1
|
Qin H, Wang Q, Xu J, Zeng H, Liu J, Yu F, Yang J. Integrative analysis of anoikis-related genes prognostic signature with immunotherapy and identification of CDKN3 as a key oncogene in lung adenocarcinoma. Int Immunopharmacol 2024; 143:113282. [PMID: 39383787 DOI: 10.1016/j.intimp.2024.113282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Anoikis, a form of programmed cell death induced by loss of cell contact, is closely associated with tumor invasion and metastasis, making it highly significant in lung cancer research. We examined the expression patterns and prognostic relevance of Anoikis-related genes (ARGs) in lung adenocarcinoma (LUAD) using the TCGA-LUAD database. This study identified molecular subtypes associated with Anoikis in LUAD and conducted functional enrichment analyses. We constructed an ARG risk score using univariate least absolute shrinkage and selection operator (LASSO) Cox regression, validated externally with GEO datasets and clinical samples. The clinical applicability of the prognostic model was evaluated using nomograms, calibration curves, decision curve analysis (DCA), and time-dependent AUC assessments. We identified four prognostically significant genes (PLK1, SLC2A1, CDKN3, PHLDA2) and two ARG-related molecular subtypes. ARGs were generally upregulated in LUAD and correlated with multiple pathways including the cell cycle and DNA replication. The prognostic model indicated that the low-risk group had better outcomes and significant correlations with clinicopathological features, tumor microenvironment, immune therapy responses, drug sensitivity, and pan-RNA epigenetic modification-related genes. Patients with low-risk LUAD were potential beneficiaries of immune checkpoint inhibitor (ICI) therapy. Prognostic ARGs' distribution and expression across various immune cell types were further analyzed using single-cell RNA sequencing. The pivotal role of CDKN3 in LUAD was confirmed through qRT-PCR and gene knockout experiments, demonstrating that CDKN3 knockdown inhibits tumor cell proliferation, migration, and invasion. Additionally, we constructed a ceRNA network involving CDKN3/hsa-miR-26a-5p/SNHG6, LINC00665, DUXAP8, and SLC2A1/hsa-miR-218-5p/RNASEH1-AS1, providing new insights for personalized and immune therapy decisions in LUAD patients.
Collapse
Affiliation(s)
- Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Qichang Wang
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Juan Xu
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei 238001, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
2
|
Shen C, Huang P, Xie W, Ni X, Gao J. Sini decoction-polysaccharide compound regulates proliferation, apoptosis, and glycolysis of liver cancer cells through PHLDA2/ANXA2. Transl Cancer Res 2024; 13:5574-5587. [PMID: 39525010 PMCID: PMC11543045 DOI: 10.21037/tcr-24-1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Background Sini decoction (SND), a popular formula from traditional Chinese medicine (TCM), plays a critical role in the treatment of liver disease. Its protective effect for the heart against cardiovascular diseases is well documented. However, its effects and pharmacological mechanisms for the liver remain unclear. This study aimed to clarify the effect and mechanism of the SND-polysaccharide compound (SNDPC) on hepatocellular carcinoma (HCC). Methods Different genes affected by SNDPC in HCC were analyzed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Databases including Multi-Experiment Matrix (MEM), HCCDB, LinkedOmics, and Gene Expression Profiling Interactive Analysis (GEPIA) were used to determine the correlation between PHLDA2 and ANXA2. Cell proliferation and viability were identified using Cell Counting Kit-8 (CCK-8). Cell apoptosis was estimated using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and Western blotting. Glycolysis was determined by measuring glucose uptake, lactate concentration, extracellular acidification rate (ECAR), and the expressions of LHDA, HK2, and PKM2. The binding between PHLDA2 and ANXA2 was identified by coimmunoprecipitation. Results SNDPC significantly weakened cell proliferation, facilitated cell apoptosis, and suppressed glycolysis by reducing glucose uptake, lactate concentration, ECAR, and the expressions of LDHA, HK2, and PKM2 in HCC cells. Furthermore, PHLDA2 was predicted to bind to ANXA2, which was confirmed by coimmunoprecipitation. SNDPC reduced the expressions of PHLDA2 and ANXA2 in HCCLM3 cells, and PHLDA2 silencing decreased the proliferation of cells, promoted cell apoptosis, and inhibited glycolysis of HCCLM3 cells while reversing the overexpression of PHLDA2. Conclusions SNDPC suppressed proliferation and glycolysis while accelerating the apoptosis of HCC cells through PHLDA2/ANXA2.
