoxia promotes the secretion of tumor-derived exosomes (TDEs) and facilitates the formation of PMN. However, the mechanisms remain unexplored. METHODS TDEs from normoxic (N-TDEs) or hypoxic (H-TDEs) HCC cells were used to induce fibroblast activation in vitro and PMN formation in vivo. Oleanolic acid (OA) was intragastrically administered to TDEs-preconditioned mice. Bioinformatics analysis and drug affinity responsive target stability (DARTS) assays were performed to identify targets of OA in fibroblasts. RESULTS H-TDEs induced activation of pulmonary fibroblasts, promoted formation of pulmonary PMN and subsequently facilitated lung metastasis of HCC. OA inhibited TDEs-induced PMN formation and lung metastasis and suppressed TDEs-mediated fibroblast activation. MAPK1 and MAPK3 (ERK1/2) were the potential targets of OA. Furthermore, H-TDEs enhanced ERK1/2 phosphorylation in fibroblasts in vitro and in vivo, which was suppressed by OA treatment. Blocking ERK1/2 signaling with its inhibitor abated H-TDEs-induced activation of fibroblasts and PMN formation. H-TDEs-induced phosphorylation of ERK1/2 in fibroblasts touched off the activation NF-κB p65, which was mitigated by OA. In addition, the ERK activator C16-PAF recovered the activation of ERK1/2 and NF-κB p65 in H-TDEs-stimulated MRC5 cells upon OA treatment. CONCLUSION The present study offers insights into the prevention of TDEs-induced PMN, which has been insufficiently investigated. OA suppresses the activation of inflammatory fibroblasts and the development of pulmonary PMN by targeting ERK1/2 and thereby has therapeutic potential in the prevention of lung metastasis of HCC.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Jiaying Yuan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Wanfu Lin
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Yuqian Wang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Shuchang Nie
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China.
| |
Collapse
|
5
|
Chen C, Guo Q, Liu Y, Hou Q, Liao M, Guo Y, Zang Y, Wang F, Liu H, Luan X, Liang Y, Guan Z, Li Y, Liu H, Dong X, Zhang X, Liu J, Xu Q. Single-cell and spatial transcriptomics reveal POSTN + cancer-associated fibroblasts correlated with immune suppression and tumour progression in non-small cell lung cancer. Clin Transl Med 2023; 13:e1515. [PMID: 38115703 PMCID: PMC10731139 DOI: 10.1002/ctm2.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are potential targets for cancer therapy. Due to the heterogeneity of CAFs, the influence of CAF subpopulations on the progression of lung cancer is still unclear, which impedes the translational advances in targeting CAFs. METHODS We performed single-cell RNA sequencing (scRNA-seq) on tumour, paired tumour-adjacent, and normal samples from 16 non-small cell lung cancer (NSCLC) patients. CAF subpopulations were analyzed after integration with published NSCLC scRNA-seq data. SpaTial enhanced resolution omics-sequencing (Stereo-seq) was applied in tumour and tumour-adjacent samples from seven NSCLC patients to map the architecture of major cell populations in tumour microenvironment (TME). Immunohistochemistry (IHC) and multiplexed IHC (mIHC) were used to validate marker gene expression and the association of CAFs with immune infiltration in TME. RESULTS A subcluster of myofibroblastic CAFs, POSTN+ CAFs, were significantly enriched in advanced tumours and presented gene expression signatures related to extracellular matrix remodeling, tumour invasion pathways and immune suppression. Stereo-seq and mIHC demonstrated that POSTN+ CAFs were in close localization with SPP1+ macrophages and were associated with the exhausted phenotype and lower infiltration of T cells. POSTN expression or the abundance of POSTN+ CAFs were associated with poor prognosis of NSCLC. CONCLUSIONS Our study identified a myofibroblastic CAF subpopulation, POSTN+ CAFs, which might associate with SPP1+ macrophages to promote the formation of desmoplastic architecture and participate in immune suppression. Furthermore, we showed that POSTN+ CAFs associated with cancer progression and poor clinical outcomes and may provide new insights on the treatment of NSCLC.
