1
|
Plut S, Gavric A, Glavač D. Non-Coding RNAs as Potential Biomarkers for Colorectal Polyps and Cancer Detection. Int J Mol Sci 2025; 26:4106. [PMID: 40362348 PMCID: PMC12072050 DOI: 10.3390/ijms26094106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. The precursor of CRC is a colorectal polyp, of which adenoma is the most common histological type. The initial step in CRC development is the gradual accumulation of a series of genetic and epigenetic alterations in the normal colonic epithelium. Genetic alterations play a major role in a subset of CRCs, but the pathophysiological contribution of epigenetic aberrations has recently attracted attention. Epigenetic marks occur early in cancer pathogenesis and are therefore important molecular hallmarks of cancer. This makes some epigenetic alterations clinically relevant for early detection not only of CRC but also of precancerous polyps. In this review we focus on three types of non-coding RNAs as epigenetic regulators: miRNA, lncRNA, and lncRNAs, highlighting their biomarker potential.
Collapse
Affiliation(s)
- Samo Plut
- Department of Gastroenterology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (S.P.); (A.G.)
- Ljubljana Digestive Endoscopy Research Group (LuDERG), Department of Gastroenterology, UMC Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleksandar Gavric
- Department of Gastroenterology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (S.P.); (A.G.)
- Ljubljana Digestive Endoscopy Research Group (LuDERG), Department of Gastroenterology, UMC Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
2
|
Laowichuwakonnukul K, Soontornworajit B, Arunpanichlert J, Rotkrua P. Simultaneous targeted delivery of doxorubicin and KRAS suppression by a hybrid molecule containing miR-143 and AS1411 aptamer. Sci Rep 2025; 15:10590. [PMID: 40148451 PMCID: PMC11950302 DOI: 10.1038/s41598-025-94159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Hybrid molecules can be engineered to target tumors by merging drugs with the same or distinct mechanisms of action. The coexistence of multiple pharmacologically active entities within the cancer cell enhances the therapeutic efficacy of the hybrid molecule compared to single-target inhibitors. KRAS is considered the most common oncogenic gene in human cancers and is targeted by tumor suppressor miR-143. Therefore, an increase in miR-143 expression is a promising way to inhibit CRC cell growth. This research aims to develop a hybrid anticancer drug carrier by combining miR-143 and AS1411 aptamers through a hybridization strand (MAH) and loading doxorubicin (Dox), a chemotherapy drug. The uptake capability of MAH into the SW480 CRC cells was confirmed by detecting fluorescence intensity with a fluorescence microscope. After treatment of MAH in SW480 cells, the level of miR-143 was increased, but KRAS expression was decreased for both mRNA and protein. KRAS downstream target proteins, ERK and AKT, were downregulated as well. Furthermore, it was confirmed that DOX could be gradually released from MAH, with approximately 95% released over 72 h. Treating cells with Dox-MAH resulted in the inhibition of cell proliferation and induction of apoptosis. The protein expression of procaspase-3 and Bcl-2 was decreased, while Bax was increased, confirming that Dox-MAH triggered the cell apoptosis. The success of this research proposed a new strategy for a drug delivery system, which has multiple functions simultaneously; CRC cell-specificity, Dox carrier, and miR-143 delivery.
Collapse
Affiliation(s)
- Khanittha Laowichuwakonnukul
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Boonchoy Soontornworajit
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application, Pathumthani, Thailand
| | - Jiraporn Arunpanichlert
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application, Pathumthani, Thailand
| | - Pichayanoot Rotkrua
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application, Pathumthani, Thailand.
| |
Collapse
|
3
|
Minatoguchi S, Sugito N, Heishima K, Ito Y, Nakashima R, Okura H, Akao Y, Minatoguchi S. Restoration effect of chemically modified microRNA-143-3p on acute myocardial infarction in animal models. Sci Rep 2025; 15:1107. [PMID: 39774185 PMCID: PMC11707079 DOI: 10.1038/s41598-024-76429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/14/2024] [Indexed: 01/11/2025] Open
Abstract
We investigated whether miR143#12, a synthesized chemically modified miR-143-3p derivative, exerts therapeutic effects on acute myocardial infarction (AMI). Sprague-Dawley rats and Japanese white rabbits underwent 30 min of coronary occlusion followed by 2 weeks of reperfusion. The rat AMI model was intravenously administered with control miRNA (9 μg/kg), 3 μg/kg or 9 μg/kg of miR143#12 1 h after reperfusion, while the rabbit AMI model was intravenously administered with control miRNA (9 μg/kg) or 9 μg/kg of miR143#12. In the rat and rabbit AMI models, 9 μg/kg of miR143#12 significantly reduced infarct sizes and significantly improved cardiac function including LVEF and LVFS at 2 weeks. The tissue miR143 levels in infarct areas significantly decreased after AMI in both models. Electron microscopic study and immunohistochemistry suggested that miR143#12 suppressed autophagic cell death caused by AMI and induced neoangiogenesis in the infarct border. In cultured rat H9c2 cells, miR143#12 significantly inhibited H2O2-induced autophagic cell death by decreasing ROS levels and increased viable cell numbers more than the control by silencing COX-1, -2, and ATG7. Replacement treatment with miR143#12 in the infarct areas, where the expression levels of miR143 were significantly decreased, has a beneficial effect on AMI by silencing COX-1 and -2.
Collapse
Affiliation(s)
- Shingo Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Remi Nakashima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Hiroyuki Okura
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| | - Shinya Minatoguchi
- Department of Circulatory and Respiratory Advanced Medicine, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan.
- Cardiology, Gifu Municipal Hospital, Gifu, Japan.
| |
Collapse
|
4
|
Arima J, Taniguchi K, Sugito N, Heishima K, Tokumaru Y, Inomata Y, Komura K, Tanaka T, Shibata MA, Lee SW, Akao Y. Antitumor effects of chemically modified miR-143 lipoplexes in a mouse model of pelvic colorectal cancer via myristoylated alanine-rich C kinase substrate downregulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102079. [PMID: 38213952 PMCID: PMC10783569 DOI: 10.1016/j.omtn.2023.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024]
Abstract
Replenishing tumor-suppressor miRNAs (TS-miRNAs) is a potential next-generation nucleic acid-based therapeutic approach. Establishing an effective miRNA delivery system is essential to successful TS-miRNA therapy. To overcome vulnerability to RNA nucleases, we previously developed a chemically modified miRNA143-3p (CM-miR-143). In clinical practice, colorectal cancer (CRC) pelvic recurrence is an occasional challenge following curative resection, requiring a novel therapy because reoperative surgery poses a significant burden to the patient. Hence, we considered the use of CM-miR-143 as an alternative treatment. In this study, we used a mouse model bearing pelvic CRC adjacent to the rectum and investigated the anticancer effects of CM-miR-143 lipoplexes formulated from miRNA and a cationic liposome. Compared with commercial synthetic miR-143, CM-miR-143 lipoplexes accumulated heavily in regions of the pelvic CRC tumor where the blood flow was high. As a result, systemic administration of CM-miR-143 lipoplexes improved animal survival by significantly suppressing pelvic CRC tumors and relieving a lethal bowel obstruction caused by rectal compression. Detailed protein analysis revealed that the myristoylated alanine-rich C kinase is a novel target for CM-miR-143 lipoplexes. Our results suggest that CM-miR-143 is a potential next-generation drug candidate in the treatment of CRC pelvic recurrence.
