1
|
Liu Y, Xiao H, Zeng H, Xiang Y. Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). Int J Oncol 2024; 65:117. [PMID: 39513610 PMCID: PMC11575928 DOI: 10.3892/ijo.2024.5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Ovarian cancer (OC) is the most common and deadly malignant tumor of the female reproductive system. When OC cells detach from the primary tumor and enter the ascitic microenvironment, they are present as individual cells or multicellular spheroids in ascites. These spheroids, composed of cancer and non‑malignant cells, are metastatic units and play a crucial role in the progression of OC. However, little is known about the mechanism of spheroid formation and dissemination. Tumor‑associated macrophages (TAMs) in the center of spheroids are key in spheroid formation and metastasis and provide a potential target for OC therapy. The present review summarizes the key biological features of spheroids, focusing on the role of TAMs in spheroid formation, survival and peritoneal metastasis, and the strategies targeting TAMs to provide new insights in treating OC.
Collapse
Affiliation(s)
- Yuchen Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Haoyue Xiao
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hai Zeng
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
2
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
3
|
Scott AL, Jazwinska DE, Kulawiec DG, Zervantonakis IK. Paracrine Ovarian Cancer Cell-Derived CSF1 Signaling Regulates Macrophage Migration Dynamics in a 3D Microfluidic Model that Recapitulates In Vivo Infiltration Patterns in Patient-Derived Xenografts. Adv Healthc Mater 2024; 13:e2401719. [PMID: 38807270 PMCID: PMC11560735 DOI: 10.1002/adhm.202401719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 05/30/2024]
Abstract
A high density of macrophages in the ovarian cancer microenvironment is associated with disease progression and poor outcomes. Understanding cancer-macrophage interaction mechanisms that establish this pro-tumorigenic microenvironment is critical for developing macrophage-targeted therapies. Here, 3D microfluidic assays and patient-derived xenografts are utilized to define the role of cancer-derived colony stimulating factor 1 (CSF1) on macrophage infiltration dynamics toward ovarian cancer cells. It is demonstrated that multiple ovarian cancer models promote the infiltration of macrophages into a 3D extracellular matrix in vitro in a cell density-dependent manner. Macrophages exhibit directional migration and increased migration speed under both direct interactions with cancer cells embedded within the matrix and paracrine crosstalk with cancer cells seeded in an independent microchannel. It is also found that platinum-based chemotherapy increases macrophage recruitment and the levels of cancer cell-derived CSF1. Targeting CSF1 signaling under baseline or chemotherapy-treatment conditions reduces the number of infiltrated macrophages. It is further shown that results obtained with the 3D microfluidic model reflect the recruitment profiles of macrophages in patient-derived xenografts in vivo. These findings highlight the role of CSF1 signaling in establishing macrophage-rich ovarian cancer microenvironments, as well as the utility of microfluidic models in recapitulating 3D tumor ecosystems and dissecting cancer-macrophage signaling.
Collapse
Affiliation(s)
- Alexis L Scott
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Dorota E Jazwinska
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Diana G Kulawiec
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Ioannis K Zervantonakis
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
4
|
Vasilevska J, Cheng PF, Lehmann J, Ramelyte E, Gómez JM, Dimitriou F, Sella F, Ferretti D, Salas-Bastos A, Jordaan WS, Levesque MP, Dummer R, Sommer L. Monitoring melanoma patients on treatment reveals a distinct macrophage population driving targeted therapy resistance. Cell Rep Med 2024; 5:101611. [PMID: 38942020 PMCID: PMC11293307 DOI: 10.1016/j.xcrm.2024.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024]
Abstract
Resistance to targeted therapy remains a major clinical challenge in melanoma. To uncover resistance mechanisms, we perform single-cell RNA sequencing on fine-needle aspirates from resistant and responding tumors of patients undergoing BRAFi/MEKi treatment. Among the genes most prominently expressed in resistant tumors is POSTN, predicted to signal to a macrophage population associated with targeted therapy resistance (TTR). Accordingly, tumors from patients with fast disease progression after therapy exhibit high POSTN expression levels and high numbers of TTR macrophages. POSTN polarizes human macrophages toward a TTR phenotype and promotes resistance to targeted therapy in a melanoma mouse model, which is associated with a phenotype change in intratumoral macrophages. Finally, polarized TTR macrophages directly protect human melanoma cells from MEKi-induced killing via CD44 receptor expression on melanoma cells. Thus, interfering with the protective activity of TTR macrophages may offer a strategy to overcome resistance to targeted therapy in melanoma.
Collapse
Affiliation(s)
- Jelena Vasilevska
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Phil Fang Cheng
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Julia Lehmann
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Egle Ramelyte
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Julia Martínez Gómez
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Florentia Dimitriou
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Daria Ferretti
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | | | | | - Mitchell Paul Levesque
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Lukas Sommer
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
5
|
You T, Tang H, Wu W, Gao J, Li X, Li N, Xu X, Xing J, Ge H, Xiao Y, Guo J, Wu B, Li X, Zhou L, Zhao L, Bai C, Han Q, Sun Z, Zhao RC. POSTN Secretion by Extracellular Matrix Cancer-Associated Fibroblasts (eCAFs) Correlates with Poor ICB Response via Macrophage Chemotaxis Activation of Akt Signaling Pathway in Gastric Cancer. Aging Dis 2023; 14:2177-2192. [PMID: 37199594 PMCID: PMC10676785 DOI: 10.14336/ad.2023.0503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment, but its clinical benefit is limited in advanced gastric cancer (GC). Cancer-associated fibroblasts (CAFs) have been reported to be associated with ICB resistance, but the underlying mechanism has not been fully elucidated. Our previous single-cell RNA-seq analysis of GC revealed that POSTN+FAP+ extracellular matrix CAFs (eCAFs) communicate with macrophages. Here, we evaluated the correlation between eCAFs and ICB response in TCGA-STAD and real-world cohorts. Immune infiltration analysis and correlation analysis were performed to assess the relationship between eCAFs and macrophages. We first confirmed a negative correlation between the abundance of eCAFs and the overall response rate (ORR) to anti-PD-1 treatment in TCGA-STAD and real-world GC cohorts. Overexpression of POSTN in CAFs enhanced macrophage chemotaxis, while POSTN interference showed the opposite effect in vitro and in vivo. Furthermore, the cell density of POSTN+ CAFs was positively correlated with the infiltration level of CD163+ macrophages in GC patient tissues. The results demonstrated that POSTN secreted by CAFs enhances macrophage chemotaxis by activating the Akt signaling pathway in macrophages. Additionally, we found that POSTN+FAP+ eCAFs may exist in multiple solid tumors and are associated with ICB resistance. eCAFs promote macrophage chemotaxis through the secretion of POSTN, thereby leading to ICB resistance. High expression of POSTN is likely to predict a poor response to ICB. POSTN downregulation may be considered as a candidate therapeutic strategy to improve ICB efficacy.
Collapse
Affiliation(s)
- Tingting You
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hui Tang
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenjing Wu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Jingxi Gao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Xuechun Li
- Department of Stomatology Center, Xiangya Hospital, Central South University, Changsha, China.
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China.
| | - Ningning Li
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuxiu Xu
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiazhang Xing
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hui Ge
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiaoyi Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Lin Zhao
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Zhao Sun
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
6
|
Geng Z, Pan X, Xu J, Jia X. Friend and foe: the regulation network of ascites components in ovarian cancer progression. J Cell Commun Signal 2023; 17:391-407. [PMID: 36227507 PMCID: PMC10409702 DOI: 10.1007/s12079-022-00698-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/11/2022] [Indexed: 10/17/2022] Open
Abstract
The tumor microenvironment (TME) and its complex role in cancer progression have been hotspots of cancer research in recent years. Ascites, which occurs frequently in patients with ovarian cancer especially in advanced stages, represents a unique TME. Malignant ascites contains abundant cellular and acellular components that play important roles in tumorigenesis, growth, metastasis, and chemoresistance of ovarian cancer through complex molecular mechanisms and signaling pathways. As a valuable liquid biopsy sample, ascites fluid is also of great significance for the prognostic analysis of ovarian cancer. The components of ovarian cancer ascites are generally considered to comprise tumor-promoting factors; however, in recent years studies have found that ascites also contains tumor-suppressing factors, raising new perspectives on interactions between ascites and tumors. Malignant ascites directly constitutes the ovarian cancer microenvironment, therefore, the study of its components will aid in the development of new therapeutic strategies. This article reviews the current research on tumor-promoting and tumor-suppressing factors and molecular mechanisms of their actions in ovarian cancer-derived ascites and therapeutic strategies targeting ascites, which may provide references for the development of novel therapeutic targets for ovarian cancer in the future.