Collapse
Affiliation(s)
- Chao Chen
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Qiang Guo
- BGI ResearchHangzhouChina
- BGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- BGI ResearchHangzhouChina
- BGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Qinghua Hou
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Mengying Liao
- Department of PathologyPeking University Shenzhen HospitalShenzhenChina
| | - Yanying Guo
- BGI ResearchHangzhouChina
- BGI ResearchShenzhenChina
| | - Yupeng Zang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | - Huanyu Liu
- Department of PathologyPeking University Shenzhen HospitalShenzhenChina
| | - Xinyu Luan
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Yanling Liang
- BGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhuojue Guan
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yanling Li
- Central Laboratory of Peking University Shenzhen HospitalShenzhenChina
| | - Haozhen Liu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Xuan Dong
- BGI ResearchHangzhouChina
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of GenomicsBGI ResearchShenzhenChina
| | - Xiuqing Zhang
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of GenomicsBGI ResearchShenzhenChina
| | - Jixian Liu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Qumiao Xu
- BGI ResearchHangzhouChina
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of GenomicsBGI ResearchShenzhenChina
| |
Collapse
|
6
|
Activity of ROCKII not ROCKI promotes pulmonary metastasis of melanoma cells via modulating Smad2/3-MMP9 and FAK-Src-VEGF signalling. Cell Signal 2022; 97:110389. [PMID: 35718242 DOI: 10.1016/j.cellsig.2022.110389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) inhibition decreases tumourogenic growth, proliferation and angiogenesis. Multifaceted evidences are there about the role of ROCK in cancer progression, but isoform specific analysis in secondary pulmonary melanoma is still unaddressed. This study explored the operating function of ROCK in the metastasis of B16F10 mice melanoma cell line. Inhibition by KD-025 indicated dual wielding role of ROCKII as it is associated with the regulation of MMP9 activity responsible for extra-cellular matrix (ECM) degradation as well as angiogenic invasion as an effect of Src-FAK-STAT3 interaction dependent VEGF switching. We found the assisting role of ROCKII, not ROCKI in nuclear localization of Smads that effectively increased MMP9 expression and activity (p < 0.01). This cleaved the protein components of ECM thereby played a crucial role in tissue remodeling at secondary site during establishment of metastatic tumour. ROCKII phosphorylation at Ser1366 as an activation of the same was imprinted essential for oncogenic molecular bagatelle leading to histo-architectural change of pulmonary tissue with extracellular matrix degradation as a consequence of invasion. Direct correlation of pROCKIISer1366 with MMP9 as well as VEGF expression in vivo studies cue to demonstrate the importance of pROCKIISer1366 inhibition in the context of angiogenesis, and metastasis suggesting ROCKII signaling as a possible target for the treatment of secondary lung cancer specially in metastatic melanoma.
Collapse
|
7
|
Qi Y, Zhao T, Li R, Han M. Macrophage-Secreted S100A4 Supports Breast Cancer Metastasis by Remodeling the Extracellular Matrix in the Premetastatic Niche. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9895504. [PMID: 35496059 PMCID: PMC9046007 DOI: 10.1155/2022/9895504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 12/03/2022]
Abstract
Metastasis is the major cause of cancer-related mortalities. A tumor-supportive microenvironment, also known as the premetastatic niche at secondary tumor sites, plays a crucial role in metastasis. Remodeling of the extracellular matrix (ECM) is essential for premetastatic niche formation, especially for circulating tumor cell colonization. However, the underlying molecular mechanism that contributes to this effect remains unclear. Here, we developed a lung metastasis model with 4T1 breast cancer cells and found that the metastasis critically depended on the early recruitment of macrophages to the lung. Disruption of macrophage recruitment reduced fibroblast activation and lung metastasis. Furthermore, we identified the secreted protein S100A4, which is produced by M2 macrophages and participates in fibroblast activation and ECM protein deposition via the ERK signaling pathway. Collectively, these results indicate that recruiting S100A4-expressing inflammatory macrophages plays a vital role in ECM remodeling in the premetastatic niche and may act as a potential therapeutic target for breast cancer lung metastasis.