Collapse
Affiliation(s)
- Jun Arima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kohei Taniguchi
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kazumasa Komura
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Tomohito Tanaka
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
5
|
Armstrong L, Willoughby CE, McKenna DJ. Targeting of AKT1 by miR-143-3p Suppresses Epithelial-to-Mesenchymal Transition in Prostate Cancer. Cells 2023; 12:2207. [PMID: 37759434 PMCID: PMC10526992 DOI: 10.3390/cells12182207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
An altered expression of miR-143-3p has been previously reported in prostate cancer where it is purported to play a tumor suppressor role. Evidence from other cancers suggests miR-143-3p acts as an inhibitor of epithelial-to-mesenchymal transition (EMT), a key biological process required for metastasis. However, in prostate cancer the interaction between miR-143-3p and EMT-associated mechanisms remains unclear. Therefore, this paper investigated the link between miR-143-3p and EMT in prostate cancer using in vitro and in silico analyses. PCR detected that miR-143-3p expression was significantly decreased in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA PRAD) data showed a significant downregulation of miR-143-3p in prostate cancer, correlating with pathological markers of advanced disease. Functional enrichment analysis confirmed the significant association of miR-143-3p and its target genes with EMT. The EMT-linked gene AKT1 was subsequently shown to be a novel target of miR-143-3p in prostate cancer cells. The in vitro manipulation of miR-143-3p levels significantly altered the cell proliferation, clonogenicity, migration and expression of EMT-associated markers. Further TCGA PRAD analysis suggested miR-143-3p tumor expression may be a useful predictor of disease recurrence. In summary, this is the first study to report that miR-143-3p overexpression in prostate cancer may inhibit EMT by targeting AKT1. The findings suggest miR-143-3p could be a useful diagnostic and prognostic biomarker for prostate cancer.
Collapse
Affiliation(s)
| | | | - Declan J. McKenna
- Genomic Medicine Research Group, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; (L.A.); (C.E.W.)
| |
Collapse
|
6
|
Shibata MA, Taniguchi K. Metastasis Inhibition. Int J Mol Sci 2023; 24:ijms24087123. [PMID: 37108286 PMCID: PMC10138681 DOI: 10.3390/ijms24087123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer metastasis is a common biological phenomenon observed in malignant tumors that can lead to death in affected individuals [...].
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan
| | - Kohei Taniguchi
- Translational Research Program, Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan
| |
Collapse
|
7
|
Sugito N, Heishima K, Akao Y. Chemically modified MIR143-3p exhibited anti-cancer effects by impairing the KRAS network in colorectal cancer cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 30:49-61. [PMID: 36189421 PMCID: PMC9507988 DOI: 10.1016/j.omtn.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
- Corresponding author
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
- Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
- Corresponding author
| |
Collapse
|
8
|
Wu X, Li Z, Huang N, Li X, Chen R. Study of KRAS-Related miRNA Expression in Colorectal Cancer. Cancer Manag Res 2022; 14:2987-3008. [PMID: 36262749 PMCID: PMC9575474 DOI: 10.2147/cmar.s368551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is one of the most common digestive system tumors and seriously threatens the lives of patients. The choice of treatment options and the prognosis of CRC patients are closely related to the KRAS genotype. Notably, microRNAs (miRNAs) have great application value in the diagnosis and treatment of CRC. Methods The current study used qRT–PCR to analyze the expression of KRAS-targeting miRNAs and determine the correlation between miRNA expression and KRAS gene expression among patients with varying genotypes. The effect of the KRAS gene on the prognosis of patients with cancer was determined. Results Eighty-two differentially expressed miRNAs were identified between CRC tumor and normal tissues: 58 dysregulated miRNAs were identified in patients with KRAS mutations, and 62 aberrantly expressed miRNAs were detected in patients with wild-type KRAS. Thirteen miRNAs were abnormally expressed in KRAS-mutant patients compared with KRAS wild-type patients. Some miRNAs not only acted as biomarkers for CRC but also indicated the genotype of KRAS. Conclusion This finding is very important for patients who must choose from clinical treatment options based on KRAS results. Thus, the abnormal expression of miRNAs has great application potential for the selection of chemotherapy regimens for patients with cancer. The relationship between differential miRNA expression and the KRAS genotype is very important for studying related mechanisms in CRC.
Collapse
Affiliation(s)
- Xiaobing Wu
- Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhifa Li
- Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Nanqi Huang
- Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaodan Li
- Blood Transfusion Department, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Chen
- Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China,Correspondence: Rong Chen, Gastrointestinal Surgery, The Third Affiliated Hospital of the Guangzhou Medical University, NO. 63, Duobao Road, Liwan District, Guangzhou City, Guangdong Province, People’s Republic of China, Tel +8613710886775, Fax +86 02081292182, Email
| |
Collapse
|
9
|
Laskovs M, Partridge L, Slack C. Molecular inhibition of RAS signalling to target ageing and age-related health. Dis Model Mech 2022; 15:276620. [PMID: 36111627 PMCID: PMC9510030 DOI: 10.1242/dmm.049627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The RAS/MAPK pathway is a highly conserved signalling pathway with a well-established role in cancer. Mutations that hyperactivate this pathway are associated with unregulated cell proliferation. Evidence from a range of model organisms also links RAS/MAPK signalling to ageing. Genetic approaches that reduce RAS/MAPK signalling activity extend lifespan and also improve healthspan, delaying the onset and/or progression of age-related functional decline. Given its role in cancer, therapeutic interventions that target and inhibit this pathway's key components are under intense investigation. The consequent availability of small molecule inhibitors raises the possibility of repurposing these compounds to ameliorate the deleterious effects of ageing. Here, we review evidence that RAS/MAPK signalling inhibitors already in clinical use, such as trametinib, acarbose, statins, metformin and dihydromyricetin, lead to lifespan extension and to improved healthspan in a range of model systems. These findings suggest that the repurposing of small molecule inhibitors of RAS/MAPK signalling might offer opportunities to improve health during ageing, and to delay or prevent the development of age-related disease. However, challenges to this approach, including poor tolerance to treatment in older adults or development of drug resistance, first need to be resolved before successful clinical implementation. Summary: This Review critically discusses the links between RAS signalling and ageing, and how RAS inhibitors could extend lifespan and enhance healthspan.