Collapse
Affiliation(s)
- Zhe Geng
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China
| | - Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China.
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China.
| |
Collapse
|
7
|
Suzuki M, Ototake Y, Akita A, Asami M, Ikeda N, Watanabe T, Kanaoka M, Yamaguchi Y. Periostin-An inducer of pro-fibrotic phenotype in monocytes and monocyte-derived macrophages in systemic sclerosis. PLoS One 2023; 18:e0281881. [PMID: 37531393 PMCID: PMC10395906 DOI: 10.1371/journal.pone.0281881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/02/2023] [Indexed: 08/04/2023] Open
Abstract
Enhanced circulating blood periostin levels positively correlate with disease severity in patients with systemic sclerosis (SSc). Monocytes/macrophages are predominantly associated with the pathogenesis of SSc, but the effect of periostin on immune cells, particularly monocytes and macrophages, still remains to be elucidated. We examined the effect of periostin on monocytes and monocyte-derived macrophages (MDM) in the pathogenesis of SSc. The modified Rodnan total skin thickness score in patients with dcSSc was positively correlated with the proportion of CD80-CD206+ M2 cells. The proportion of M2 macrophages was significantly reduced in rPn-stimulated MDMs of HCs compared to that of SSc patients. The mRNA expression of pro-fibrotic cytokines, chemokines, and ECM proteins was significantly upregulated in rPn-stimulated monocytes and MDMs as compared to that of control monocytes and MDMs. A similar trend was observed for protein expression in the respective MDMs. In addition, the ratio of migrated cells was significantly higher in rPn-stimulated as compared to control monocytes. These results suggest that periostin promotes inflammation and fibrosis in the pathogenesis of SSc by possible modulation of monocytes/macrophages.
Collapse
Affiliation(s)
- Mao Suzuki
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Ototake
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asami Akita
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miho Asami
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Ikeda
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoya Watanabe
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miwa Kanaoka
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
8
|
Wei X, Guo S, Liu Q, Liu L, Huo F, Wu Y, Tian W. Dental Follicle Stem Cells Promote Periodontal Regeneration through Periostin-Mediated Macrophage Infiltration and Reprogramming in an Inflammatory Microenvironment. Int J Mol Sci 2023; 24:ijms24076353. [PMID: 37047322 PMCID: PMC10094259 DOI: 10.3390/ijms24076353] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Dental follicle stem cells (DFSCs) have been verified to promote periodontal regeneration in an inflammatory microenvironment. When coping with inflammatory stimulation, DFSCs highly express periostin, a bioactive molecule closely related to periodontal homeostasis. It is worth exploring whether and how periostin plays a role in the promotion of periodontal regeneration by DFSCs. By tracking the fate of DFSCs, it was found that DFSCs significantly contributed to periodontal regeneration in rat periodontal defects while they had a low survival rate. They highly expressed periostin and improved the immune microenvironment in the defect area, especially via the recruitment and reprogramming of macrophages. Silencing periostin attenuated the effects of DFSCs in promoting periodontal regeneration and regulating macrophages. Recombinant human periostin (rhPeriostin) could not only directly promote macrophage reprogramming through the integrin αM/phosphorylated extracellular signal-regulated kinase (p-Erk)/Erk signaling pathway, but it also exhibited the potential to promote periodontal regeneration in rats when loaded in a collagen matrix. These results indicated that periostin is actively involved in the process by which DFSCs promote periodontal regeneration through the regulation of macrophages and is a promising molecular agent to promote periodontal regeneration. This study provides new insight into the mechanism by which DFSCs promote periodontal regeneration and suggests a new approach for periodontal regeneration therapy.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Liu
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.W.); (W.T.)
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.W.); (W.T.)
| |
Collapse
|
9
|
Truxova I, Cibula D, Spisek R, Fucikova J. Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma. J Immunother Cancer 2023; 11:jitc-2022-005968. [PMID: 36822672 PMCID: PMC9950980 DOI: 10.1136/jitc-2022-005968] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is among the top five causes of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant cells to the peritoneum. Despite improvements in medical therapies, particularly with the implementation of novel drugs targeting homologous recombination deficiency, the survival rates of patients with EOC remain low. Unlike other neoplasms, EOC remains relatively insensitive to immune checkpoint inhibitors, which is correlated with a tumor microenvironment (TME) characterized by poor infiltration by immune cells and active immunosuppression dominated by immune components with tumor-promoting properties, especially tumor-associated macrophages (TAMs). In recent years, TAMs have attracted interest as potential therapeutic targets by seeking to reverse the immunosuppression in the TME and enhance the clinical efficacy of immunotherapy. Here, we review the key biological features of TAMs that affect tumor progression and their relevance as potential targets for treating EOC. We especially focus on the therapies that might modulate the recruitment, polarization, survival, and functional properties of TAMs in the TME of EOC that can be harnessed to develop superior combinatorial regimens with immunotherapy for the clinical care of patients with EOC.
Collapse
Affiliation(s)
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic .,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
10
|
Lin SC, Liao YC, Chen PM, Yang YY, Wang YH, Tung SL, Chuang CM, Sung YW, Jang TH, Chuang SE, Wang LH. Periostin promotes ovarian cancer metastasis by enhancing M2 macrophages and cancer-associated fibroblasts via integrin-mediated NF-κB and TGF-β2 signaling. J Biomed Sci 2022; 29:109. [PMID: 36550569 PMCID: PMC9784270 DOI: 10.1186/s12929-022-00888-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ovarian cancer has the highest mortality among gynecological cancers due to late diagnosis and lack of effective targeted therapy. Although the study of interplay between cancer cells with their microenvironment is emerging, how ovarian cancer triggers signaling that coordinates with immune cells to promote metastasis is still elusive. METHODS Microarray and bioinformatics analysis of low and highly invasive ovarian cancer cell lines were used to reveal periostin (POSTN), a matrix protein with multifunctions in cancer, with elevated expression in the highly invasive cells. Anchorage independent assay, Western blot, RNA interference, confocal analysis and neutralizing antibody treatment were performed to analyze the effects of POSTN on tumor promotion and to explore the underlying mechanism. Chemotaxis, flow cytometry and cytokine array analyses were undertaken to analyze the involvement of POSTN in cancer-associated fibroblast (CAF) and macrophage modulation. Correlations between POSTN expression levels and clinical characteristics were analyzed using the Oncomine, commercial ovarian cancer cDNA and China Medical University Hospital patient cohort. In vivo effect of POSTN on metastasis was studied using a mouse xenograft model. RESULTS Expression of POSTN was found to be elevated in highly invasive ovarian cancer cells. We observed that POSTN was co-localized with integrin β3 and integrin β5, which was important for POSTN-mediated activation of ERK and NF-κB. Ectopic expression of POSTN enhanced whereas knockdown of POSTN decreased cancer cell migration and invasion in vitro, as well as tumor growth and metastasis in vivo. POSTN enhanced integrin/ERK/NF-κB signaling through an autocrine effect on cancer cells to produce macrophage attracting and mobilizing cytokines including MIP-1β, MCP-1, TNFα and RANTES resulting in increased chemotaxis of THP-1 monocytes and their polarization to M2 macrophages in vitro. In agreement, tumors derived from POSTN-overexpressing SKOV3 harbored more tumor-associated macrophages than the control tumors. POSTN induced TGF-β2 expression from ovarian cancer cells to promote activation of adipose-derived stromal cells to become CAF-like cells expressing alpha smooth muscle actin and fibroblast activation protein alpha. Consistently, increased CAFs were observed in POSTN overexpressing SKOV3 cells-derived metastatic tumors. In clinical relevance, we found that expression of POSTN was positively correlated with advanced-stage diseases and poor overall survival of patients. CONCLUSIONS Our study revealed a POSTN-integrin-NF-κB-mediated signaling and its involvement in enhancing M2 macrophages and CAFs, which could potentially participate in promoting tumor growth. Our results suggest that POSTN could be a useful prognosis marker and potential therapeutic target.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine and Chinese Medicine Research Center, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Chu Liao
- grid.59784.370000000406229172Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Ming Chen
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine and Chinese Medicine Research Center, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.452796.b0000 0004 0634 3637Research Assistant Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Ya-Yu Yang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Hsiang Wang
- grid.59784.370000000406229172Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Shiao-Lin Tung
- Department of Hematology and Oncology, Ton-Yen General Hospital, Hsinchu, Taiwan ,Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Chi-Mu Chuang
- grid.278247.c0000 0004 0604 5314Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Wen Sung
- grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,grid.411508.90000 0004 0572 9415Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Te-Hsuan Jang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Shuang-En Chuang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Lu-Hai Wang
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine and Chinese Medicine Research Center, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.59784.370000000406229172Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
11
|
Wang Z, An J, Zhu D, Chen H, Lin A, Kang J, Liu W, Kang X. Periostin: an emerging activator of multiple signaling pathways. J Cell Commun Signal 2022; 16:515-530. [PMID: 35412260 PMCID: PMC9733775 DOI: 10.1007/s12079-022-00674-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Matricellular proteins are responsible for regulating the microenvironment, the behaviors of surrounding cells, and the homeostasis of tissues. Periostin (POSTN), a non-structural matricellular protein, can bind to many extracellular matrix proteins through its different domains. POSTN usually presents at low levels in most adult tissues but is highly expressed in pathological sites such as in tumors and inflamed organs. POSTN can bind to diverse integrins to interact with multiple signaling pathways within cells, which is one of its core biological functions. Increasing evidence shows that POSTN can activate the TGF-β, the PI3K/Akt, the Wnt, the RhoA/ROCK, the NF-κB, the MAPK and the JAK pathways to promote the occurrence and development of many diseases, especially cancer and inflammatory diseases. Furthermore, POSTN can interact with some pathways in an upstream and downstream relationship, forming complicated crosstalk. This article focuses on the interactions between POSTN and different signaling pathways in diverse diseases, attempting to explain the mechanisms of interaction and provide novel guidelines for the development of targeted therapies.