Collapse
Affiliation(s)
- Yana Qi
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Tingting Zhao
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Ranran Li
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Mingyong Han
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| |
Collapse
|
8
|
Yamato H, Kimura K, Fukui E, Kanou T, Ose N, Funaki S, Minami M, Shintani Y. Periostin secreted by activated fibroblasts in idiopathic pulmonary fibrosis promotes tumorigenesis of non-small cell lung cancer. Sci Rep 2021; 11:21114. [PMID: 34702952 PMCID: PMC8548404 DOI: 10.1038/s41598-021-00717-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) patients with idiopathic pulmonary fibrosis (IPF) show poor prognosis. Periostin is an extracellular matrix protein highly expressed in the lung tissues of IPF. This study aimed to investigate the possibility that periostin secreted by fibroblasts derived from IPF lung might affect proliferation of NSCLC cells. Periostin was more highly expressed and secreted by fibroblasts from diseased human lung with IPF (DIPF) than by normal human lung fibroblasts (NHLF). Cocultivation of NSCLC cells with conditioned media (CM) from DIPF increased proliferation of NSCLC cells through pErk signaling, with this proliferation attenuated by periostin-neutralizing antibodies. Knockdown of integrin β3, a subunit of the periostin receptor, in NSCLC cells suppressed proliferation of NSCLC cells promoted by recombinant human periostin and CM of DIPF. On in vivo examination, DIPF promoted tumor progression more than NHLF, and knockdown of integrin β3 in NSCLC cells suppressed tumor progression promoted by DIPF. Fibroblasts derived from surgical specimens from IPF patients also increased secretion of periostin compared to those from non-IPF patients. Periostin secreted from IPF-activated fibroblasts plays critical roles in the proliferation of NSCLC cells. The present study provides a solid basis for considering periostin-targeted therapy for NSCLC patients with IPF.
Collapse
Affiliation(s)
- Hiroyuki Yamato
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Kimura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naoko Ose
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masato Minami
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Deasy SK, Erez N. A glitch in the matrix: organ-specific matrisomes in metastatic niches. Trends Cell Biol 2021; 32:110-123. [PMID: 34479765 DOI: 10.1016/j.tcb.2021.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Modification of the extracellular matrix (ECM) is a critical aspect of developing a metastasis-supportive organ niche. Recent work investigating ECM changes that facilitate metastasis has revealed ways in which different metastatic organ niches are similar as well as the distinct characteristics that make them unique. In this review, we present recent findings regarding how ECM modifications support metastasis in four frequent metastatic sites: the lung, liver, bone, and brain. We discuss ways in which these modifications are shared between metastatic organs as well as features specific to each location. We also discuss areas of technical innovation that could be advantageous to future research and areas of inquiry that merit further investigation.