Collapse
Affiliation(s)
- Mihails Laskovs
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| | - Linda Partridge
- Institute of Healthy Ageing 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- University College London 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- Max Planck Institute for Biology of Ageing 3 , Joseph-Stelzmann-Strasse 9b, 50931 Cologne , Germany
| | - Cathy Slack
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| |
Collapse
|
10
|
Wei S, Hu W, Feng J, Geng Y. Promotion or remission: a role of noncoding RNAs in colorectal cancer resistance to anti-EGFR therapy. Cell Commun Signal 2022; 20:150. [PMID: 36131281 PMCID: PMC9490904 DOI: 10.1186/s12964-022-00960-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Anti-epidermal-growth-factor-receptor (EGFR) monoclonal antibodies (mAbs) are of great significance for RAS and BRAF wild-type metastatic colorectal cancer (mCRC) patients. However, the generation of primary and secondary resistance to anti-EGFR mAbs has become an important factor restricting its efficacy. Recent studies have revealed that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are implicated in anti-EGFR antibodies resistance, affecting the sensitivity of CRC cells to Cetuximab and Panitumumab. This paper briefly reviewed the research advance of the expression, signaling network and functional mechanism of ncRNAs related to anti-EGFR mAbs resistance in CRC, as well as their relationship with clinical prognosis and the possibility of therapeutic targets. In addition, some ncRNAs that are involved in the regulation of signaling pathways or genes related to anti-EGFR resistance, but need to be further verified by resistance experiments were also included in this review, thereby providing more ideas and basis for ncRNAs as CRC prognostic markers and anti-EGFR therapy sensitizers. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
11
|
Elrebehy MA, Al-Saeed S, Gamal S, El-Sayed A, Ahmed AA, Waheed O, Ismail A, El-Mahdy HA, Sallam AAM, Doghish AS. miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: A spotlight on signaling pathways interplay - A review. Int J Biol Macromol 2022; 214:583-600. [PMID: 35768045 DOI: 10.1016/j.ijbiomac.2022.06.134] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the world's third most prevalent cancer and the main cause of cancer-related mortality. A lot of work has been put into improving CRC patients' clinical care, including the development of more effective methods and wide biomarkers variety for prognostic, and diagnostic purposes. MicroRNAs (miRNAs) regulate a variety of cellular processes and play a significant role in the CRC progression and spread via controlling their target gene expression by translation inhibition or mRNA degradation. Consequently, dysregulation and disruption in their function, miRNAs are linked to CRC malignant pathogenesis by controlling several cellular processes involved in the CRC. These cellular processes include increased proliferative and invasive capacity, cell cycle aberration, evasion of apoptosis, enhanced EMT, promotion of angiogenesis and metastasis, and decreased sensitivity to major treatments. The miRNAs control cellular processes in CRC via regulation of pathways such as Wnt/β-catenin signaling, PTEN/AKT/mTOR axis, KRAS, TGFb signaling, VEGFR, EGFR, and P53. Hence, the goal of this review was to review miRNA biogenesis and present an updated summary of oncogenic and tumor suppressor (TS) miRNAs and their potential implication in CRC pathogenesis and responses to chemotherapy and radiotherapy. We also summarise the biological importance and clinical applications of miRNAs in the CRC.
Collapse
Affiliation(s)
- Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sarah Al-Saeed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sara Gamal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Asmaa El-Sayed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alshaimaa A Ahmed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Omnia Waheed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain-Shams University, Abassia, Cairo 11566, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
12
|
MicroRNA Profile of Human Small Intestinal Tumors Compared to Colorectal Tumors. J Clin Med 2022; 11:jcm11092604. [PMID: 35566730 PMCID: PMC9103422 DOI: 10.3390/jcm11092604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Small intestinal tumors (adenoma and adenocarcinoma, SIT) are rare, and their microRNA (miRNA) expression profiles have not been established. Previously, we reported a relationship between miRNA expression profiles and the development, growth, morphology, and anticancer drug resistance of colorectal tumors. Here, we demonstrate that the miRNA expression profile of SIT is significantly different from those of tumors of the colon. We compared the onco-related miRNA expression profiles of SIT and colorectal tumors and found them to be different from each other. The expressions of miR-143 and miR-145 were frequently downregulated in SIT and colorectal tumors but not in sessile serrated adenoma/polyp tumors. The profiles of SIT and colorectal carcinomas of miR-7, miR-21, and miR-34a were considerably different. Upregulation of miR-31 expression was not found in any SIT cases. Our data suggested that miR-143 and miR-145 might act as anti-oncomirs common to adenocarcinoma of the small intestine, similar to those of colorectal adenoma and other cancers. However, the expression profiles of the other miRNAs of SIT were significantly different from those of colorectal tumors. These findings contribute useful insights into the tumor development and diagnosis of SIT.
Collapse
|
13
|
Yang F, Xuan G, Chen Y, Cao L, Zhao M, Wang C, Chen E. MicroRNAs Are Key Molecules Involved in the Gene Regulation Network of Colorectal Cancer. Front Cell Dev Biol 2022; 10:828128. [PMID: 35465317 PMCID: PMC9023807 DOI: 10.3389/fcell.2022.828128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer and one of the leading causes of mortality worldwide. MicroRNAs (miRNAs) play central roles in normal cell maintenance, development, and other physiological processes. Growing evidence has illustrated that dysregulated miRNAs can participate in the initiation, progression, metastasis, and therapeutic resistance that confer miRNAs to serve as clinical biomarkers and therapeutic targets for CRC. Through binding to the 3′-untranslated region (3′-UTR) of target genes, miRNAs can lead to target mRNA degradation or inhibition at a post-transcriptional level. During the last decade, studies have found numerous miRNAs and their potential targets, but the complex network of miRNA/Targets in CRC remains unclear. In this review, we sought to summarize the complicated roles of the miRNA-target regulation network (Wnt, TGF-β, PI3K-AKT, MAPK, and EMT related pathways) in CRC with up-to-date, high-quality published data. In particular, we aimed to discuss the downstream miRNAs of specific pathways. We hope these data can be a potent supplement for the canonical miRNA-target regulation network.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Guoyun Xuan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yixin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Lichao Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Min Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Chen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
- *Correspondence: Erfei Chen,
| |
Collapse
|
14
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M, Jalili Khoshnoud R. Emerging role of non-coding RNAs in the regulation of KRAS. Cancer Cell Int 2022; 22:68. [PMID: 35139853 PMCID: PMC8827276 DOI: 10.1186/s12935-022-02486-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 01/17/2023] Open
Abstract
The Kirsten ras oncogene KRAS is a member of the small GTPase superfamily participating in the RAS/MAPK pathway. A single amino acid substitution in KRAS gene has been shown to activate the encoded protein resulting in cell transformation. This oncogene is involved in the malignant transformation in several tissues. Notably, numerous non-coding RNAs have been found to interact with KRAS protein. Such interaction results in a wide array of human disorders, particularly cancers. Orilnc1, KIMAT1, SLCO4A1-AS1, LINC01420, KRAS1P, YWHAE, PART1, MALAT1, PCAT-1, lncRNA-NUTF2P3-001 and TP53TG1 are long non-coding RNAs (lncRNAs) whose interactions with KRAS have been verified in the context of cancer. miR-143, miR-96, miR-134 and miR-126 have also been shown to interact with KRAS in different tissues. Finally, circITGA7, circ_GLG1, circFNTA and circ-MEMO1 are examples of circular RNAs (circRNAs) that interact with KRAS. In this review, we describe the interaction between KRAS and lncRNAs, miRNAs and circRNAs, particularly in the context of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Jalili Khoshnoud
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Chu J, Fang X, Sun Z, Gai L, Dai W, Li H, Yan X, Du J, Zhang L, Zhao L, Xu D, Yan S. Non-Coding RNAs Regulate the Resistance to Anti-EGFR Therapy in Colorectal Cancer. Front Oncol 2022; 11:801319. [PMID: 35111681 PMCID: PMC8802825 DOI: 10.3389/fonc.2021.801319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third prevalent cancer worldwide, the morbidity and mortality of which have been increasing in recent years. As molecular targeting agents, anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (McAbs) have significantly increased the progression-free survival (PFS) and overall survival (OS) of metastatic CRC (mCRC) patients. Nevertheless, most patients are eventually resistant to anti-EGFR McAbs. With the intensive study of the mechanism of anti-EGFR drug resistance, a variety of biomarkers and pathways have been found to participate in CRC resistance to anti-EGFR therapy. More and more studies have implicated non-coding RNAs (ncRNAs) primarily including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are widely involved in tumorigenesis and tumor progression. They function as essential regulators controlling the expression and function of oncogenes. Increasing data have shown ncRNAs affect the resistance of molecular targeted drugs in CRC including anti-EGFR McAbs. In this paper, we have reviewed the advance in mechanisms of ncRNAs in regulating anti-EGFR McAbs therapy resistance in CRC. It provides insight into exploring ncRNAs as new molecular targets and prognostic markers for CRC.