Collapse
Affiliation(s)
- Zhaoheng Wang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jiangdong An
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China
| | - Daxue Zhu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Haiwei Chen
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Aixin Lin
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jihe Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Wenzhao Liu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Xuewen Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| |
Collapse
|
12
|
Onallah H, Mannully ST, Davidson B, Reich R. Exosome Secretion and Epithelial-Mesenchymal Transition in Ovarian Cancer Are Regulated by Phospholipase D. Int J Mol Sci 2022; 23:13286. [PMID: 36362078 PMCID: PMC9658871 DOI: 10.3390/ijms232113286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/25/2024] Open
Abstract
Phospholipase D (PLD) isoenzymes participate in a variety of cellular functions that are mostly attributed to phosphatidic acid (PA) synthesis. Dysregulation of PLD regulates tumor progression and metastasis, yet little is known about the underlying mechanism. We previously reported on the expression and clinical role of the PLD isoenzymes PLD1 and PLD2 in tubo-ovarian high-grade serous carcinoma (HGSC). In the present study, we investigated the biological function of PLD1 and PLD2 using the OVCAR-3 and OVCAR-8 HGSC cell lines. KO cell lines for both PLDs were generated using CRISPR/CAS9 technology and assayed for exosome secretion, spheroid formation, migration, invasion and expression of molecules involved in epithelial-mesenchymal transition (EMT) and intracellular signaling. Significant differences between PLD1 and PLD2 KO cells and controls were observed for all the above parameters, supporting an important role for PLD in regulating migration, invasion, metastasis and EMT.
Collapse
Affiliation(s)
- Hadil Onallah
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sheethal Thomas Mannully
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| | - Reuven Reich
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
13
|
Gao F, Liu J, Gan H. The expression of POSTN and immune cell infiltration are prognostic factors of lung adenocarcinoma. Medicine (Baltimore) 2022; 101:e30187. [PMID: 36042584 PMCID: PMC9410651 DOI: 10.1097/md.0000000000030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The objective of this study is to identify useful prognostic factors of lung adenocarcinoma (LUAD) by evaluating the changes of periostin (POSTN) expression activity and immune cell infiltration using public data repositories. The gene and protein expressions of POSTN in LUAD were collected and analyzed from Ualcan and Human Protein Atlas online database. The cell infiltration data of immune cells in LUAD patients were retrieved and processed using the TIMER tool. Cox regression analysis was employed to screen and characterize prognosis factors, Kaplan-Meier Plotter was used to analyze the survival curve of LUAD patients, and receiver operating characteristic curve was used to calculate the relationship between temporal POSTN expressions and the prognosis of LUAD. The expression activity of POSTN in LUAD was higher than that in normal tissues. With the exception of B cell which showed opposite correlationship, the infiltration of most immune cells, namely CD8+ T cells, macrophages, neutrophils, and dendritic cells, was positively correlated with the POSTN expression activity. Together, our investigation suggested that the POSTN expression activity and B-cell infiltration were the prognostic factors of LUAD. In addition, the 1-year negative predictive value of the POSTN expression activity for overall survival, disease-free survival, and progression-free interval was 0.902, 0.926, and 0.838, respectively. Along with decreased B-cell infiltration, the elevated expression of POSTN is an important factor of LUAD prognosis.
Collapse
Affiliation(s)
- Fang Gao
- Department of Orthopedics, Renmin Hospital, XiangZhou District, Xiangyang, People’s Republic of China
| | - Jin Liu
- Department of Obstetrics and Gynecology, XiangZhou District Renmin Hospital, Xiangyang, People’s Republic of China
- *Correspondence: Jin Liu, Department of Obstetrics and Gynecology, XiangZhou District Renmin Hospital, Hangkong 248, Xiangyang, Hubei 442000, People’s Republic of China (e-mail: ); Hua Gan, Department of Orthopedics, XiangZhou District Renmin Hospital, Hangkong 248, Xiangyang, Hubei 442000, People’s Republic of China (e-mail: )
| | - Hua Gan
- Department of Orthopedics, Renmin Hospital, XiangZhou District, Xiangyang, People’s Republic of China
- *Correspondence: Jin Liu, Department of Obstetrics and Gynecology, XiangZhou District Renmin Hospital, Hangkong 248, Xiangyang, Hubei 442000, People’s Republic of China (e-mail: ); Hua Gan, Department of Orthopedics, XiangZhou District Renmin Hospital, Hangkong 248, Xiangyang, Hubei 442000, People’s Republic of China (e-mail: )
| |
Collapse
|
14
|
Akinjiyan FA, Dave RM, Alpert E, Longmore GD, Fuh KC. DDR2 Expression in Cancer-Associated Fibroblasts Promotes Ovarian Cancer Tumor Invasion and Metastasis through Periostin-ITGB1. Cancers (Basel) 2022; 14:3482. [PMID: 35884543 PMCID: PMC9319689 DOI: 10.3390/cancers14143482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Ovarian cancer has the highest mortality of all gynecologic malignancies. As such, there is a need to identify molecular mechanisms that underlie tumor metastasis in ovarian cancer. Increased expression of receptor tyrosine kinase, DDR2, has been associated with worse patient survival. Identifying downstream targets of DDR2 may allow specific modulation of ovarian cancer metastatic pathways. Additionally, stromal cells play a critical role in metastasis. The crosstalk between tumor and stromal cells can lead to tumor progression. We first identified that tumor cells co-cultured with DDR2-expressing fibroblasts had lower periostin expression when compared to tumor cells co-cultured with DDR2-depleted fibroblasts. We confirmed that DDR2 regulates POSTN expression in ovarian cancer-associated fibroblasts (CAFs). We found that mesothelial cell clearance and invasion by tumor cells were enhanced three-fold when DDR2 and POSTN-expressing CAFs were present compared to DDR2 and POSTN-depleted CAFs. Furthermore, DDR2-depleted and POSTN-overexpressing CAFs co-injected with ovarian tumor cells had increased tumor burden compared to mice injected with tumor cells and DDR2 and POSTN-depleted CAFs. Furthermore, we demonstrated that DDR2 regulates periostin expression through integrin B1 (ITGB1). Stromal DDR2 is highly correlated with stromal POSTN expression in ovarian cancer patient tumors. Thus, DDR2 expression in CAFs regulates the steps of ovarian cancer metastasis through periostin.