Collapse
Affiliation(s)
- Sarah K Deasy
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Semba T, Sato R, Kasuga A, Suina K, Shibata T, Kohno T, Suzuki M, Saya H, Arima Y. Lung Adenocarcinoma Mouse Models Based on Orthotopic Transplantation of Syngeneic Tumor-Initiating Cells Expressing EpCAM, SCA-1, and Ly6d. Cancers (Basel) 2020; 12:E3805. [PMID: 33348616 PMCID: PMC7767274 DOI: 10.3390/cancers12123805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Somatic mutations in EGFR and KRAS as well as chromosome rearrangements affecting ALK, ROS1, and RET have been identified in human lung adenocarcinoma (LUAD). We here developed organoid-based orthotopic and syngeneic mouse models for studies of the pathogenesis and treatment of LUAD. We isolated EpCAM-positive epithelial cells from mouse lungs and cultured them as organoids to maintain epithelial stem cell properties. These cells were transformed by KRAS(G12V) or EML4-ALK and then transplanted via the trachea into the lungs of the syngeneic mice, where they formed tumors that expressed the lung lineage marker TTF-1 and which closely recapitulated the pathology of human LUAD. Treatment with crizotinib suppressed the growth of tumors formed by the EML4-ALK-expressing lung epithelial cells in a subcutaneous transplantation model. Organoid culture of normal lung epithelial cells resulted in enrichment of EpCAM+SCA-1(Ly6a)+ cells as well as in that of cells expressing another member of the Ly6 protein family, Ly6d, which was found to be required for the growth of the LUAD-initiating cells expressing KRAS(G12V) or EML4-ALK. We also found that a high expression level of LY6D was associated with poor prognosis in human LUAD. Our results thus suggest that LY6D is a potential lung cancer stem cell marker.
Collapse
Affiliation(s)
- Takashi Semba
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.S.); (R.S.); (A.K.); (K.S.); (H.S.)
- Department of Thoracic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan;
| | - Ryo Sato
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.S.); (R.S.); (A.K.); (K.S.); (H.S.)
- Department of Respiratory Medicine, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Akiyoshi Kasuga
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.S.); (R.S.); (A.K.); (K.S.); (H.S.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kentaro Suina
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.S.); (R.S.); (A.K.); (K.S.); (H.S.)
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan;
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan;
| | - Makoto Suzuki
- Department of Thoracic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan;
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.S.); (R.S.); (A.K.); (K.S.); (H.S.)
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.S.); (R.S.); (A.K.); (K.S.); (H.S.)
| |
Collapse
|
11
|
Chu L, Wang F, Zhang W, Li HF, Xu J, Tong XW. Periostin Secreted by Carcinoma-Associated Fibroblasts Promotes Ovarian Cancer Cell Platinum Resistance Through the PI3K/Akt Signaling Pathway. Technol Cancer Res Treat 2020; 19:1533033820977535. [PMID: 33302812 PMCID: PMC7734496 DOI: 10.1177/1533033820977535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Periostin (POSTN) is a protein secreted by mesenchymal cells. Periostin is upregulated in several cancer types and overexpression is associated with poor prognosis. However, the functional role and molecular underpinnings of periostin in epithelial ovarian cancer (EOC) is unknown. In the present study, periostin was found to be significantly upregulated in EOC stroma. Functional studies revealed that periostin could decrease cisplatin (DDP)-induced apoptosis in EOC. Periostin led to DDP resistance in EOC cells, potentially through the PI3K/Akt signaling pathway. We generated periostin-overexpressing fibroblasts and found that EOC cells were resistant to DDP when co-cultured with periostin-overexpressing fibroblasts. The findings of the present study indicated that periostin secreted by cancer-associated stromal cells may be a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Lei Chu
- Department of Gynecology and Obstetrics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fangce Wang
- Department of Hematology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjun Zhang
- Department of Hematology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huai-Fang Li
- Department of Gynecology and Obstetrics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Xu
- Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Wen Tong