Collapse
Affiliation(s)
- Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Xianzhu Fang
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, China
| | - Zhonghou Sun
- Department of Pediatrics of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Linlin Gai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Wenqing Dai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Haibo Li
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Xinyi Yan
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinke Du
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Lu Zhao
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, China
| |
Collapse
|
16
|
Li Y, Lei H, Zhang M, Wu G, Guo C, Yang Z, Zhang J, Wang Y, Zhu J, Du Y. The Effect of SLC2A3 Expression on Cisplatin Resistance of Colorectal Cancer Cells. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:2576-2583. [PMID: 36317019 PMCID: PMC9577146 DOI: 10.18502/ijph.v50i12.7941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/16/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND To study the molecular mechanism of cisplatin chemotherapy resistance in colorectal cancer cells and to explore the effect of miRNA in regulating the expression of glucose transporter 3 (SLC2A3) and the proliferation and migration of colon cancer cells. METHODS All samples were obtained from the People's Hospital of Wuhai, Wuhai, China between June 2019 and June 2020. Real-time quantitative PCR (qRT-PCR) was carried out to check the expression of miR-103a in these cell lines. Western blotting and Luciferase reporter gene detection confirmed the regulation of the miR-103a/SLC2A3 axis. Western blotting detected the activation of SLC2A3, caspased-9 and -3. RESULTS The expression of SLC2A3 protein in colon cancer cell lines was significantly higher than that of normal colon cancer cells, while the expression of SLC2A3 miRNA showed no significant difference (P<0.05). Then, through clone formation analysis, SLC2A3 was closely related to the proliferation of human colon cancer cells. Functional recovery experiments showed that increasing the expression of miR-103a could reverse the abnormal proliferation caused by overexpression of SLC2A3. CONCLUSION Overall, miR-103a can inhibit the proliferation of human colon cancer cells by targeting SLC2A3, and this result will provide a potential target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Yan Li
- Digestive Internal, The People’s Hospital of Wuhai, Wuhai, P.R. China
| | - Hailong Lei
- Internal Medicine-Oncology, The People’s Hospital of Wuhai, Wuhai, P.R. China
| | - Ming Zhang
- General Surgery, The People’s Hospital of Wuhai, Wuhai, P.R. China
| | - Guangming Wu
- General Surgery, The People’s Hospital of Wuhai, Wuhai, P.R. China
| | - Caiyun Guo
- Digestive Internal, The People’s Hospital of Wuhai, Wuhai, P.R. China
| | - Zijing Yang
- Digestive Internal, The People’s Hospital of Wuhai, Wuhai, P.R. China
| | - Jingting Zhang
- Clinical Laboratory, The People’s Hospital of Wuhai, Wuhai, P.R. China
| | - Yuan Wang
- Clinical Laboratory, The People’s Hospital of Wuhai, Wuhai, P.R. China
| | - Jianbin Zhu
- Digestive Internal, The People’s Hospital of Wuhai, Wuhai, P.R. China
| | - Yongzhe Du
- Digestive Internal, The People’s Hospital of Wuhai, Wuhai, P.R. China
| |
Collapse
|
17
|
Wang B, Xu Y, Wei Y, Lv L, Liu N, Lin R, Wang X, Shi B. Human Mesenchymal Stem Cell-Derived Exosomal microRNA-143 Promotes Apoptosis and Suppresses Cell Growth in Pancreatic Cancer via Target Gene Regulation. Front Genet 2021; 12:581694. [PMID: 33643376 PMCID: PMC7907650 DOI: 10.3389/fgene.2021.581694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/18/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND This study aimed to explore the regulatory mechanism of hsa-miR-143-3p and lncRNA RP11-363N22.3-functioning upstream of KRAS-in exosomes derived from human mesenchymal stem cells (hMSCs) in pancreatic cancer. METHODS Western blotting and quantitative PCR were used to determine gene expression. In vitro, cell proliferation, apoptosis, and cell cycle and invasion were evaluated using CCK-8 assay, flow cytometry, and transwell assays, respectively. In vivo, the effect of hsa-miR143-3p was investigated using a tumorigenesis test in nude mice. The association between hsa-miR-143-3p and lncRNA RP11-363N22.3 was investigated using the dual-luciferase assay. RESULTS hsa-miR-143-3p expression significantly increased in hMSC exosomes than in those in human pancreatic cancer cell line (CFPAC-1) exosomes. In vitro, compared to the MOCK (CFPAC-1 only) group, cell proliferation and invasion were inhibited and apoptosis was induced in the inhibitor NC (CFPAC-1 + MSC-hsa-miR-3p inhibitor NC) group, while these changes were reversed in the inhibitor (CFPAC-1 + MSC-hsa-miR-3p inhibitor) group. The expression of lncRNA RP11-363N22.3 and genes related to miR-143 significantly decreased in the inhibitor NC group compared to the MOCK group, and increased in the inhibitor group compared to inhibitor NC group. A targeted combinatorial effect was observed between lncRNA RP11-363N22.3 and hsa-miR-143-3p. In vivo, the tumor volume of the mimics (CFPAC-1 + MSC-hsa-miR-143-3p mimics) group was smaller than that of the mimics NC (CFPAC-1 + MSC-hsa-miR-143-3p mimics NC) and MOCK groups. H&E staining showed that there were no obvious pathological changes in MOCK and mimic NC groups, while cell necrosis was seen in some regions in mimic groups. CONCLUSION hsa-miR-143-3p may promote apoptosis and suppress cell growth and invasion in pancreatic cancer.
Collapse
Affiliation(s)
- Bingyi Wang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xu
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuhua Wei
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lixin Lv
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nanbin Liu
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Lin
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiuyan Wang
- Department of Ultrasonography, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baomin Shi
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Abstract
The genetic alterations in cancer cells are tightly linked to signaling pathway dysregulation. Ras is a key molecule that controls several tumorigenesis-related processes, and mutations in RAS genes often lead to unbiased intensification of signaling networks that fuel cancer progression. In this article, we review recent studies that describe mutant Ras-regulated signaling routes and their cross-talk. In addition to the two main Ras-driven signaling pathways, i.e., the RAF/MEK/ERK and PI3K/AKT/mTOR pathways, we have also collected emerging data showing the importance of Ras in other signaling pathways, including the RAC/PAK, RalGDS/Ral, and PKC/PLC signaling pathways. Moreover, microRNA-regulated Ras-associated signaling pathways are also discussed to highlight the importance of Ras regulation in cancer. Finally, emerging data show that the signal alterations in specific cell types, such as cancer stem cells, could promote cancer development. Therefore, we also cover the up-to-date findings related to Ras-regulated signal transduction in cancer stem cells.