Collapse
Affiliation(s)
- Favour A. Akinjiyan
- Department of Obstetrics and Gynecology, School of Medicine, Washington University, St. Louis, MO 63110, USA; (F.A.A.); (R.M.D.); (E.A.)
- Center for Reproductive Health Sciences, Washington University, St. Louis, MO 63110, USA
| | - Ritu M. Dave
- Department of Obstetrics and Gynecology, School of Medicine, Washington University, St. Louis, MO 63110, USA; (F.A.A.); (R.M.D.); (E.A.)
- Center for Reproductive Health Sciences, Washington University, St. Louis, MO 63110, USA
| | - Emily Alpert
- Department of Obstetrics and Gynecology, School of Medicine, Washington University, St. Louis, MO 63110, USA; (F.A.A.); (R.M.D.); (E.A.)
- Center for Reproductive Health Sciences, Washington University, St. Louis, MO 63110, USA
| | - Gregory D. Longmore
- ICCE Institute, Washington University, St. Louis, MO 63110, USA;
- Department of Medicine (Oncology), Washington University, St. Louis, MO 63110, USA
| | - Katherine C. Fuh
- Department of Obstetrics and Gynecology, School of Medicine, Washington University, St. Louis, MO 63110, USA; (F.A.A.); (R.M.D.); (E.A.)
- Center for Reproductive Health Sciences, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
He C, Li J, Wu Z, Lu C, Huang Z, Luo N, Fan S, Shen J, Liu X, Zhao H. The semenogelin I-derived peptide SgI-52 in seminal plasma participates in sperm selection and clearance by macrophages. Peptides 2022; 153:170799. [PMID: 35427699 DOI: 10.1016/j.peptides.2022.170799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Macrophages can phagocytose sperm, especially damaged spermatozoa, in the female genital tract. The semenogelin I-derived peptide SgI-52 in seminal plasma exhibits seminal plasma motility inhibitor (SPMI) activity and can inhibit sperm motility. This raises the question of the role played by SPMIs in macrophage-mediated phagocytosis of sperm. We speculated that SgI-52 promotes sperm clearance by macrophages. Therefore, we investigated the phagocytosis of sperm in different states using this peptide. METHODS SgI-52 was fluorescently labeled, and its binding site for sperm was observed. The ability of macrophages to phagocytose sperm was observed using fluorescence confocal microscopy. Spermatozoa from different sources were co-cultured with SgI-52 in BWW medium for 4 and 22 h to compare the differences in their phagocytosis by macrophages. Sperm motility, induced acrosome reaction, mitochondrial membrane potential, and ATP content were examined after incubation with SgI-52. RESULTS SgI-52 could bind to spermatozoa in different states, mainly to the tail, and then spread to the acrosome. This effect was more pronounced in demembranated spermatozoa. SgI-52 promoted phagocytosis of spermatozoa by macrophages, decreased the mitochondrial membrane potential, and increased the average ATP content of spermatozoa (P < 0.05). CONCLUSIONS We found for the first time that SgI-52 can bind to spermatozoa in different states and promote their phagocytosis by macrophages. Therefore, we speculate that SgI-52 is involved in the screening of sperm in the female reproductive tract and has potential value in improving assisted reproductive technology.
Collapse
Affiliation(s)
- Chaoyong He
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jiankai Li
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zhao Wu
- Department of Reproductive Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Chuncheng Lu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zhuo Huang
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ning Luo
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shipeng Fan
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jihong Shen
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xiaodong Liu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Hui Zhao
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
16
|
Asare-Werehene M, Tsuyoshi H, Zhang H, Salehi R, Chang CY, Carmona E, Librach CL, Mes-Masson AM, Chang CC, Burger D, Yoshida Y, Tsang BK. Plasma Gelsolin Confers Chemoresistance in Ovarian Cancer by Resetting the Relative Abundance and Function of Macrophage Subtypes. Cancers (Basel) 2022; 14:cancers14041039. [PMID: 35205790 PMCID: PMC8870487 DOI: 10.3390/cancers14041039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Ovarian cancer is one of the deadliest female cancers with very poor survival, primarily due to late diagnosis, recurrence and chemoresistance. Although the over-expression of plasma gelsolin (pGSN) protects ovarian cancer cells from chemotherapy-induced death, its immunological role in the tumor microenvironment is less explored. Here, we demonstrate that pGSN over-expression downregulates the anti-tumor functions of M1 macrophages, an effect that contributes to chemoresistance and poor patient survival. This study demonstrates the novel inhibitory role of pGSN on tumor-infiltrated M1 macrophages and also offers new insights in maximizing the effectiveness of immunotherapy for ovarian cancer patients. Abstract Ovarian cancer (OVCA) is the most lethal gynaecological cancer with a 5-year survival rate less than 50%. Despite new therapeutic strategies, such as immune checkpoint blockers (ICBs), tumor recurrence and drug resistance remain key obstacles in achieving long-term therapeutic success. Therefore, there is an urgent need to understand the cellular mechanisms of immune dysregulation in chemoresistant OVCA in order to harness the host’s immune system to improve survival. The over-expression of plasma gelsolin (pGSN) mRNA is associated with a poorer prognosis in OVCA patients; however, its immuno-modulatory role has not been elucidated. In this study, for the first time, we report pGSN as an inhibitor of M1 macrophage anti-tumor functions in OVCA chemoresistance. Increased epithelial pGSN expression was associated with the loss of chemoresponsiveness and poor survival. While patients with increased M1 macrophage infiltration exhibited better survival due to nitric-oxide-induced ROS accumulation in OVCA cells, cohorts with poor survival had a higher infiltration of M2 macrophages. Interestingly, increased epithelial pGSN expression was significantly associated with the reduced survival benefits of infiltrated M1 macrophages, through apoptosis via increased caspase-3 activation and reduced production of iNOS and TNFα. Additionally, epithelial pGSN expression was an independent prognostic marker in predicting progression-free survival. These findings support our hypothesis that pGSN is a modulator of inflammation and confers chemoresistance in OVCA, in part by resetting the relative abundance and function of macrophage subtypes in the ovarian tumor microenvironment. Our findings raise the possibility that pGSN may be a potential therapeutic target for immune-mediated chemoresistance in OVCA.
Collapse
Affiliation(s)
- Meshach Asare-Werehene
- Department of Obstetrics & Gynecology, Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (M.A.-W.); (R.S.)
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-8507, Japan;
| | - Huilin Zhang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Reza Salehi
- Department of Obstetrics & Gynecology, Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (M.A.-W.); (R.S.)
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON M5G 1N8, Canada;
| | - Chia-Yu Chang
- Department of Biological Science and Technology, Department of Electrophysics and Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-Y.C.); (C.-C.C.)
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada; (E.C.); (A.-M.M.-M.)
| | - Clifford L. Librach
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON M5G 1N8, Canada;
- Departments of Obstetrics & Gynecology and Physiology, Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada; (E.C.); (A.-M.M.-M.)
| | - Chia-Ching Chang
- Department of Biological Science and Technology, Department of Electrophysics and Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-Y.C.); (C.-C.C.)
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Dylan Burger
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-8507, Japan;
- Correspondence: (Y.Y.); (B.K.T.)
| | - Benjamin K. Tsang
- Department of Obstetrics & Gynecology, Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (M.A.-W.); (R.S.)
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Correspondence: (Y.Y.); (B.K.T.)
| |
Collapse
|
17
|
Kamble PR, Breed AA, Pawar A, Kasle G, Pathak BR. Prognostic utility of the ovarian cancer secretome: a systematic investigation. Arch Gynecol Obstet 2022; 306:639-662. [PMID: 35083554 DOI: 10.1007/s00404-021-06361-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Ovarian cancer is usually detected at an advanced stage with frequent recurrence. The recurrence-free survival and overall survival is influenced by the age at diagnosis, tumor stage and histological subtype. Nonetheless, quantifiable prognostic biomarkers are needed for early identification of the high-risk patients and for personalized medicine. Several studies link tumor-specific dysregulated expression of certain proteins with ovarian cancer prognosis. However, careful investigation of presence of these prognostically relevant proteins in ovarian cancer secretome is lacking. OBJECTIVE To critically analyze the recent published data on prognostically relevant proteins for ovarian cancer and to carefully search how many of them are reported in the published ovarian cancer secretome datasets. DESIGN A search for relevant studies in the past 2 years was conducted in PubMed and a comprehensive list of proteins associated with the ovarian cancer prognosis was prepared. These were cross-referred to the published ovarian cancer secretome profiles. The proteins identified in the secretome were further shortlisted based on a scoring strategy employing stringent criteria. RESULTS A panel of seven promising secretory biomarkers associated with ovarian cancer prognosis is proposed. CONCLUSION Scanning the ovarian cancer secretome datasets provides the opportunity to identify if tumor-specific biomarkers could be tested as secretory biomarkers. Detecting their levels in the body fluid would be more advantageous than evaluating the expression in the tissue, since it could be monitored multiple times over the course of the disease to have a better judgment of the prognosis and response to therapy.