Collapse
Affiliation(s)
- Churan Shen
- Oncology Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Peipei Huang
- Oncology Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Wuji Xie
- Oncology Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xing Ni
- Oncology Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jingdong Gao
- Oncology Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
3
|
Lin Y, Zhang X, Wang Y, Yao W. LPCAT2-mediated lipid droplet production supports pancreatic cancer chemoresistance and cell motility. Int Immunopharmacol 2024; 139:112681. [PMID: 39068758 DOI: 10.1016/j.intimp.2024.112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Lipid droplet (LD) accumulation is one of the features in various tumors, whereas the significance of LD accumulation in pancreatic cancer progression remains unclear under chemotherapeutic condition. Since chemoresistance towards gemcitabine (GEM) is an obstacle for clinical therapy of pancreatic cancer, we sought to investigate the contribution of LD accumulation to GEM resistance. Herein, triacsin C (an inhibitor of LD production) dampened the proliferation, migration, and invasion of pancreatic cancer cells. The inhibition of LD accumulation induced by triacsin C or silencing of perilipin 2 (a marker of LD) sensitized cells to GEM treatment. Next, 75 paraffin-embedded samples and 5 pairs of frozen samples from pancreatic cancer patients were obtained for the detection of lysophosphatidylcholine acyltransferase 2 (LPCAT2; a LD-located enzyme contributing phosphatidylcholine synthesis) expression. The results revealed that LPCAT2 was upregulated in pancreatic cancer tissues, and its expression was correlated with clinical parameters and the basal LD content of cancer cell lines. Loss of LPCAT2 repressed the LD accumulation, GEM resistance, and cell motility. The enhancement of chemotherapy sensitivity was further confirmed in a xenograft model of mice in vivo. The carcinogenesis role of LPCAT2 was at least partly mediated by the LD accumulation. Then, signal transducer and activator of transcription 5B (STAT5B) activated the transcription of LPCAT2. Both LPCAT2 downregulation and triacsin C reversed the STAT5B-induced potentiation of malignant phenotypes in pancreatic cancer cells. In conclusion, LPCAT2-mediated lipid droplet production supported pancreatic cancer chemoresistance and cell motility, which was triggered by STAT5B.
Collapse
Affiliation(s)
- Yuhe Lin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, PR China.
| | - Xin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, PR China.
| | - Yihui Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, PR China.
| | - Wei Yao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
4
|
Han X, Cheng Y, Jiang Z, Alu A, Ma X. Honokiol Exhibits Anti-Tumor Effects in Breast Cancer by Modulating the miR-148a-5p-CYP1B1 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1843-1861. [PMID: 39347954 DOI: 10.1142/s0192415x24500721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in female patients. There is a significant lack of therapeutic strategies for BC, particularly triple-negative breast cancer (TNBC). Honokiol (HNK), a lignin extracted from the Magnolia genus plant, has demonstrated numerous pharmacological effects. Therefore, this study aims to investigate the antitumor effect of HNK on BC cells and employ high-throughput sequencing to elucidate its potential mechanism. We found that HNK significantly inhibited proliferation and induced apoptosis on BC cell lines in a dose-dependent manner. Moreover, HNK treatment suppressed migration and colony formation and initiated the intrinsic apoptotic pathway specifically in MDA-MB-231 cells. High-throughput sequencing and bioinformatics analysis revealed that miR-148a-5p expression was significantly up-regulated, whereas CYP1B1 expression was down-regulated following HNK treatment. Importantly, survival analysis based on TCGA database showed high miR-148a-5p expression was correlated with a better prognosis for BC patients. Inhibition of miR-148a-5p by inhibitor not only increased cell viability but also attenuated apoptosis induced by HNK. Finally, a strong synergistic effect between HNK and paclitaxel was observed in vitro. In conclusion, our study validated the antitumor efficacy of HNK against human BC cells and elucidated its underlying mechanism through high-throughput sequencing, thereby providing compelling evidence for further exploration of the potential clinical application of HNK towards the treatment of BC.
Collapse
Affiliation(s)
- Xuejiao Han
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yuan Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Aqu Alu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
5
|
Iqbal S, Karim MR, Mohammad S, Mathiyalagan R, Morshed MN, Yang DC, Bae H, Rupa EJ, Yang DU. Multiomics Analysis of the PHLDA Gene Family in Different Cancers and Their Clinical Prognostic Value. Curr Issues Mol Biol 2024; 46:5488-5510. [PMID: 38921000 PMCID: PMC11201736 DOI: 10.3390/cimb46060328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The PHLDA (pleckstrin homology-like domain family) gene family is popularly known as a potential biomarker for cancer identification, and members of the PHLDA family have become considered potentially viable targets for cancer treatments. The PHLDA gene family consists of PHLDA1, PHLDA2, and PHLDA3. The predictive significance of PHLDA genes in cancer remains unclear. To determine the role of pleckstrin as a prognostic biomarker in human cancers, we conducted a systematic multiomics investigation. Through various survival analyses, pleckstrin expression was evaluated, and their predictive significance in human tumors was discovered using a variety of online platforms. By analyzing the protein-protein interactions, we also chose a collection of well-known functional protein partners for pleckstrin. Investigations were also carried out on the relationship between pleckstrins and other cancers regarding mutations and copy number alterations. The cumulative impact of pleckstrin and their associated genes on various cancers, Gene Ontology (GO), and pathway analyses were used for their evaluation. Thus, the expression profiles of PHLDA family members and their prognosis in various cancers may be revealed by this study. During this multiomics analysis, we found that among the PHLDA family, PHLDA1 may be a therapeutic target for several cancers, including kidney, colon, and brain cancer, while PHLDA2 can be a therapeutic target for cancers of the colon, esophagus, and pancreas. Additionally, PHLDA3 may be a useful therapeutic target for ovarian, renal, and gastric cancer.