Collapse
Affiliation(s)
- Tamás Takács
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gyöngyi Kudlik
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Anita Kurilla
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Medical Chemistry, Semmelweis University Medical School, Budapest, Hungary
| | - Virag Vas
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
19
|
Sugito N, Heishima K, Ito Y, Akao Y. Synthetic MIR143-3p Suppresses Cell Growth in Rhabdomyosarcoma Cells by Interrupting RAS Pathways Including PAX3-FOXO1. Cancers (Basel) 2020; 12:cancers12113312. [PMID: 33182548 PMCID: PMC7696565 DOI: 10.3390/cancers12113312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Rhabdomyosarcoma (RMS) is a soft tissue sarcoma with embryonal (ERMS) and alveoral (ARMS) features, most frequently found in children. ARMS has the worse prognosis due to the formation of the chimeric PAX3–FOXO1 gene. New therapies are needed for the treatment of ARMS. The aim of this study is to evaluate the anticancer effect of chemically-modified MIR143-3p#12 (CM-MIR143#12) on RMS. The ectopic expression of CM-MIR143#12 induced a cell growth suppression by silencing not only KRAS, AKT, and ERK but also the PAX3–FOXO1 chimeric gene, and KRAS networks could control the expression of chimeric PAX3–FOXO1 in ARMS cells. Moreover, CM-MIR143#12 also silenced NRAS mutant in ERMS RD cells. CM-MIR143#12 can be a new nucleic acid medicine for the treatment of RMS by impairing the RAS networks including PAX3–FOXO1. Abstract Rhabdomyosarcoma (RMS) is a soft tissue sarcoma most frequently found in children. In RMS, there are two major subtypes, embryonal RMS (ERMS) and alveolar RMS (ARMS). ARMS has the worse prognosis of the two owing to the formation of the chimeric PAX3–FOXO1 gene. A novel therapeutic method is required for treating ARMS. In our previous study, we found that the ectopic expression of chemically modified MIR143-3p#12 (CM-MIR143#12), which is RNase-resistant and shows the highest anti-proliferation activity among the synthesized MIR143 derivatives that were tested, induces significant cell growth suppression by targeting KRAS, AKT, and ERK in colorectal cancer cells. The expression of MIR143-3p in RMS was dramatically downregulated compared with that of normal tissue. Ectopic expression of CM-MIR143#12 in RMS cells resulted in a significant growth inhibitory effect through the induction of apoptosis and autophagy. Interestingly, we found that CM-MIR143#12 also silenced the expression of chimeric PAX3–FOXO1 directly and, using siR-KRAS or siR-AKT, that KRAS networks regulated the expression of PAX3–FOXO1 in ARMS cells. In ERMS harboring NRAS mutation, CM-MIR143#12 silenced mutated NRAS. These findings indicate that CM-MIR143#12 efficiently perturbed the RAS signaling pathway, including the ARMS-specific KRAS/PAX3–FOXO1 networks.
Collapse
Affiliation(s)
- Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.S.); (K.H.)
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.S.); (K.H.)
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan;
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.S.); (K.H.)
- Correspondence:
| |
Collapse
|
20
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
21
|
Ibrahim H, Lim YC. KRAS-associated microRNAs in colorectal cancer. Oncol Rev 2020; 14:454. [PMID: 32685110 PMCID: PMC7365993 DOI: 10.4081/oncol.2020.454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancerrelated death worldwide. Despite progress in treatment of cancers, CRC with KRAS mutations are resistant towards anti-EGFR treatment. MicroRNAs have been discovered in an exponential manner within the last few years and have been known to exert either an onco-miRNA or tumor suppressive effect. Here, the various roles of microRNAs involved in the initiation and progression of KRAS-regulated CRC are summarized. A thorough understanding of the roles and functions of the plethora of microRNAs associated with KRAS in CRC will grant insights into the provision of other potential therapeutic targets as well as treatment. MicroRNAs may also serve as potential molecular classifier or early detection biomarkers for future treatment and diagnosis of CRC.
Collapse
Affiliation(s)
| | - Ya Chee Lim
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam
| |
Collapse
|
22
|
Tokumaru Y, Asaoka M, Oshi M, Katsuta E, Yan L, Narayanan S, Sugito N, Matsuhashi N, Futamura M, Akao Y, Yoshida K, Takabe K. High Expression of microRNA-143 is Associated with Favorable Tumor Immune Microenvironment and Better Survival in Estrogen Receptor Positive Breast Cancer. Int J Mol Sci 2020; 21:ijms21093213. [PMID: 32370060 PMCID: PMC7246786 DOI: 10.3390/ijms21093213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
microRNA-143 (miR-143) is a well-known tumor suppressive microRNA that exhibits anti-tumoral function by targeting KRAS signaling pathways in various malignancies. We hypothesized that miR-143 suppresses breast cancer progression by targeting KRAS and its effector molecules. We further hypothesized that high expression of miR-143 is associated with a favorable tumor immune microenvironment of estrogen receptor (ER)-positive breast cancer patients which result in improved survival. Two major publicly available breast cancer cohorts; The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were used. The miR-143 high expression group was associated with increased infiltration of anti-cancer immune cells and decreased pro-cancer immune cells, as well as enrichment of the genes relating to T helper (Th1) cells resulting in improved overall survival (OS) in ER-positive breast cancer patients. To the best of our knowledge, this is the first study to demonstrate that high expression of miR-143 in cancer cells associates with a favorable tumor immune microenvironment, upregulation of anti-cancer immune cells, and suppression of the pro-cancer immune cells, associating with better survival of the breast cancer patients.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.A.); (M.O.); (E.K.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Mariko Asaoka
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.A.); (M.O.); (E.K.)
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.A.); (M.O.); (E.K.)
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Japan
| | - Eriko Katsuta
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.A.); (M.O.); (E.K.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA;
| | - Sumana Narayanan
- Department of Surgical Oncology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
| | - Nobuhiko Sugito
- United Graduate School of Drug and Medical Information Sciences, Gifu University, Gifu 501-1194, Japan; (N.S.); (Y.A.)
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Yukihiro Akao
- United Graduate School of Drug and Medical Information Sciences, Gifu University, Gifu 501-1194, Japan; (N.S.); (Y.A.)
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.A.); (M.O.); (E.K.)