- Department of Gynecology and Obstetrics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Kobayashi T, Kanno K, Nguyen PT, Sugiyama A, Kawahara A, Otani Y, Kishikawa N, Ito M, Tazuma S. Periostin antisense oligonucleotide prevents hepatic steatosis and fibrosis in a mouse model of non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2020; 35:2140-2150. [PMID: 32365405 DOI: 10.1111/jgh.15088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, inflammation, and hepatocellular injury with varying degrees of fibrosis. There are currently no established treatment approaches for NASH other than lifestyle interventions. Periostin, a matricellular protein required for tissue remodeling and fibrosis, plays an important role in hepatic steatosis and fibrosis and could be a potential target for NASH treatment. Advances in molecular biology and biochemical engineering have led to the development of antisense oligonucleotides (ASOs) that can inhibit target genes with no significant toxic effects. Herein, we investigated the therapeutic effects of periostin-targeting ASO (PNASO) in NASH. METHODS C57BL/6J mice were fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) to induce NASH with or without intraperitoneal injection of mouse PNASO. To explore the role of periostin in hepatocellular steatosis, Hc3716 cells, an immortalized human hepatocyte line, were treated with recombinant periostin in vitro. RESULTS The induced periostin expression in the liver of CDAHFD-fed mice was significantly suppressed by PNASO. The deletion of hepatic periostin by PNASO significantly ameliorated hepatic steatosis while restoring the expression levels of peroxisome proliferator-activated receptor-alpha (PPAR-α) and its target genes. PNASO also inhibited hepatic fibrosis, reflected by the reduction of alpha-smooth muscle actin, collagen type I, and other fibrotic markers. In vitro experiments demonstrated that treatment with recombinant periostin increased cellular lipid accumulation in Hc3716 cells accompanied with the downregulation of PPAR-α. CONCLUSIONS Periostin-targeting ASO is a potential therapeutic approach for the efficient treatment of hepatic steatosis and fibrosis in NASH.
Collapse
Affiliation(s)
- Tomoki Kobayashi
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Phuong Thao Nguyen
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Akiko Sugiyama
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Akihiro Kawahara
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuichiro Otani
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobusuke Kishikawa
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Susumu Tazuma
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
13
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Seo C, Kim SH, Lee HS, Ji M, Min J, Son YJ, Kim IH, Lee K, Paik MJ. Metabolomic study on bleomycin and polyhexamethylene guanidine phosphate-induced pulmonary fibrosis mice models. Metabolomics 2019; 15:111. [PMID: 31422500 DOI: 10.1007/s11306-019-1574-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Polyhexamethylene guanidine phosphate (PHMG) has been used as a disinfectant and biocide, and was known to be harmless and non-toxic. However, in 2011, PHMG used as a humidifier disinfectant was reported to be associated with lung diseases, such as, fibrosis in the toxicant studies on pulmonary fibrosis by PHMG. However, no metabolomics study has been performed in PHMG-induced mouse models of pulmonary fibrosis. OBJECTIVES We performed a metabolomic study to understand the biochemical events that occur in bleomycin (BLM)- and PHMG-induced mouse models of pulmonary fibrosis using gas chromatography-mass spectrometry (GC-MS), LC-tandem MS, and GC-tandem MS. RESULTS The levels of 61 metabolites of 30 amino acids, 13 organic acids, 12 fatty acids, 5 polyamines, and oxidized glutathione were determined in the pulmonary tissues of mice with BLM- and PHMG-induced pulmonary fibrosis and in normal controls. Principal component analysis and partial least squares discriminant analysis used to compare level of these 61 metabolites in pulmonary tissues. Levels of metabolites were significantly different in the BLM and PHMG groups as compared with the control group. In particular, the BLM- and PHMG-induced pulmonary fibrosis models showed elevated collagen synthesis and oxidative stress and metabolic disturbance of TCA related organic acids including fumaric acid by NADPH oxidase. In addition, polyamine metabolism showed severe alteration in the PHMG group than that of the BLM group. CONCLUSION This result suggests PHMG will be able to induce pulmonary fibrosis by arginine metabolism and NADPH oxidase signaling.