Collapse
Affiliation(s)
- Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| | - Md. Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| | - Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.M.); (R.M.)
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.M.); (R.M.)
| | - Md. Niaj Morshed
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| | - Deok-Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Hyocheol Bae
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Esrat Jahan Rupa
- College of Korean Medicine, Woosuk University, Wanju-gun 55338, Jeollabuk-do, Republic of Korea
| | - Dong Uk Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| |
Collapse
|
6
|
Popov A, Hrudka J, Szabó A, Oliverius M, Šubrt Z, Vránová J, Ciprová V, Moravcová J, Mandys V. Expression of Selected miRNAs in Undifferentiated Carcinoma with Osteoclast-like Giant Cells (UCOGC) of the Pancreas: Comparison with Poorly Differentiated Pancreatic Ductal Adenocarcinoma. Biomedicines 2024; 12:962. [PMID: 38790924 PMCID: PMC11117927 DOI: 10.3390/biomedicines12050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Undifferentiated carcinoma with osteoclast-like giant cells (UCOGC) of the pancreas represents a rare subtype of pancreatic ductal adenocarcinoma (PDAC). Despite a distinct morphology and specific clinical behavior, UCOGCs exhibit unexpected similarities in regard to DNA mutational profiles with conventional PDAC. Treating pancreatic ductal adenocarcinoma is particularly challenging, with limited prospects for cure. As with many other malignant neoplasms, the exploration of microRNAs (miRNAs, miRs) in regulating the biological characteristics of pancreatic cancer is undergoing extensive investigation to enhance tumor diagnostics and unveil the therapeutic possibilities. Herein, we evaluated the expression of miR-21, -96, -148a, -155, -196a, -210, and -217 in UCOGCs and poorly differentiated (grade 3, G3) PDACs. The expression of miR-21, miR-155, and miR-210 in both UCOGCs and G3 PDACs was significantly upregulated compared to the levels in normal tissue, while the levels of miR-148a and miR-217 were downregulated. We did not find any significant differences between cancerous and normal tissues for the expression of miR-96 and miR-196a in G3 PDACs, whereas miR-196a was slightly, but significantly, downregulated in UCOGCs. On the other hand, we have not observed significant differences in the expression of the majority of miRNAs between UCOGC and G3 PDAC, with the exception of miR-155. UCOGC samples demonstrated lower mean levels of miR-155 in comparison with those in G3 PDACs.
Collapse
Affiliation(s)
- Alexey Popov
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic; (A.P.); (A.S.)
| | - Jan Hrudka
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic; (A.P.); (A.S.)
| | - Arpád Szabó
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic; (A.P.); (A.S.)
| | - Martin Oliverius
- Department of Surgery, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic; (M.O.); (Z.Š.)
| | - Zdeněk Šubrt
- Department of Surgery, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic; (M.O.); (Z.Š.)
| | - Jana Vránová
- Department of Medical Biophysics and Medical Informatics, 3rd Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Vanda Ciprová
- Institute of Pathology, 1st Faculty of Medicine, Charles University, General University Hospital, 100 00 Prague, Czech Republic
| | - Jana Moravcová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic; (A.P.); (A.S.)
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 00 Prague, Czech Republic
| | - Václav Mandys
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic; (A.P.); (A.S.)
| |
Collapse
|
7
|
Ponomarenko I, Pasenov K, Churnosova M, Sorokina I, Aristova I, Churnosov V, Ponomarenko M, Reshetnikova Y, Reshetnikov E, Churnosov M. Obesity-Dependent Association of the rs10454142 PPP1R21 with Breast Cancer. Biomedicines 2024; 12:818. [PMID: 38672173 PMCID: PMC11048332 DOI: 10.3390/biomedicines12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of this work was to find a link between the breast cancer (BC)-risk effects of sex hormone-binding globulin (SHBG)-associated polymorphisms and obesity. The study was conducted on a sample of 1498 women (358 BC; 1140 controls) who, depending on the presence/absence of obesity, were divided into two groups: obese (119 BC; 253 controls) and non-obese (239 BC; 887 controls). Genotyping of nine SHBG-associated single nucleotide polymorphisms (SNP)-rs17496332 PRMT6, rs780093 GCKR, rs10454142 PPP1R21, rs3779195 BAIAP2L1, rs440837 ZBTB10, rs7910927 JMJD1C, rs4149056 SLCO1B1, rs8023580 NR2F2, and rs12150660 SHBG-was executed, and the BC-risk impact of these loci was analyzed by logistic regression separately in each group of obese/non-obese women. We found that the BC-risk effect correlated by GWAS with the SHBG-level polymorphism rs10454142 PPP1R21 depends on the presence/absence of obesity. The SHBG-lowering allele C rs10454142 PPP1R21 has a risk value for BC in obese women (allelic model: CvsT, OR = 1.52, 95%CI = 1.10-2.11, and pperm = 0.013; additive model: CCvsTCvsTT, OR = 1.71, 95%CI = 1.15-2.62, and pperm = 0.011; dominant model: CC + TCvsTT, OR = 1.95, 95%CI = 1.13-3.37, and pperm = 0.017) and is not associated with the disease in women without obesity. SNP rs10454142 PPP1R21 and 10 proxy SNPs have adipose-specific regulatory effects (epigenetic modifications of promoters/enhancers, DNA interaction with 51 transcription factors, eQTL/sQTL effects on five genes (PPP1R21, RP11-460M2.1, GTF2A1L, STON1-GTF2A1L, and STON1), etc.), can be "likely cancer driver" SNPs, and are involved in cancer-significant pathways. In conclusion, our study detected an obesity-dependent association of the rs10454142 PPP1R21 with BC in women.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (I.P.); (K.P.); (M.C.); (I.S.); (I.A.); (V.C.); (M.P.); (Y.R.); (E.R.)