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14203, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Correspondence:
| |
Collapse
|
23
|
Tokumaru Y, Takabe K, Yoshida K, Akao Y. Effects of MIR143 on rat sarcoma signaling networks in solid tumors: A brief overview. Cancer Sci 2020; 111:1076-1083. [PMID: 32077199 PMCID: PMC7156858 DOI: 10.1111/cas.14357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Rat sarcoma (RAS) is a well-known oncogene that plays important roles in cancer proliferation, cell survival and cell invasion. RAS exists as three major isoforms, Kirsten rat sarcoma (KRAS), Harvey rat sarcoma (HRAS) and neuroblastoma rat sarcoma (NRAS). Mutations of these genes account for approximately 30% of all cancers. Among them, KRAS mutations are the most common, responsible for 85%, followed by NRAS (12%) and HRAS (3%). Although the development of RAS inhibitors has been explored for over the past decade, so far, no effective inhibitor has been found. MicroRNA (miRNA) are a class of small non-coding RNA that control the gene expression of pleural target genes at the post-transcriptional level. MiRNA play critical roles in the physiological and pathological processes at work in cancers, such as cell proliferation, cell death, cell invasion and metastasis. MicroRNA-143 (MIR143) is known to function as a tumor suppressor in a variety of cancers. One of its known mechanisms is suppression of RAS expression and its effector signaling pathways, such as PI3K/AKT and MAPK/ERK. Within the last five years, we developed a potent chemically modified MIR143-3p that enabled us to elucidate the details of the KRAS signaling networks at play in colon and other cancer cells. In this review, we will discuss the role of MIR143-3p in those RAS signaling networks that are related to various biological processes of cancer cells. In addition, we will discuss the possibility of the use of MIR143 as a therapeutic drug for targeting RAS signaling networks.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast SurgeryDepartment of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew York
- Department of Surgical OncologyGraduate School of MedicineGifu UniversityGifuJapan
| | - Kazuaki Takabe
- Breast SurgeryDepartment of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew York
- Department of SurgeryUniversity at Buffalo Jacobs School of Medicine and Biomedical SciencesThe State University of New YorkBuffaloNew York
| | - Kazuhiro Yoshida
- Department of Surgical OncologyGraduate School of MedicineGifu UniversityGifuJapan
| | - Yukihiro Akao
- United Graduate School of Drug and Medical Information SciencesGifu UniversityGifuJapan
| |
Collapse
|
24
|
Oncofetal Chondroitin Sulfate: A Putative Therapeutic Target in Adult and Pediatric Solid Tumors. Cells 2020; 9:cells9040818. [PMID: 32231047 PMCID: PMC7226838 DOI: 10.3390/cells9040818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Solid tumors remain a major challenge for targeted therapeutic intervention strategies such as antibody-drug conjugates and immunotherapy. At a minimum, clear and actionable solid tumor targets have to comply with the key biological requirement of being differentially over-expressed in solid tumors and metastasis, in contrast to healthy organs. Oncofetal chondroitin sulfate is a cancer-specific secondary glycosaminoglycan modification to proteoglycans expressed in a variety of solid tumors and metastasis. Normally, this modification is found to be exclusively expressed in the placenta, where it is thought to facilitate normal placental implantation during pregnancy. Informed by this biology, oncofetal chondroitin sulfate is currently under investigation as a broad and specific target in solid tumors. Here, we discuss oncofetal chondroitin sulfate as a potential therapeutic target in childhood solid tumors in the context of current knowhow obtained over the past five years in adult cancers.
Collapse
|
25
|
Tokumaru Y, Oshi M, Katsuta E, Yan L, Satyananda V, Matsuhashi N, Futamura M, Akao Y, Yoshida K, Takabe K. KRAS signaling enriched triple negative breast cancer is associated with favorable tumor immune microenvironment and better survival. Am J Cancer Res 2020; 10:897-907. [PMID: 32266098 PMCID: PMC7136911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 06/11/2023] Open
Abstract
KRAS signaling is associated with cancer progression in several cancers. Upregulation of KRAS signaling is often seen in cancers that harbor high KRAS mutation rate, such as pancreatic cancer and non-small cell lung cancer (NSCLC). Less than 2% of breast cancers have KRAS mutation, however, the alteration of the effector signaling such as PI3K/AKT and MAPK pathways are well known. Mutated KRAS is known to function as immune suppressor in other cancers, but the role of KRAS signaling on tumor immune microenvironment (TIME) in breast cancer is not known. We hypothesize that the enrichment of KRAS signaling is associated with reduced patient survival as well as TIME in triple negative breast cancer (TNBC). Patient cohorts from Molecular Taxonomy of Breast Cancer International Consortium (METABRIC; n = 1903) and The Cancer Genome Atlas (TCGA; n = 982) were used. Higher expression of KRAS in breast cancer cell-lines (MCF7, BT474, and MDA-MB231) compared to MCF10A, which is a model of benign mammary cells was found. Both MEK and PI3K inhibitors suppressed MB231 cell proliferation in dose dependent manner. Gene Set Variant Analysis (GSVA) of the patient cohorts demonstrated two peaks by KRAS_SIGNALING_UP gene sets which were divided into KRAS-high and -low groups using median cutoff. There was no difference in KRAS mutation between KRAS-high and low. Despite its cell proliferation promoting role, KRAS-high patients demonstrated significantly better Disease-Free Survival and Overall Survival in triple negative breast cancer (TNBC). KRAS-high TNBC was associated with favorable tumor immune microenvironment with elevated B cells and CD8 T cells, monocytes, or M1 macrophage. It was associated with decreased CD4 central memory T-cells, but not Regulatory T-cells, or M2 macrophage detected by xCell. To elucidate the mechanism of this association, Gene Set Enrichment Analysis was performed. Inflammatory response, IL6/JAK-STAT3 signaling, and Interferon gamma response gene sets were enriched in KRAS-high TNBC patients in both METABRIC and TCGA cohorts. In agreement, cytolytic activity score, interferon gamma response score, and lymphocyte infiltrating signature score, were all significantly elevated in KRAS-high TNBC. In conclusion, we found that patients with enrichment of KRAS signaling gene sets were associated with inflammation and favorable tumor immune microenvironment as well as improved survival in TNBC.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Eriko Katsuta
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer InstituteBuffalo, NY 14263, USA
| | - Vikas Satyananda
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Yukihiro Akao
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, NY, USA
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, NY, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Surgery, Yokohama City UniversityYokohama, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima, Japan
| |
Collapse
|
26
|
Jung G, Hernández-Illán E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol 2020; 17:111-130. [PMID: 31900466 PMCID: PMC7228650 DOI: 10.1038/s41575-019-0230-y] [Citation(s) in RCA: 506] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC), a leading cause of cancer-related death worldwide, evolves as a result of the stepwise accumulation of a series of genetic and epigenetic alterations in the normal colonic epithelium, leading to the development of colorectal adenomas and invasive adenocarcinomas. Although genetic alterations have a major role in a subset of CRCs, the pathophysiological contribution of epigenetic aberrations in this malignancy has attracted considerable attention. Data from the past couple of decades has unequivocally illustrated that epigenetic marks are important molecular hallmarks of cancer, as they occur very early in disease pathogenesis, involve virtually all key cancer-associated pathways and, most importantly, can be exploited as clinically relevant disease biomarkers for diagnosis, prognostication and prediction of treatment response. In this Review, we summarize the current knowledge on the best-studied epigenetic modifications in CRC, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators. We focus on the emerging potential for the bench-to-bedside translation of some of these epigenetic alterations into clinical practice and discuss the burgeoning evidence supporting the potential of emerging epigenetic therapies in CRC as we usher in the era of precision medicine.
Collapse
Affiliation(s)
- Gerhard Jung
- Gastroenterology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Eva Hernández-Illán
- Gastroenterology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Leticia Moreira
- Gastroenterology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA.
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
27
|
Taniguchi K, Wada SI, Ito Y, Hayashi J, Inomata Y, Lee SW, Tanaka T, Komura K, Akao Y, Urata H, Uchiyama K. α-Aminoisobutyric Acid-Containing Amphipathic Helical Peptide-Cyclic RGD Conjugation as a Potential Drug Delivery System for MicroRNA Replacement Therapy in Vitro. Mol Pharm 2019; 16:4542-4550. [PMID: 31596588 DOI: 10.1021/acs.molpharmaceut.9b00680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Replacement therapy with tumor suppressive microRNA (TS-miRNA) might be the next-generation oligonucleotide therapy; however, a novel drug delivery system (DDS) is required. Recently, we developed the cell-penetrating peptide, model amphipathic peptide with α-aminoisobutyric acid (MAP(Aib)), as a carrier for oligonucleotide delivery to cells. In this study, we examined whether a modified MAP(Aib) analogue, MAP(Aib)-cRGD, could be a DDS for TS-miRNA replacement therapy. MIR145-5p, a representative TS-miRNA especially in colorectal cancer, was selected. The MAP(Aib)-cRGD dose was adjusted for MIR145-5p delivery to cells using peripheral blood mononuclear cells and degradation analysis. AlexaFluor488-labeled MIR145-5p incorporation into cells and negative regulation of MIR145-5p-targeting genes demonstrated MAP(Aib)-cRGD's functionality as a miRNA DDS. Treating MIR145-5p with MAP(Aib)-cRGD also revealed various anticancer effects, such as cell viability, invasion inhibition, and apoptosis induction in WiDr cells. Altogether, these findings suggest that MAP(Aib)-cRGD could be a DDS for TS-miRNA replacement therapy, but in vivo investigations are required.