Collapse
Affiliation(s)
- Chan Seo
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Sung-Hwan Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Institute of Toxicology, Jeongeup-si, 56212, Republic of Korea
| | - Hyeon-Seong Lee
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Jeuk Min
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Young-Jin Son
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - In-Hyeon Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Institute of Toxicology, Jeongeup-si, 56212, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation of Respiratory Disease Product, Institute of Toxicology, Jeongeup-si, 56212, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea.
| |
Collapse
|
15
|
The Multiaspect Functions of Periostin in Tumor Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:125-136. [DOI: 10.1007/978-981-13-6657-4_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
March JT, Golshirazi G, Cernisova V, Carr H, Leong Y, Lu-Nguyen N, Popplewell LJ. Targeting TGFβ Signaling to Address Fibrosis Using Antisense Oligonucleotides. Biomedicines 2018; 6:biomedicines6030074. [PMID: 29941814 PMCID: PMC6164894 DOI: 10.3390/biomedicines6030074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Fibrosis results from the excessive accumulation of extracellular matrix in chronically injured tissue. The fibrotic process is governed by crosstalk between many signaling pathways. The search for an effective treatment is further complicated by the fact that there is a degree of tissue-specificity in the pathways involved, although the process is not completely understood for all tissues. A plethora of drugs have shown promise in pre-clinical models, which is not always borne out translationally in clinical trial. With the recent approvals of two antisense oligonucleotides for the treatment of the genetic diseases Duchenne muscular dystrophy and spinal muscular atrophy, we explore here the potential of antisense oligonucleotides to knockdown the expression of pro-fibrotic proteins. We give an overview of the generalized fibrotic process, concentrating on key players and highlight where antisense oligonucleotides have been used effectively in cellular and animal models of different fibrotic conditions. Consideration is given to the advantages antisense oligonucleotides would have as an anti-fibrotic therapy alongside factors that would need to be addressed to improve efficacy. A prospective outlook for the development of antisense oligonucleotides to target fibrosis is outlined.
Collapse
Affiliation(s)
- James T March
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Golnoush Golshirazi
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Viktorija Cernisova
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Heidi Carr
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Yee Leong
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Ngoc Lu-Nguyen
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Linda J Popplewell
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
17
|
Semba T, Sugihara E, Kamoshita N, Ueno S, Fukuda K, Yoshino M, Takao K, Yoshikawa K, Izuhara K, Arima Y, Suzuki M, Saya H. Periostin antisense oligonucleotide suppresses bleomycin-induced formation of a lung premetastatic niche for melanoma. Cancer Sci 2018; 109:1447-1454. [PMID: 29498146 PMCID: PMC5980369 DOI: 10.1111/cas.13554] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 01/12/2023] Open
Abstract
Metastasis is the leading cause of cancer death. A tumor‐supportive microenvironment, or premetastatic niche, at potential secondary tumor sites plays an important role in metastasis, especially in tumor cell colonization. Although a fibrotic milieu is known to promote tumorigenesis and metastasis, the underlying molecular contributors to this effect have remained unclear. Here we show that periostin, a component of the extracellular matrix that functions in tissue remodeling, has a key role in formation of a fibrotic environment that promotes tumor metastatic colonization. We found that periostin was widely expressed in fibrotic lesions of mice with bleomycin‐induced lung fibrosis, and that up‐regulation of periostin expression coincided with activation of myofibroblasts positive for α‐smooth muscle actin. We established a lung metastasis model for B16 murine melanoma cells and showed that metastatic colonization of the lung by these cells was markedly promoted by bleomycin‐induced lung fibrosis. Inhibition of periostin expression by giving an intratracheal antisense oligonucleotide targeting periostin mRNA was found to suppress bleomycin‐induced lung fibrosis and thereby to attenuate metastatic colonization of the lung by melanoma cells. Our results indicate that periostin is a key player in the development of bleomycin‐induced fibrosis and consequent enhancement of tumor cell colonization in the lung. Our results therefore implicate periostin as a potential target for prevention or treatment of lung metastasis.
Collapse
Affiliation(s)
- Takashi Semba
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Thoracic Surgery, Kumamoto University, Kumamoto, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Innovation Medical Research Institute, University of Tsukuba, Ibaraki, Japan
| | - Nagisa Kamoshita
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Sayaka Ueno
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Keitaro Fukuda
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Kumamoto University, Kumamoto, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|