Collapse
Affiliation(s)
- Pradnya R Kamble
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Ananya A Breed
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Apoorva Pawar
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Grishma Kasle
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
- Division of Biological Sciences, IISER, Kolkata, India
| | - Bhakti R Pathak
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
18
|
Ritch SJ, Telleria CM. The Transcoelomic Ecosystem and Epithelial Ovarian Cancer Dissemination. Front Endocrinol (Lausanne) 2022; 13:886533. [PMID: 35574025 PMCID: PMC9096207 DOI: 10.3389/fendo.2022.886533] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is considered the deadliest gynecological disease and is normally diagnosed at late stages, at which point metastasis has already occurred. Throughout disease progression, EOC will encounter various ecosystems and the communication between cancer cells and these microenvironments will promote the survival and dissemination of EOC. The primary tumor is thought to develop within the ovaries or the fallopian tubes, both of which provide a microenvironment with high risk of causing DNA damage and enhanced proliferation. EOC disseminates by direct extension from the primary tumors, as single cells or multicellular aggregates. Under the influence of cellular and non-cellular factors, EOC spheroids use the natural flow of peritoneal fluid to reach distant organs within the peritoneal cavity. These cells can then implant and seed distant organs or tissues, which develop rapidly into secondary tumor nodules. The peritoneal tissue and the omentum are two common sites of EOC metastasis, providing a microenvironment that supports EOC invasion and survival. Current treatment for EOC involves debulking surgery followed by platinum-taxane combination chemotherapy; however, most patients will relapse with a chemoresistant disease with tumors developed within the peritoneum. Therefore, understanding the role of the unique microenvironments that promote EOC transcoelomic dissemination is important in improving patient outcomes from this disease. In this review article, we address the process of ovarian cancer cellular fate at the site of its origin in the secretory cells of the fallopian tube or in the ovarian surface epithelial cells, their detachment process, how the cells survive in the peritoneal fluid avoiding cell death triggers, and how cancer- associated cells help them in the process. Finally, we report the mechanisms used by the ovarian cancer cells to adhere and migrate through the mesothelial monolayer lining the peritoneum. We also discuss the involvement of the transcoelomic ecosystem on the development of chemoresistance of EOC.
Collapse
Affiliation(s)
- Sabrina J. Ritch
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Carlos M. Telleria, ; orcid.org/0000-0003-1070-3538
| |
Collapse
|
19
|
Long L, Hu Y, Long T, Lu X, Tuo Y, Li Y, Wang M, Ke Z. Tumor-associated macrophages induced spheroid formation by CCL18-ZEB1-M-CSF feedback loop to promote transcoelomic metastasis of ovarian cancer. J Immunother Cancer 2021; 9:e003973. [PMID: 34969774 PMCID: PMC8718465 DOI: 10.1136/jitc-2021-003973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OvCa)-tumor-associated macrophages (TAMs) spheroids are abundantly present within ascites of high malignant patients. This study investigated the mutual interaction of OvCa cells and TAMs in the spheroids. METHODS Three-dimensional coculture system and transwell coculture system were created to mimic the OvCa and TAMs in spheroids and in disassociated state. Transwell-migration assay and scratch wound healing assay were used to measure the invasive and migratory capacity. Western blot, quantitative reverse transcription-PCR and immunostaining were used to measure the mesenchymal and epithelial markers. Flow cytometry was used to assess the polarization of TAMs. Also, the differential gene expression profile of OvCa cells and OvCa cells from spheroids were tested by RNA-sequence. Finally, the ovarian mice models were constructed by intraperitoneal injection of ID8 or OvCa-TAMs spheroids. RESULTS Our results indicated that the formation of OvCa-TAMs spheroids was positive related to the malignancy of OvCa cells. M2-TAMs induced the epithelial-mesenchymal transition of OvCa cells by releasing chemokine (C-C motif) ligand 18 (CCL18) in the spheroids. While, CCL18 induced macrophage colony-stimulating factor (M-CSF) transcription in OvCa cells through zinc finger E-box-binding homeobox 1 (ZEB1). This study further indicated that M-CSF secreted by OvCa cells drived the polarization of M2-TAMs. Therefore, a CCL18-ZEB1-M-CSF interacting loop between OvCa cells and TAMs in the spheroids was identified. Moreover, with blocking the expression of ZEB1 in the OvCa cell, the formation of OvCa-TAMs spheroids was impeded. In the ovarian mice models, the formation of OvCa-TAMs spheroids in the ascites was promoted by overexpressing of ZEB1 in OvCa cells, which resulted in faster and earlier transcoelomic metastasis. CONCLUSION These findings suggested that the formation of OvCa-TAMs spheroids resulted in aggressive phenotype of OvCa cells, as a specific feedback loop CCL18-ZEB1-M-CSF in it. Inhibition of ZEB1 reduced OvCa-TAMs spheroids in the ascites, impeding the transcoelomic metastasis and improving the outcome of ovarian patients.
Collapse
Affiliation(s)
- Lingli Long
- Translation Medicine Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Yue Hu
- Translation Medicine Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Tengfei Long
- Department of Gynaecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Xiaofang Lu
- Department of Pathology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, China
| | - Ying Tuo
- Department of Pathology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Yubing Li
- The Reproductive Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Min Wang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zunfu Ke
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
20
|
Stromal Protein-Mediated Immune Regulation in Digestive Cancers. Cancers (Basel) 2021; 13:cancers13010146. [PMID: 33466303 PMCID: PMC7795083 DOI: 10.3390/cancers13010146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Solid cancers are surrounded by a network of non-cancerous cells comprising different cell types, including fibroblasts, and acellular protein structures. This entire network is called the tumor microenvironment (TME) and it provides a physical barrier to the tumor shielding it from infiltrating immune cells, such as lymphocytes, or therapeutic agents. In addition, the TME has been shown to dampen efficient immune responses of infiltrated immune cells, which are key in eliminating cancer cells from the organism. In this review, we will discuss how TME proteins in particular are involved in this dampening effect, known as immunosuppression. We will focus on three different types of digestive cancers: pancreatic cancer, colorectal cancer, and gastric cancer. Moreover, we will discuss current therapeutic approaches using TME proteins as targets to reverse their immunosuppressive effects. Abstract The stromal tumor microenvironment (TME) consists of immune cells, vascular and neural structures, cancer-associated fibroblasts (CAFs), as well as extracellular matrix (ECM), and favors immune escape mechanisms promoting the initiation and progression of digestive cancers. Numerous ECM proteins released by stromal and tumor cells are crucial in providing physical rigidity to the TME, though they are also key regulators of the immune response against cancer cells by interacting directly with immune cells or engaging with immune regulatory molecules. Here, we discuss current knowledge of stromal proteins in digestive cancers including pancreatic cancer, colorectal cancer, and gastric cancer, focusing on their functions in inhibiting tumor immunity and enabling drug resistance. Moreover, we will discuss the implication of stromal proteins as therapeutic targets to unleash efficient immunotherapy-based treatments.