| |
Collapse
|
8
|
Wang S, Wang YF, Yang G, Zhang HH, Yuan HF, Hou CY, Zhao LN, Suo YH, Sun J, Sun LL, Lv P, Sun Y, Zhang NN, Zhang XD, Lu W. Heat shock protein family A member 8 serving as a co-activator of transcriptional factor ETV4 up-regulates PHLDA2 to promote the growth of liver cancer. Acta Pharmacol Sin 2023; 44:2525-2536. [PMID: 37474643 PMCID: PMC10692233 DOI: 10.1038/s41401-023-01133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Heat shock protein family A member 8 (HSPA8) participates in the folding or degradation of misfolded proteins under stress and plays critical roles in cancer. In this study, we investigated the function of HSPA8 in the development of liver cancer. By analyzing the TCGA transcriptome dataset, we found that HSPA8 was upregulated in 134 clinical liver cancer tissue samples, and positively correlated with poor prognosis. IHC staining showed the nuclear and cytoplasmic localization of HSPA8 in liver cancer cells. Knockdown of HSPA8 resulted in a decrease in the proliferation of HepG2 and Huh-7 cells. ChIP-seq and RNA-seq analysis revealed that HSPA8 bound to the promoter of pleckstrin homology-like domain family A member 2 (PHLDA2) and regulated its expression. The transcription factor ETV4 in HepG2 cells activated PHLDA2 transcription. HSPA8 and ETV4 could interact with each other in the cells and colocalize in the nucleus. From a functional perspective, we demonstrated that HSPA8 upregulated PHDLA2 through the coactivating transcription factor ETV4 to enhance the growth of liver cancer in vitro and in vivo. From a therapeutic perspective, we identified both HSPA8 and PHDLA2 as novel targets in the treatment of HCC. In conclusion, this study demonstrates that HSPA8 serves as a coactivator of ETV4 and upregulates PHLDA2, leading to the growth of HCC, and is a potential therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Yu-Fei Wang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui-Hui Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong-Feng Yuan
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chun-Yu Hou
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Li-Na Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu-Hong Suo
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Jiao Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Lin-Lin Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Pan Lv
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Sun
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
| | - Ning-Ning Zhang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China.
| | - Xiao-Dong Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China.
| |
Collapse
|
9
|
Dobre M, Poenaru RC, Niculae AM, Vladut C, Herlea V, Milanesi E, Hinescu ME. Increased Levels of miR-15b-5p and miR-20b-5p in Pancreatic Ductal Adenocarcinoma with Hepatic Metastases. Genes (Basel) 2023; 14:1577. [PMID: 37628628 PMCID: PMC10454474 DOI: 10.3390/genes14081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer. The symptoms appear in advanced stages, and diagnostic and prognostic tests for the early detection of PDAC and disease evolution are not available. The dysregulation of microRNAs (miRNAs) has been associated with cancer development and progression, and some miRNAs have been reported to promote specific metastasis. In this study we aimed to identify the miRNAs dysregulated in PDAC tumoral tissues and a subset of miRNAs associated with tumoral characteristics, mainly metastasis presence and site. For this, the expression of 84 miRNAs was evaluated by qPCR in 30 tumoral tissues and 16 samples of non-tumoral pancreatic tissues. The comparison revealed 32 dysregulated miRNAs (19 upregulated and 13 downregulated) in the PDAC group. Reactome pathway over-representation analysis revealed that these miRNAs are involved in several biological pathways, including "ESR-mediated signaling", "PIP3 activates AKT signaling", and "Regulation of PTEN", among others. Moreover, our study identified an upregulation of miR-15b-5p and miR-20b-5p in the tumoral tissues of patients with hepatic metastasis, outlining these miRNAs as potential markers for hepatic metastasis. No significant difference in miRNA expression was observed in relation to anatomic location, lymphovascular invasion, lung metastasis, and the presence of diabetes.