Collapse
Affiliation(s)
| | - Shun-Ichi Wada
- Department of Bioorganic Chemistry , Osaka University of Pharmaceutical Sciences , 4-20-1 Nasahara , Takatsuki , Osaka 569-1094 , Japan
| | | | - Junsuke Hayashi
- Department of Bioorganic Chemistry , Osaka University of Pharmaceutical Sciences , 4-20-1 Nasahara , Takatsuki , Osaka 569-1094 , Japan
| | | | | | | | | | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , 1-1 Yanagido , Gifu 501-1193 , Japan
| | - Hidehito Urata
- Department of Bioorganic Chemistry , Osaka University of Pharmaceutical Sciences , 4-20-1 Nasahara , Takatsuki , Osaka 569-1094 , Japan
| | | |
Collapse
|
28
|
Miyamoto N, Ohno H, Kitamura Y, Park K, Sawama Y, Sajiki H, Kitade Y. Practical and reliable synthesis of 2',3',5',5″-tetradeuterated uridine derivatives. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:236-244. [PMID: 31645174 DOI: 10.1080/15257770.2019.1669170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Deuterated drugs are valuable in the fields of drug discovery and medicinal chemistry. 2',3',5',5″-tetradeuterated uridine derivatives were synthesised from 2,3,5,5'-selectively tetradeuterated ribose using Sajiki's H-D exchanged Ru/C-H2-D2O-NaOH system and silyl-Hilbert-Johnson methods. The total deuterium content of the tetradeuterated uridines was over 92% using either basic or acidic reaction conditions. These derivatives would be expected as building blocks for the synthesis of deuterium-substituted nucleic acid probes for tracking the pharmacokinetics of nucleic acid drugs.
Collapse
Affiliation(s)
- Noriko Miyamoto
- Department of Applied Chemistry, Aichi Institute of Technology, Toyota, Japan
| | - Hiroki Ohno
- Graduate School of Engineering, Department of Materials Chemistry, Aichi Institute of Technology, Toyota, Japan
| | - Yoshiaki Kitamura
- Faculty of Engineering, Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Kwihwan Park
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshinari Sawama
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Yukio Kitade
- Department of Applied Chemistry, Aichi Institute of Technology, Toyota, Japan.,Graduate School of Engineering, Department of Materials Chemistry, Aichi Institute of Technology, Toyota, Japan.,Faculty of Engineering, Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan.,e-NA Biotec Inc, Gifu, Japan
| |
Collapse
|
29
|
Nakagawa Y, Kuranaga Y, Tahara T, Yamashita H, Shibata T, Nagasaka M, Funasaka K, Ohmiya N, Akao Y. Induced miR-31 by 5-fluorouracil exposure contributes to the resistance in colorectal tumors. Cancer Sci 2019; 110:2540-2548. [PMID: 31162779 PMCID: PMC6676105 DOI: 10.1111/cas.14090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/30/2019] [Accepted: 05/25/2019] [Indexed: 12/20/2022] Open
Abstract
Drug resistance makes treatment difficult in cancers. The present study identifies and analyzes drug resistance‐related miRNA in colorectal cancer. We established 4 types of 5‐fluorouracil (5‐FU)‐resistant colon cancer cell lines in vitro and in vivo. We then analyzed the miRNA expression profile by miRNA array in these 4 cell lines, and identified the drug resistance‐related miRNAs. We examined the expression levels of the identified miRNA in 112 colorectal tumor samples from the patients. We identified 12 possible miRNAs involved in 5‐FU resistance by miRNA arrays. We then examined the relationship between miR‐31, which was the most promising among them, and drug resistance. The ectopic expression of mimic miR‐31 showed significant 5‐FU resistance in the parental DLD‐1 cells, while anti–miR‐31 caused significant growth inhibition in DLD/F cells; that is, 5‐FU‐resistant colon cancer cell line DLD‐1 under exposure to 5‐FU. When we exposed high doses of 5‐FU to parent or 5‐FU‐resistant cells, the expression levels of miR‐31 were raised higher than those of controls. Notably, the expression levels of miR‐31 were positively correlated with the grade of clinical stages of colorectal tumors. The protein expression levels of factors inhibiting hypoxia‐inducible factor 1 were downregulated by transfection of mimic miR‐31 into DLD‐1 cells. This study provides evidence supporting the association of miR‐31 with 5‐FU drug resistance and clinical stages of colorectal tumors.
Collapse
Affiliation(s)
- Yoshihito Nakagawa
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Yuki Kuranaga
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Tomomitsu Tahara
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Hiromi Yamashita
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Kohei Funasaka
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Yukihiro Akao
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
30
|
Tsujino T, Sugito N, Taniguchi K, Honda R, Komura K, Yoshikawa Y, Takai T, Minami K, Kuranaga Y, Shinohara H, Tokumaru Y, Heishima K, Inamoto T, Azuma H, Akao Y. MicroRNA-143/Musashi-2/KRAS cascade contributes positively to carcinogenesis in human bladder cancer. Cancer Sci 2019; 110:2189-2199. [PMID: 31066120 PMCID: PMC6609826 DOI: 10.1111/cas.14035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 12/16/2022] Open
Abstract
It has been well established that microRNA (miR)‐143 is downregulated in human bladder cancer (BC). Recent precision medicine has shown that mutations in BC are frequently observed in FGFR3, RAS and PIK3CA genes, all of which correlate with RAS signaling networks. We have previously shown that miR‐143 suppresses cell growth by inhibiting RAS signaling networks in several cancers including BC. In the present study, we showed that synthetic miR‐143 negatively regulated the RNA‐binding protein Musashi‐2 (MSI2) in BC cell lines. MSI2 is an RNA‐binding protein that regulates the stability of certain mRNAs and their translation by binding to the target sequences of the mRNAs. Of note, the present study clarified that MSI2 positively regulated KRAS expression through directly binding to the target sequence of KRASmRNA and promoting its translation, thus contributing to the maintenance of KRAS expression. Thus, miR‐143 silenced KRAS and MSI2, which further downregulated KRAS expression through perturbation of the MSI2/KRAS cascade.