Collapse
|
21
|
Yue H, Li W, Chen R, Wang J, Lu X, Li J. Stromal POSTN induced by TGF-β1 facilitates the migration and invasion of ovarian cancer. Gynecol Oncol 2020; 160:530-538. [PMID: 33317907 DOI: 10.1016/j.ygyno.2020.11.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Periostin (POSTN) overexpression observed in various cancer types is correlated with metastasis and tumor progression. However, its effect on the crosstalk between ovarian cancer cells and cancer-associated fibroblasts (CAFs) remains elusive. This study aims to ascertain the role of CAF-derived POSTN in the ovarian cancer microenvironment. METHODS POSTN expression in high-grade serous ovarian cancer (HGSC) was detected through immunochemistry. Transwell assay was conducted to determine cell migration and invasion. POSTN was knocked down or overexpressed using lentiviral vectors. The potential downstream effects of POSTN were explored and verified by RNA sequencing and western blotting, respectively. In vitro metastatic capability of ovarian cancer cells regulated by POSTN was determined by indirect co-culture. RESULTS POSTN was highly enriched in HGSC stromal components, particularly in fibroblasts, while its overexpression was correlated with reduced overall survival (OS). CAF-derived POSTN functioned as a ligand for integrin αvβ3, fueling the migration and invasion of ovarian cancer cells by activating the PI3K/Akt pathway and inducing the epithelial-mesenchymal transition (EMT). Additionally, the pro-metastatic properties and the activation of fibroblasts induced by TGF-β1 partly relied on POSTN. CONCLUSIONS Stromal-derived POSTN drives the remodeling of the pro-metastatic microenvironment, which might be as a potential therapeutic target in patients with ovarian cancer.
Collapse
Affiliation(s)
- Huiran Yue
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Wenzhi Li
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ruifang Chen
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jieyu Wang
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xin Lu
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China..
| | - Jun Li
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China..
| |
Collapse
|
22
|
An Y, Yang Q. Tumor-associated macrophage-targeted therapeutics in ovarian cancer. Int J Cancer 2020; 149:21-30. [PMID: 33231290 DOI: 10.1002/ijc.33408] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023]
Abstract
Ovarian cancer is one of the most common gynecological malignancies. The tumor microenvironment plays an important role in regulating the progression of ovarian cancer. Macrophages, which are important immune cells in the tumor microenvironment, participate in the regulation of various biological behaviors and influence the prognosis of ovarian cancer. A large number of studies have targeted macrophages for the treatment of ovarian cancer. In addition, macrophages also play a regulatory role by interacting with other immune cells, including T cells and mesothelial cells, in the ovarian cancer microenvironment. In this review, we discuss the progress made in macrophage-targeted therapy for ovarian cancer. Although there are still several challenges in using this treatment, targeted macrophage therapy is still a promising treatment for ovarian cancer.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qing Yang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Zhou K, Cheng T, Zhan J, Peng X, Zhang Y, Wen J, Chen X, Ying M. Targeting tumor-associated macrophages in the tumor microenvironment. Oncol Lett 2020; 20:234. [PMID: 32968456 PMCID: PMC7500051 DOI: 10.3892/ol.2020.12097] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are the most abundant population type of tumor-infiltrating immune cells found in the tumor microenvironment (TME), and are evolutionarily associated with microvessel density in tumor tissues. TAMs can be broadly divided into M1-like and M2-like TAMs, which demonstrate antitumor and pro-tumor activity in the TME, respectively. Studies have indicated that: i) The predominate presence of M2-like TAMs in the TME can result in tumor immunosuppression and chemoresistance; ii) the ratio of M1-like to M2-like TAMs in the TME is positively correlated with better long-term prognosis of patients with cancer; iii) epigenetic silencing, preventing the secretion of M1-like TAM-associated molecules, is an important immune evasion mechanism during tumor progression; and iv) the transformation from M2-like to M1-like TAMs following exposure to specific conditions can result in tumor regression. The present study discusses the molecular events underlying the recruitment of macrophages and their polarization into M1-like or M2-like TAMs, and their differential roles in angiogenesis, angiostasis, invasion, metastasis and immune activity in the TME. This insight may inform the improved design of TAM-targeted cancer immunotherapy. Some of these therapeutic strategies show promising effects; however, challenges remain.
Collapse
Affiliation(s)
- Kaiwen Zhou
- Department of Molecular Biology and Biochemistry, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,The First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tan Cheng
- Queen Mary School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinyue Zhan
- School of Public Health, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuan Peng
- The Fourth Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yue Zhang
- The Fourth Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianpei Wen
- The Fourth Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoman Chen
- Department of Molecular Biology and Biochemistry, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Muying Ying
- Department of Molecular Biology and Biochemistry, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
24
|
Nikoloudaki G, Snider P, Simmons O, Conway SJ, Hamilton DW. Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing. Matrix Biol 2020; 94:31-56. [PMID: 32777343 DOI: 10.1016/j.matbio.2020.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Although the matricellular protein periostin is prominently upregulated in skin and gingival healing, it plays contrasting roles in myofibroblast differentiation and matrix synthesis respectively. Palatal healing is associated with scarring that can alter or restrict maxilla growth, but the expression pattern and contribution of periostin in palatal healing is unknown. Using periostin-knockout (Postn-/-) and wild-type (WT) mice, the contribution of periostin to palatal healing was investigated through 1.5 mm full-thickness excisional wounds in the hard palate. In WT mice, periostin was upregulated 6 days post-wounding, with mRNA levels peaking at day 12. Genetic deletion of periostin significantly reduced wound closure rates compared to WT mice. Absence of periostin reduced mRNA levels of pivotal genes in wound repair, including α-SMA/acta2, fibronectin and βigh3. Recruitment of fibroblasts and inflammatory cells, as visualized by immunofluorescent staining for fibroblast specific factor-1, vimentin, and macrophages markers Arginase-1 and iNOS was also impaired in Postn-/-, but not WT mice. Palatal fibroblasts isolated from the hard palate of mice were cultured on collagen gels and prefabricated silicon substrates with varying stiffness. Postn-/- fibroblasts showed a significantly reduced ability to contract a collagen gel, which was rescued by the exogenous addition of recombinant periostin. As the stiffness increased, Postn-/- fibroblasts increasingly differentiated into myofibroblasts, but not to the same degree as the WT. Pharmacological inhibition of Rac rescued the deficient myofibroblastic phenotype of Postn-/- cells. Low stiffness substrates (0.2 kPa) resulted in upregulation of fibronectin in WT cells, an effect which was significantly reduced in Postn-/- cells. Quantification of immunostaining for vinculin and integrinβ1 adhesions revealed that Periostin is required for the formation of focal and fibrillar adhesions in mPFBs. Our results suggest that periostin modulates myofibroblast differentiation and contraction via integrinβ1/RhoA pathway, and fibronectin synthesis in an ECM stiffness dependent manner in palatal healing.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Paige Snider
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, Indianapolis, IN, United States
| | - Olga Simmons
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, Indianapolis, IN, United States
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, Indianapolis, IN, United States
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Oral Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
25
|
Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163 + Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020; 21:E5497. [PMID: 32752088 PMCID: PMC7432735 DOI: 10.3390/ijms21155497] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
The macrophage is a key cell in the pro- and anti-inflammatory response including that of the inflammatory microenvironment of malignant tumors. Much current drug development in chronic inflammatory diseases and cancer therefore focuses on the macrophage as a target for immunotherapy. However, this strategy is complicated by the pleiotropic phenotype of the macrophage that is highly responsive to its microenvironment. The plasticity leads to numerous types of macrophages with rather different and, to some extent, opposing functionalities, as evident by the existence of macrophages with either stimulating or down-regulating effect on inflammation and tumor growth. The phenotypes are characterized by different surface markers and the present review describes recent progress in drug-targeting of the surface marker CD163 expressed in a subpopulation of macrophages. CD163 is an abundant endocytic receptor for multiple ligands, quantitatively important being the haptoglobin-hemoglobin complex. The microenvironment of inflammation and tumorigenesis is particular rich in CD163+ macrophages. The use of antibodies for directing anti-inflammatory (e.g., glucocorticoids) or tumoricidal (e.g., doxorubicin) drugs to CD163+ macrophages in animal models of inflammation and cancer has demonstrated a high efficacy of the conjugate drugs. This macrophage-targeting approach has a low toxicity profile that may highly improve the therapeutic window of many current drugs and drug candidates.