Collapse
Affiliation(s)
- Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
| | - Radu Cristian Poenaru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| | - Andrei Marian Niculae
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| | - Catalina Vladut
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
- Department of Gastroenterology, “Prof. Dr. Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania
| | - Vlad Herlea
- Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| | - Mihail Eugen Hinescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| |
Collapse
|
10
|
Yan YC, Meng GX, Yang CC, Yang YF, Tan SY, Yan LJ, Ding ZN, Ma YL, Dong ZR, Li T. Diacylglycerol lipase alpha promotes hepatocellular carcinoma progression and induces lenvatinib resistance by enhancing YAP activity. Cell Death Dis 2023; 14:404. [PMID: 37414748 PMCID: PMC10325985 DOI: 10.1038/s41419-023-05919-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
As an important hydrolytic enzyme that yields 2-AG and free fatty acids, diacylglycerol lipase alpha (DAGLA) is involved in exacerbating malignant phenotypes and cancer progression, but the role of the DAGLA/2-AG axis in HCC progression remains unclear. Here, we found that the upregulation of components of the DAGLA/2-AG axis in HCC samples is correlated with tumour stage and patient prognosis. In vitro and in vivo experiments demonstrated that the DAGLA/2-AG axis promoted HCC progression by regulating cell proliferation, invasion and metastasis. Mechanistically, the DAGLA/2AG axis significantly inhibited LATS1 and YAP phosphorylation, promoted YAP nuclear translocation and activity, and ultimately led to TEAD2 upregulation and increased PHLDA2 expression, which could be enhanced by DAGLA/2AG-induced activation of the PI3K/AKT pathway. More importantly, DAGLA induced resistance to lenvatinib therapy during HCC treatment. Our study demonstrates that inhibiting the DAGLA/2-AG axis could be a novel therapeutic strategy to inhibit HCC progression and enhance the therapeutic effects of TKIs, which warrant further clinical studies.
Collapse
Affiliation(s)
- Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Si-Yu Tan
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, 250012, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Yun-Long Ma
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, China.
| | - Tao Li
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, China.
| |
Collapse
|
11
|
Fukuda K, Seki N, Yasudome R, Mitsueda R, Asai S, Kato M, Idichi T, Kurahara H, Ohtsuka T. Coronin 1C, Regulated by Multiple microRNAs, Facilitates Cancer Cell Aggressiveness in Pancreatic Ductal Adenocarcinoma. Genes (Basel) 2023; 14:genes14050995. [PMID: 37239355 DOI: 10.3390/genes14050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Coronin proteins are actin-related proteins containing WD repeat domains encoded by seven genes (CORO1A, CORO1B, CORO1C, CORO2A, CORO2B, CORO6, and CORO7) in the human genome. Analysis of large cohort data from The Cancer Genome Atlas revealed that expression of CORO1A, CORO1B, CORO1C, CORO2A, and CORO7 was significantly upregulated in pancreatic ductal adenocarcinoma (PDAC) tissues (p < 0.05). Moreover, high expression of CORO1C and CORO2A significantly predicted the 5 year survival rate of patients with PDAC (p = 0.0071 and p = 0.0389, respectively). In this study, we focused on CORO1C and investigated its functional significance and epigenetic regulation in PDAC cells. Knockdown assays using siRNAs targeting CORO1C were performed in PDAC cells. Aggressive cancer cell phenotypes, especially cancer cell migration and invasion, were inhibited by CORO1C knockdown. The involvement of microRNAs (miRNAs) is a molecular mechanism underlying the aberrant expression of cancer-related genes in cancer cells. Our in silico analysis revealed that five miRNAs (miR-26a-5p, miR-29c-3p, miR-130b-5p, miR-148a-5p, and miR-217) are putative candidate miRNAs regulating CORO1C expression in PDAC cells. Importantly, all five miRNAs exhibited tumor-suppressive functions and four miRNAs except miR-130b-5p negatively regulated CORO1C expression in PDAC cells. CORO1C and its downstream signaling molecules are potential therapeutic targets in PDAC.
Collapse
Affiliation(s)
- Kosuke Fukuda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryutaro Yasudome
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Reiko Mitsueda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
12
|
Wei W, Cao B, Xu D, Liu Y, Zhang X, Wang Y. Development and validation of a prognostic prediction model for iron metabolism-related genes in patients with pancreatic adenocarcinoma. Front Genet 2023; 13:1058062. [PMID: 36685915 PMCID: PMC9846079 DOI: 10.3389/fgene.2022.1058062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is one of the most aggressive tumors of the digestive tract, with low surgical resection rate and insensitivity to radiotherapy and chemotherapy. Existing evidence suggests that regulation of ferroptosis can induce PAAD cell death, inhibit tumor growth, and may synergistically improve the sensitivity of other antitumor drugs. However, there is little of systematic research on iron metabolism-related genes in PAAD. In this study, a risk-score system of PAAD iron metabolism-related genes was designed and tested, and verified to be robust. Materials and Methods: The TCGA database was used to download 177 PAAD patients' message RNA (mRNA) expression profiles and clinical characteristics. By identifying dysregulated iron metabolism-related genes between PAAD related tissues and adjacent normal tissues, univariate Cox proportional hazards regression and LASSO regression algorithm were used to establish prognostic risk-score system and construct nomogram to estimate the 1-, 2-, 3-year survival in PAAD patients. Finally, selected genes were validated by quantitative PCR (q-PCR). Results: A 9-gene related to iron metabolism risk-score system of PAAD was constructed and validated. The clinicopathological characteristics of age, histologic grade, pathologic stage, T stage, residual tumor, and primary therapy outcome were all worse in patients with a higher risk-score. Further, immunohistochemistry results of SLC2A1, MBOAT2, XDH, CTSE, MOCOS, and ATP6V0A4 confirmed that patients with higher expression are more malignant. Then, a nomogram with 9-gene risk score system as a separate clinical factor was utilized to foretell the 1-, 2-, 3-year overall survival rate of PAAD patients. Results of q-PCR showed that 8 of the 9 genes screened were significantly up-regulated in at least one PAAD cell line, and one gene was significantly down-regulated in three PAAD cell lines. Conclusion: To conclude, we generated a nine-gene system linked to iron metabolism as an independent indicator for predicting PAAD prognosis, therefore presenting a possible prognostic biomarker and potential treatment targets for PAAD.