Collapse
Affiliation(s)
- Takuya Tsujino
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.,Department of Urology, Osaka Medical College, Osaka, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical College, Osaka, Japan
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kazumasa Komura
- Department of Urology, Osaka Medical College, Osaka, Japan.,Translational Research Program, Osaka Medical College, Osaka, Japan
| | - Yuki Yoshikawa
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Tomoaki Takai
- Department of Urology, Osaka Medical College, Osaka, Japan
| | | | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Teruo Inamoto
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
31
|
Tokumaru Y, Tajirika T, Sugito N, Kuranaga Y, Shinohara H, Tsujino T, Matsuhashi N, Futamura M, Akao Y, Yoshida K. Synthetic miR-143 Inhibits Growth of HER2-Positive Gastric Cancer Cells by Suppressing KRAS Networks Including DDX6 RNA Helicase. Int J Mol Sci 2019; 20:ijms20071697. [PMID: 30959742 PMCID: PMC6479539 DOI: 10.3390/ijms20071697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide. In the clinical setting, the identification of HER2 overexpression in GC was a significant finding, as trastuzumab, an anti-HER2 drug, provides a survival advantage to HER2-positive GC patients. In HER2-postive GC, the dysregulation of PI3K/AKT and MAPK/ERK signaling pathways has been reported, and inhibition of these pathways is an important therapeutic strategy. MiR-143 is known to act as a tumor suppressor in several cancers, such as bladder cancer, breast cancer, colorectal cancer, and gastric cancer. In the current study, we developed a novel chemically-modified miR-143 and explored the functions of this synthetic miR-143 (syn-miR-143) in HER2-positive gastric cancer. The expression level of miR-143 was down-regulated in GC cell lines, including HER2-positive GC cell lines, MKN7, and KATO-III. The ectopic expression of miR-143 in those cell lines suppressed cell growth through systemic silencing of KRAS and its effector signaling molecules, AKT and ERK. Furthermore, syn-miR-143 indirectly down-regulated the expression of HER2, an upstream molecule of KRAS, through silencing DEAD/H-box RNA helicase 6 (DDX6), RNA helicase, which enhanced HER2 protein expression at the translational step in HER2-positive GC cells. These findings suggested that syn-miR-143 acted as a tumor suppressor through the impairment of KRAS networks including the DDX6.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Toshihiro Tajirika
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Takuya Tsujino
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
- Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
32
|
Yoshikawa Y, Taniguchi K, Tsujino T, Heishima K, Inamoto T, Takai T, Minami K, Azuma H, Miyata K, Hayashi K, Kataoka K, Akao Y. Anti-cancer Effects of a Chemically Modified miR-143 on Bladder Cancer by Either Systemic or Intravesical Treatment. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:290-302. [PMID: 30911586 PMCID: PMC6416526 DOI: 10.1016/j.omtm.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/13/2019] [Indexed: 12/29/2022]
Abstract
We developed a novel chemically modified miR-143 (miR-143#12), and with it we investigated the contribution of miR-143 to the pathogenesis of bladder cancer (BC), in which miR-143 is extremely downregulated. Since miR-143 silenced K-RAS and RAS effector-signaling molecules Erk and Akt, we performed the ectopic expression of miR-143 in human BC 253J-BV cells, and we examined the growth inhibition and the mechanism of it in vitro and in orthotopic model mice. As a result, miR-143#12 induced a marked growth inhibition with apoptosis through impairing RAS-signaling networks, including SOS1, which exchanges guanosine diphosphate (GDP)/RAS for active guanosine triphosphate (GTP)/RAS. In the in vivo study, miR-143#12 exhibited a marked anti-tumor activity by either systemic or intravesical administration with polyionic copolymer (PIC) as the carrier, compared with the activity obtained by use of lipofection. These findings raised the possibility that the chemically modified miR-143#12 would be a candidate of microRNA (miRNA) medicine for BC delivered by intravesical infusion.
Collapse
Affiliation(s)
- Yuki Yoshikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Takuya Tsujino
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Teruo Inamoto
- Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Tomoaki Takai
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Koichiro Minami
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kotaro Hayashi
- Inovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazunori Kataoka
- Inovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.,Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
33
|
MicroRNA and transcriptome analysis in periocular Sebaceous Gland Carcinoma. Sci Rep 2018; 8:7531. [PMID: 29760516 PMCID: PMC5951834 DOI: 10.1038/s41598-018-25900-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Sebaceous gland carcinoma (SGC) is a rare, but life-threatening condition with a predilection for the periocular region. Eyelid SGC can be broadly categorised into two subtypes, namely either nodular or pagetoid with the latter being more aggressive and requiring radical excision to save life. We have identified key altered microRNAs (miRNA) involved in SGC shared by both subtypes, hsa-miR-34a-5p and hsa-miR-16-5p. However, their gene targets BCL2 and MYC were differentially expressed with both overexpressed in pagetoid but unchanged in nodular suggesting different modes of action of these two miRNAs on BCL/MYC expression. Hsa-miR-150p is nodular-specifically overexpressed, and its target ZEB1 was significantly downregulated in nodular SGC suggesting a tumour suppressor role. Invasive pagetoid subtype demonstrated specific overexpression of hsa-miR-205 and downregulation of hsa-miR-199a. Correspondingly, miRNA gene targets, EZH2 (by hsa-miR-205) and CD44 (by hsa-miR-199a), were both overexpressed in pagetoid SGC. CD44 has been identified as a potential cancer stem cell marker in head and neck squamous cell carcinoma and its overexpression in pagetoid cells represents a novel treatment target. Aberrant miRNAs and their gene targets have been identified in both SGC subtypes, paving the way for better molecular understanding of these tumours and identifying new treatment targets.
Collapse
|
34
|
Akao Y, Kumazaki M, Shinohara H, Sugito N, Kuranaga Y, Tsujino T, Yoshikawa Y, Kitade Y. Impairment of K-Ras signaling networks and increased efficacy of epidermal growth factor receptor inhibitors by a novel synthetic miR-143. Cancer Sci 2018; 109:1455-1467. [PMID: 29498789 PMCID: PMC5980131 DOI: 10.1111/cas.13559] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/17/2018] [Accepted: 02/25/2018] [Indexed: 12/11/2022] Open
Abstract
Despite considerable research on K‐Ras inhibitors, none had been established until now. We synthesized nuclease‐resistant synthetic miR‐143 (miR‐143#12), which strongly silenced K‐Ras, its effector signal molecules AKT and ERK, and the K‐Ras activator Sos1. We examined the anti‐proliferative effect of miR‐143#12 and the mechanism in human colon cancer DLD‐1 cell (G13D) and other cell types harboring K‐Ras mutations. Cell growth was markedly suppressed in a concentration‐dependent manner by miR‐143#12 (IC50: 1.32 nmol L−1) with a decrease in the K‐Ras mRNA level. Interestingly, this mRNA level was also downregulated by either a PI3K/AKT or MEK inhibitor, which indicates a positive circuit of K‐Ras mRNA expression. MiR‐143#12 silenced cytoplasmic K‐Ras mRNA expression and impaired the positive circuit by directly targeting AKT and ERK mRNA. Combination treatment with miR‐143#12 and a low‐dose EGFR inhibitor induced a synergistic inhibition of growth with a marked inactivation of both PI3K/AKT and MAPK/ERK signaling pathways. However, silencing K‐Ras by siR‐KRas instead of miR‐143#12 did not induce this synergism through the combined treatment with the EGFR inhibitor. Thus, miR‐143#12 perturbed the K‐Ras expression system and K‐Ras activation by silencing Sos1 and, resultantly, restored the efficacy of the EGFR inhibitors. The in vivo results also supported those of the in vitro experiments. The extremely potent miR‐143#12 enabled us to understand K‐Ras signaling networks and shut them down by combination treatment with this miRNA and EGFR inhibitor in K‐Ras‐driven colon cancer cell lines.
Collapse
Affiliation(s)
- Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Minami Kumazaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Takuya Tsujino
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yuki Yoshikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yukio Kitade
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.,Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Japan
| |
Collapse
|
35
|
Development and endoscopic appearance of colorectal tumors are characterized by the expression profiles of miRNAs. Med Mol Morphol 2018; 51:82-88. [DOI: 10.1007/s00795-018-0186-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/06/2018] [Indexed: 12/17/2022]
|