Collapse
Affiliation(s)
- Maria K. Skytthe
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Jonas Heilskov Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Søren K. Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
26
|
Bai Y, Yin K, Su T, Ji F, Zhang S. CTHRC1 in Ovarian Cancer Promotes M2-Like Polarization of Tumor-Associated Macrophages via Regulation of the STAT6 Signaling Pathway. Onco Targets Ther 2020; 13:5743-5753. [PMID: 32606786 PMCID: PMC7306458 DOI: 10.2147/ott.s250520] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The infiltration of tumor-associated macrophages (TAMs) facilitates the progression of epithelial ovarian cancer (EOC). TAMs are mainly M2-like due to exposure to various factors in the tumor microenvironment. In our previous study, we reported that collagen triple helix repeat containing 1(CTHRC1), a secreted protein, is associated with ovarian cancer progression and metastasis. However, the correlation between CTHRC1 and the immunological microenvironment in EOC remains unknown. Methods The association with the expression of CTHRC1 and CD68+CD163+ TAMs infiltration density and phosphorylation of STAT6 was analyzed in tumor tissues of ovarian cancer patients by immunohistochemistry. Western blot and flow cytometry analysis were used to analyze M2-like macrophage polarization induced by CTHRC1. Cell Counting Kit-8 and adhesion assays were used to detect cell proliferation and adhesion, respectively. Cell migration and invasion were detected using transwell assays. Results In the present study, we observed that the overexpression of CTHRC1 and increased TAMs infiltration density are closely correlated to an advanced stage of EOC. Meanwhile, CTHRC1 expression was positively associated with the infiltration density of M2-like CD68+CD163+TAMs and phosphorylation of STAT6 in EOC. In human PBMC-derived monocytes, recombinant CTHRC1 protein (rCTHRC1) induces an M2-like macrophage phenotype, in a dose-dependent manner, characterized by activating the STAT6 signaling pathway. The conditioned culture medium of Lenti-CTHRC1 EOC cells promoted M2 polarization of macrophages, and by contrast, CTHRC1 knockdown abolished STAT6-mediated M2 polarization of macrophages. Moreover, the culture supernatants of rCTHRC1-treated macrophages efficiently increased the migration and invasion abilities of ovarian cancer cells. Conclusion Our data indicate that CTHRC1 might play an important role in regulating M2 polarization of macrophages in the ovarian tumor microenvironment and suggest that it is a potential therapeutic target for antitumor immunity.
Collapse
Affiliation(s)
- Yihan Bai
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kemin Yin
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tong Su
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fang Ji
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shu Zhang
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Kulus M, Kranc W, Sujka-Kordowska P, Mozdziak P, Jankowski M, Konwerska A, Kulus J, Bukowska D, Skowroński M, Piotrowska-Kempisty H, Nowicki M, Kempisty B, Antosik P. The processes of cellular growth, aging, and programmed cell death are involved in lifespan of ovarian granulosa cells during short-term IVC - Study based on animal model. Theriogenology 2020; 148:76-88. [PMID: 32160576 DOI: 10.1016/j.theriogenology.2020.02.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
The oogenesis and folliculogenesis are closely linked and occur simultaneously in the growing ovarian follicles. Biochemical and morphological changes in oocytes (OC) and surrounding granulosa cells (GCs) are highly complex and depend on many factors, including intercellular communication. GCs are cells with many functions, often crucial for the proper viability of the oocyte and subsequent positive fertilization. The purpose of this study was to analyze gene expression in porcine GCs, to define differentially expressed genes belongs to the "cell growth", "aging", "positive regulation of cell death", "apoptotic process", "regulation of cell death", "cell death" and "negative regulation of cell death" ontology groups during the short - term primary in vitro culture. Microarrays were employed to study the transcriptome contained in the total RNA of the cultured GCs. Ovaries were obtained after slaughter, from 40 gilts of swine aged 170 days. The cells were obtained through puncture of the ovaries, collection of follicular fluid, removal of the cumulus - oocyte complexes and centrifugation. The cells were then cultured in vitro. The RNA material was obtained before the culture was established (0h) and then after 48h, 96h and 144h of its course. From 182 differently expressed genes belonging to the these ontology groups, we have selected POSTN, FN1, FMOD, ITGB3, DCN, SERPINB2, SFRP2, IGFBP5, EMP1, and CCL2 which were upregulated, as well as DAPL1, ESR1, IHH, TGFBR3, PPARD, PDK4, TXNIP, IFIT3, CSRNP3, and TNFSF10 genes whose expression was downregulated during the time of in vitro culture of the GCs. The significance of the differential gene expression is to provide new information on the molecular aspects of in vitro granulosa cell culture.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Mariusz Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | | | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland; Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland; Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland; Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
28
|
Ye Y, Guo J, Xiao P, Ning J, Zhang R, Liu P, Yu W, Xu L, Zhao Y, Yu J. Macrophages-induced long noncoding RNA H19 up-regulation triggers and activates the miR-193b/MAPK1 axis and promotes cell aggressiveness in hepatocellular carcinoma. Cancer Lett 2020; 469:310-322. [PMID: 31705929 DOI: 10.1016/j.canlet.2019.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/13/2019] [Accepted: 11/01/2019] [Indexed: 02/05/2023]
Abstract
Dysregulation of long noncoding RNA (lncRNA) H19 has been implicated in hepatocellular carcinoma (HCC), but the concrete regulatory mechanism is lack of research. We mined gene expression profiles of 457 HCC samples from TCGA and TJMUCH cohorts and further validated in 64 FFPE HCC tissues. LncRNA H19 overexpression in situ was significantly correlated with poor prognosis of HCC patients, which induced EMT, promoted stemness and accelerated invasion of HCC cells in vitro. Co-expression network analysis indicated lncRNA H19 negatively correlated with miR-193b and positively correlated with MAPK1 gene, which implicated that lncRNA H19 served as a sponge molecule to hijack miR-193b and protect MAPK1. Forced overexpression of H19 attenuated miR-193b-mediated inhibition on multiple driver oncogenes (EGFR, KRAS, PTEN and IGF1R) and MAPK1 gene, thus triggered EMT and stem cell transformation in HCC. LncRNA H19 positively correlated with CD68 + TAMs in situ. TAMs-induced lncRNA H19 promotes HCC aggressiveness via triggering and activating the miR-193b/MAPK1 axis, mediates the crosstalk between HCC and immunological microenvironment, and causes poor clinical outcomes. LncRNA H19 is a valuable predictive biomarker and potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Jincheng Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, PR China.
| | - Pei Xiao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Liyan Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, PR China.
| | - Yi Zhao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| |
Collapse
|
29
|
Guan WQ, Li Q, Ouyang QM. Expression and Significance of Periostin in Tissues and Serum in Oral Leukoplakia and Squamous Cell Carcinoma. Cancer Biother Radiopharm 2019; 34:444-450. [PMID: 31170012 DOI: 10.1089/cbr.2018.2764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: This study aims to investigate the expression changes of periostin (PN or OSF-2) in oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC), and analyze its significance in the development of OSCC. Study Design: The expression of periostin was detected from tissue specimens and serum obtained from normal mucosa, OLK and OSCC by immunohistochemistry, enzyme-linked immunosorbent assay, and quantitative polymerase chain reaction. Results: Periostin was significantly overexpressed in OLK and OSCC, when compared with normal controls (p < 0.05). Furthermore, the overexpression of periostin was positively correlated with TNM stage, depth of invasion, and lymph node metastasis (p < 0.05). Conclusion: The overexpression of periostin may be involved in the carcinogenesis process of OLK, which may be used as a marker for detecting OLK. In addition, periostin serum levels can be used as a potential indicator of invasion and a prognosis target for OSCC.
Collapse
Affiliation(s)
- Wei-Qun Guan
- Department of Stomatology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qun Li
- Department of Stomatology, China Resources & WISCO General Hospital, Hubei, China
| | - Qi-Ming Ouyang
- Department of Stomatology, Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
30
|
Cheng H, Wang Z, Fu L, Xu T. Macrophage Polarization in the Development and Progression of Ovarian Cancers: An Overview. Front Oncol 2019; 9:421. [PMID: 31192126 PMCID: PMC6540821 DOI: 10.3389/fonc.2019.00421] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy worldwide. Most patients are diagnosed at late stages because of atypical symptoms and the lack of effective early diagnostic measures. The mechanisms underlying the oncogenesis and development of ovarian cancer are not clear. Macrophages, immune cells derived from the innate immune system, have two states of polarization (M1 and M2) that develop in response to different stimuli. The polarization and differentiation of macrophages into the cancer-inhibiting M1 and cancer-promoting M2 types represent the two states of macrophages in the tumor microenvironment. The interaction of polarized macrophages with cancer cells plays a crucial role in a variety of cancers. However, the effects of macrophage M1/M2 polarization on ovarian cancer have not yet been systematically and fully discussed. In this review, we discuss not only the occurrence, development and influences of macrophage polarization but also the association between macrophage polarization and ovarian cancer. The polarization of macrophages into the M1 and M2 phenotypes plays a pivotal role in ovarian cancer initiation, progression, and metastasis, and provides targets for macrophage-centered treatment in the cancer microenvironment for ovarian cancer therapy. We also addressed the regulation of macrophage polarization in ovarian cancer via noncoding RNAs, exosomes, and epigenetics.