Collapse
Affiliation(s)
- Wenhan Wei
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,China State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou, China
| | - Bin Cao
- Department of Pharmacy, First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Dongchao Xu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Hangzhou Institute of Digestive Diseases, Hangzhou, China,Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yusheng Liu
- China State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Hangzhou Institute of Digestive Diseases, Hangzhou, China,Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China,*Correspondence: Xiaofeng Zhang, ; Yu Wang,
| | - Yu Wang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Hangzhou Institute of Digestive Diseases, Hangzhou, China,Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China,*Correspondence: Xiaofeng Zhang, ; Yu Wang,
| |
Collapse
|
13
|
miR-3960 from Mesenchymal Stem Cell-Derived Extracellular Vesicles Inactivates SDC1/Wnt/β-Catenin Axis to Relieve Chondrocyte Injury in Osteoarthritis by Targeting PHLDA2. Stem Cells Int 2022; 2022:9455152. [PMID: 36061148 PMCID: PMC9438433 DOI: 10.1155/2022/9455152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 01/14/2023] Open
Abstract
Osteoarthritis (OA) is a serious disease of the articular cartilage characterized by excessive inflammation. Lately, mesenchymal stem cell- (MSC-) derived extracellular vesicles (EVs) have been proposed as a novel strategy for the treatment of OA. We aimed to investigate the effects of EV-encapsulated miR-3960 derived from MSCs on chondrocyte injury in OA. The cartilage tissues from OA patients were collected to experimentally determine expression patterns of miR-3960, PHLDA2, SDC1, and β-catenin. Next, luciferase assay was implemented to testify the binding affinity among miR-3960 and PHLDA2. EVs were isolated from MSCs and cocultured with IL-1β-induced OA chondrocytes. Afterwards, cellular biological behaviors and levels of extracellular matrix- (ECM-) related protein anabolic markers (collagen II and aggrecan), catabolic markers (MMP13 and ADAMTS5), and inflammatory factors (IL-6 and TNF-α) in chondrocytes were assayed upon miR-3960 and/or PHLDA2 gain- or loss-of-function. Finally, the effects of miR-3960 contained in MSC-derived EVs in OA mouse models were also explored. MSCs-EVs could reduce IL-1β-induced inflammatory response and extracellular matrix (ECM) degradation in chondrocytes. miR-3960 expression was downregulated in cartilage tissues of OA patients but enriched in MSC-derived EVs. miR-3960 could target and inhibit PHLDA2, which was positively correlated with SDC1 and Wnt/β-catenin pathway activation. miR-3960 shuttled by MSC-derived EVs protected against apoptosis and ECM degradation in chondrocytes. In vivo experiment also confirmed that miR-3960 alleviated chondrocyte injury in OA. Collectively, MSC-derived EV-loaded miR-3960 downregulated PHLDA2 to inhibit chondrocyte injury via SDC1/Wnt/β-catenin.
Collapse
|
14
|
Guo C, Liu S, Zhang T, Yang J, Liang Z, Lu S. Knockdown of PHLDA2 promotes apoptosis and autophagy of glioma cells through the AKT/mTOR pathway. J Neurogenet 2022; 36:74-80. [PMID: 35894264 DOI: 10.1080/01677063.2022.2096023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Pleckstrin homology like domain family A member 2 (PHLDA2) is an imprinted gene expressed in placenta and has been shown to be associated with tumor progression. However, the effect of PHLDA2 on glioma cell growth has not been reported yet. Data based on TCGA database showed that PHLDA2 was up-regulated in glioma tissues. Moreover, PHLDA2 was also elevated in glioma cells. Functional assays showed that siRNA-mediated knockdown of PHLDA2 reduced cell viability of glioma cells and suppressed the cell proliferation. Cell apoptosis of glioma cells was promoted by silencing of PHLDA2 with increased Bax and decreased Bcl-2. Silencing of PHLDA2 reduced protein expression of p62, enhanced LC3 and Beclin1 to promote autophagy. Phosphorylated AKT and mTOR were down-regulated in glioma cells by interference of PHLDA2. In conclusion, downregulation of PHLDA2 inhibited glioma cell proliferation, and promoted cell apoptosis and autophagy through inactivation of AKT/mTOR signaling.