Collapse
Affiliation(s)
- Huiyan Cheng
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China.,Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Zhichao Wang
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Li Fu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Ning Y, Feng W, Cao X, Ren K, Quan M, Chen A, Xu C, Qiu Y, Cao J, Li X, Luo X. Genistein inhibits stemness of SKOV3 cells induced by macrophages co-cultured with ovarian cancer stem-like cells through IL-8/STAT3 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:19. [PMID: 30646963 PMCID: PMC6334437 DOI: 10.1186/s13046-018-1010-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/17/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Recent studies showed that macrophages co-cultured with ovarian cancer stem-like cells (OCSLCs) induced SKOV3 cell stemness via IL-8/STAT3 signaling. Genistein (GEN) demonstrates chemopreventive activity in inflammation-associated cancers. The present study aimed to examine whether and if GEN inhibits the stemness of SKOV3 and OVCA-3R cells induced by co-culture of THP-1 macrophages and SKOV3-derived OCSLCs. METHODS The co-culture was treated with or without different concentrations (10, 20, and 40 μmol/L) of GEN for 24 h. Depletion or addition of IL-8 in Co-CM and knockdown or overexpression of STAT3 in THP-1 macrophages was performed to demonstrate the possible associated mechanisms. The combined effects of GEN and STAT3 knockdown were examined with the nude mouse modle by co-injection of SKOV3-derived OCSLCs with THP-1 macrophages. RESULTS Our results showed that GEN down-regulated CD163 and p-STAT3 expression of THP-1 macrophage, decreased the levels of IL-10, increased the levels of IL-12 and nitric oxide (NO) in the conditioned medium, and reduced the clonogenic and sphere-forming capacities and the expression of CD133 and CD44 in SKOV3 cells induced by co-culture of THP-1 macrophages and OCSLCs in a dose-dependent manner. Moreover, depletion or addition of IL-8 enhanced or attenuated the effect of GEN. Additionally, knockdown or overepression of STAT3 in THP-1 macrophages potentiated or attenuated the inhibitory effects of GEN. Importantly, STAT3 overexpression retrieved the effects of IL-8 combined with GEN depletion on M2 polarization of THP-1 macrophages and stemness of SKOV3 cells induced by co-culture. The combination of GEN and STAT3 knockdown cooperatively inhibited the growth of tumors co-inoculated with OCSLCs/THP-1 macrophages in nude mice in vivo through blocking IL-8/STAT3 signaling. CONCLUSIONS In summary, our findings suggested that GEN can inhibit the increased M2 polarization of macrophages and stemness of ovarian cancer cells by co-culture of macrophages with OCSLCs through disrupting IL-8/STAT3 signaling axis. This assisted GEN to be as a potential chemotherapeutic agent in human ovarian cancer.
Collapse
Affiliation(s)
- Yingxia Ning
- grid.470124.4Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China ,0000 0004 1760 3828grid.412601.0The First Affiliated Hospital of Jinan University, Guangzhou, 510632 China
| | - Weifeng Feng
- 0000 0004 1760 3828grid.412601.0The First Affiliated Hospital of Jinan University, Guangzhou, 510632 China
| | - Xiaocheng Cao
- 0000 0001 0089 3695grid.411427.5Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China ,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Kaiqun Ren
- 0000 0001 0089 3695grid.411427.5Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China ,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Meifang Quan
- 0000 0001 0089 3695grid.411427.5Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China ,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - A. Chen
- 0000 0001 0089 3695grid.411427.5Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China ,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Chang Xu
- 0000 0001 0089 3695grid.411427.5Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China ,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Yebei Qiu
- 0000 0001 0089 3695grid.411427.5Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China ,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Jianguo Cao
- 0000 0001 0089 3695grid.411427.5Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China ,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Xiang Li
- 0000 0001 0089 3695grid.411427.5Department of preclinical medicine, Medical College, Hunan Normal University, Changsha, 410013 China ,0000 0001 0089 3695grid.411427.5Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China ,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Xin Luo
- 0000 0004 1760 3828grid.412601.0The First Affiliated Hospital of Jinan University, Guangzhou, 510632 China
| |
Collapse
|
32
|
Zhang T, Han Z, Chandoo A, Huang X, Sun X, Ye L, Hu C, Xue X, Huang Y, Shen X, Chang W, Lin X. Low periostin expression predicts poor survival in intestinal type gastric cancer patients. Cancer Manag Res 2018; 11:25-36. [PMID: 30588108 PMCID: PMC6302807 DOI: 10.2147/cmar.s175596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIM Periostin is a protein from the Fascilin family. It is commonly present in normal tissues and is responsible for cell adhesion. Evidence has emerged showing that changes in periostin expression play an important role in tumor initiation, development, and progression. This study aims to investigate the effect of periostin in gastric cancer (GC) patients who underwent gastrectomy. Seven hundred and forty-seven GC patients who underwent gastrectomy between December 2006 and July 2011 were included in this study. METHODS Seven hundred and forty-seven cancer tissues and 70 paired adjacent normal tissues were collected. Periostin expression was evaluated by immunohistochemistry. The Gene Expression Omnibus database was used to study the association between the mRNA level and patient's overall survival. The tumor microenvironment was also studied. RESULTS Periostin expression in stroma was downregulated in tumor tissues but it was upregulated in the epithelial cells. After dividing the tissues according to the Lauren Classification, we found that periostin expression in stroma and epithelial cells was higher in intestinal type than in diffuse type (P<0.001 and P=0.010, respectively). Periostin was an independent predictor of lymph node (LN) metastasis in GC patients. The study of CD163(+) tumor-associated macrophages (TAMs) revealed that in diffuse type GC, periostin expression was associated with CD163(+) TAMs. CONCLUSION We found that the periostin expression can predict LN metastasis in patients undergoing curative gastrectomy. Intestinal type GC patients with high periostin level had both a favorable survival and lesser LN metastasis.
Collapse
Affiliation(s)
- Teming Zhang
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Zheng Han
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Arvine Chandoo
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Xincheng Huang
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Xiangwei Sun
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Lele Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Changyuan Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yingpeng Huang
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Xian Shen
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Wenjun Chang
- Department of Environmental Hygiene, Second Military Medical University, Shanghai People's Republic of China
| | - Xiaoming Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, People's Republic of China,
| |
Collapse
|
33
|
Tang M, Liu B, Bu X, Zhao P. Cross-talk between ovarian cancer cells and macrophages through periostin promotes macrophage recruitment. Cancer Sci 2018. [PMID: 29527764 PMCID: PMC5980394 DOI: 10.1111/cas.13567] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tumor‐associated macrophages (TAMs) contribute to tumor progression, but it is not clear how they are recruited to tumor sites. Here we showed that periostin (POSTN) was present at high levels in ovarian cancer ascetic fluids and was correlated with CD163+TAMs. The high POSTN level and macrophage infiltration were inversely associated with relapse‐free survival for ovarian cancer patients. In vitro studies showed that coculture with macrophages significantly increased POSTN production in ovarian cancer cells. Further investigation found that POSTN production in ovarian cancer cells was promoted by transforming growth factor‐β generated by macrophages. Moreover, siRNA of POSTN and POSTN neutralizing antibody treatment showed that ovarian cancer cell‐derived POSTN promoted the recruitment of macrophages and modulated their cytokine secretion profile. Collectively, these data indicated that POSTN was an important factor for macrophage recruitment in the tumor microenvironment and is involved in the interactions between macrophages and ovarian cancer cells.
Collapse
Affiliation(s)
- Meng Tang
- Department of Thoracic Surgery, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| | - Bingji Liu
- Department of Nuclear Medicine, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| | - Xiaocui Bu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Peng Zhao
- Biotherapy Center, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| |
Collapse
|