Collapse
Affiliation(s)
- Chengyong Guo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Shuo Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Tao Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Jipeng Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Zhaohui Liang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Shengkui Lu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| |
Collapse
|
15
|
Popov A, Mandys V. Senescence-Associated miRNAs and Their Role in Pancreatic Cancer. Pathol Oncol Res 2022; 28:1610156. [PMID: 35570840 PMCID: PMC9098800 DOI: 10.3389/pore.2022.1610156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 01/17/2023]
Abstract
Replicative senescence is irreversible cell proliferation arrest for somatic cells which can be circumvented in cancers. Cellular senescence is a process, which may play two opposite roles. On the one hand, this is a natural protection of somatic cells against unlimited proliferation and malignant transformation. On the other hand, cellular secretion caused by senescence can stimulate inflammation and proliferation of adjacent cells that may promote malignancy. The main genes controlling the senescence pathways are also well known as tumor suppressors. Almost 140 genes regulate both cellular senescence and cancer pathways. About two thirds of these genes (64%) are regulated by microRNAs. Senescence-associated miRNAs can stimulate cancer progression or act as tumor suppressors. Here we review the role playing by senescence-associated miRNAs in development, diagnostics and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czechia
| | | |
Collapse
|
16
|
Luo Y, Han S, Yan B, Ji H, Zhao L, Gladkich J, Herr I. UHMK1 Is a Novel Marker for Personalized Prediction of Pancreatic Cancer Prognosis. Front Oncol 2022; 12:834647. [PMID: 35359403 PMCID: PMC8960145 DOI: 10.3389/fonc.2022.834647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer mortality, and new therapeutic options are urgently needed. Long noncoding RNA H19 (H19) is known to promote PDAC progression, but the downstream genes of H19 are largely unknown. Five PDAC cell lines, nonmalignant pancreatic cells, TCGA, GEO-derived pancreatic tissues (malignant, n=413; nonmalignant, n=234), a pancreatic tissue array (n=96), and pancreatic tissues from our clinic (malignant, n=20; nonmalignant, n=20) were examined by a gene array, RT-qPCR, Western blotting, MTT, colony formation, wound-healing, siRNA-mediated gene silencing, bioinformatics, xenotransplantation, and immunohistochemistry assays. The cell cycle inhibitor, UHMK1, was identified to have the strongest correlation with H19. UHMK1 expression was enhanced in PDAC, and high UHMK1 expression correlated with tumor stage, and lower overall survival. siRNA-mediated UHMK1 downregulation inhibited progression signaling. siRNA-mediated downregulation of H19 or UHMK1 inhibited tumor proliferation and xenograft growth. Based on the correlation between UHMK1 expression and clinical parameters, we developed a nomogram that reliably predicts patient prognosis and overall survival. Together, we characterized UHMK1 as an H19-induced oncogene and verified it as a novel PDAC prognostic marker for overall survival.
Collapse
|
17
|
Wu ZZ, Xu Q. Bladder cancer-associated transcript 1 promotes melanoma cell proliferation and invasion via the miR-374b-5p/U2-associated factor homology motif kinase 1 axis. Kaohsiung J Med Sci 2021; 38:97-107. [PMID: 34708547 DOI: 10.1002/kjm2.12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
Melanoma is a malignancy derived from melanocytes and is associated with high mortality rates worldwide. Long noncoding RNAs (lncRNAs) have been confirmed to be pivotal regulators in multiple types of cancer. Many lncRNAs are aberrantly expressed in tumors and perform vital functions in cancer progression. Nevertheless, the biological role of lncRNA bladder cancer-associated transcript 1 (BLACAT1) in melanoma progression remains unexplored. In this study, the collected data showed that BLACAT1 was highly expressed in melanoma. Mechanistically, miR-374b-5p bound to BLACAT1, and U2-associated factor homology motif kinase 1 (UHMK1) was a downstream target of miR-374b-5p. BLACAT1 upregulated UHMK1 expression by acting as a competing endogenous RNA for miR-374-5b. BLACAT1 deficiency resulted in the upregulation of miR-374b-5p expression and the downregulation of UHMK1 expression in melanoma cells. Moreover, BLACAT1 activated PI3K and AKT signaling by upregulating UHMK1 expression, as shown by western blotting analyses. Functionally, UHMK1 overexpression or miR-374b-5p knockdown reversed the suppressive effect of BLACAT1 depletion on melanoma cell proliferation and invasion. In conclusion, BLACAT1 promotes melanoma cell proliferation and invasion by upregulating UHMK1 expression via miR-374b-5p to activate the PI3K/AKT pathway. These results might provide promising insight into the investigation of prognostic biomarkers of melanoma.
Collapse
Affiliation(s)
- Zong-Zhou Wu
- Department of Medical Cosmetology, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai, China
| | - Qing Xu
- Department of Medical Cosmetology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
18
|
Luo D, Liu Y, Li Z, Zhu H, Yu X. NR2F1-AS1 Promotes Pancreatic Ductal Adenocarcinoma Progression Through Competing Endogenous RNA Regulatory Network Constructed by Sponging miRNA-146a-5p/miRNA-877-5p. Front Cell Dev Biol 2021; 9:736980. [PMID: 34650983 PMCID: PMC8505696 DOI: 10.3389/fcell.2021.736980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
The role of NR2F1-AS1 in pancreatic ductal adenocarcinoma (PDAC) remains unknown. Therefore, we aimed to investigate the biological mechanism of NR2F1-AS1 in PDAC. The expression of NR2F1-AS1 was measured by using microarray data and real-time PCR. The effects of NR2F1-AS1 knockdown on proliferation, cell cycle progression, invasion in vitro and tumorigenesis in vivo were investigated. The mechanism of competitive endogenous RNAs was determined from bioinformatics analyses and validated by a dual-luciferase reporter gene assay. Potential target mRNAs from TargetScan 7.2 were selected for subsequent bioinformatics analysis. Key target mRNAs were further identified by screening hub genes and coexpressed protein-coding genes (CEGs) of NR2F1-AS1. NR2F1-AS1 was highly expressed in PDAC, and the overexpression of NR2F1-AS1 was associated with overall survival and disease-free survival. The knockdown of NR2F1-AS1 impaired PDAC cell proliferation, migration, invasion and tumorigenesis. NR2F1-AS1 competitively sponged miR-146a-5p and miR-877-5p, and low expression of the two miRNAs was associated with a poor prognosis. An integrative expression and survival analysis of the hub genes and CEGs demonstrated that the NR2F1-AS1–miR-146a-5p/miR-877-5p–GALNT10/ZNF532/SLC39A1/PGK1/LCO3A1/NRP2/LPCAT2/PSMA4 and CLTC ceRNA networks were linked to the prognosis of PDAC. In conclusion, NR2F1-AS1 overexpression was significantly associated with poor prognosis. NR2F1-AS1 functions as an endogenous RNA to construct a novel ceRNA network by competitively binding to miR-146a-5p/miR-877-5p, which may contribute to PDAC pathogenesis and could represent a promising diagnostic biomarker or potential novel therapeutic target in PDAC.
Collapse
Affiliation(s)
- Dong Luo
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yunfei Liu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Hozaka Y, Kita Y, Yasudome R, Tanaka T, Wada M, Idichi T, Tanabe K, Asai S, Moriya S, Toda H, Mori S, Kurahara H, Ohtsuka T, Seki N. RNA-Sequencing Based microRNA Expression Signature of Colorectal Cancer: The Impact of Oncogenic Targets Regulated by miR-490-3p. Int J Mol Sci 2021; 22:ijms22189876. [PMID: 34576039 PMCID: PMC8469425 DOI: 10.3390/ijms22189876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
To elucidate novel aspects of the molecular pathogenesis of colorectal cancer (CRC), we have created a new microRNA (miRNA) expression signature based on RNA-sequencing. Analysis of the signature showed that 84 miRNAs were upregulated, and 70 were downregulated in CRC tissues. Interestingly, our signature indicated that both guide and passenger strands of some miRNAs were significantly dysregulated in CRC tissues. These findings support our earlier data demonstrating the involvement of miRNA passenger strands in cancer pathogenesis. Our study focused on downregulated miR-490-3p and investigated its tumor-suppressive function in CRC cells. We successfully identified a total of 38 putative oncogenic targets regulated by miR-490-3p in CRC cells. Among these targets, the expression of three genes (IRAK1: p = 0.0427, FUT1: p = 0.0468, and GPRIN2: p = 0.0080) significantly predicted 5-year overall survival of CRC patients. Moreover, we analyzed the direct regulation of IRAK1 by miR-490-3p, and its resultant oncogenic function in CRC cells. Thus, we have clarified a part of the molecular pathway of CRC based on the action of tumor-suppressive miR-490-3p. This new miRNA expression signature of CRC will be a useful tool for elucidating new molecular pathogenesis in this disease.
Collapse
Affiliation(s)
- Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Ryutaro Yasudome
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Kan Tanabe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Correspondence: ; Tel.: +81-43-226-2971
| |
Collapse
|
20
|
Trivieri N, Panebianco C, Villani A, Pracella R, Latiano TP, Perri F, Binda E, Pazienza V. High Levels of Prebiotic Resistant Starch in Diet Modulate a Specific Pattern of miRNAs Expression Profile Associated to a Better Overall Survival in Pancreatic Cancer. Biomolecules 2020; 11:biom11010026. [PMID: 33383727 PMCID: PMC7824309 DOI: 10.3390/biom11010026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/17/2023] Open
Abstract
Dietary patterns are well known risk factors involved in cancer initiation, progression, and in cancer protection. Previous in vitro and in vivo studies underline the link between a diet rich in resistant starch (RS) and slowing of tumor growth and gene expression in pancreatic cancer xenograft mice. The aim of this study was to investigate the impact of a diet rich in resistant starch on miRNAs and miRNAs-target genes expression profile and on biological processes and pathways, that play a critical role in pancreatic tumors of xenografted mice. miRNA expression profiles on tumor tissues displayed 19 miRNAs as dysregulated in mice fed with RS diet as compared to those fed with control diet and differentially expressed miRNA-target genes were predicted by integrating (our data) with a public human pancreatic cancer gene expression dataset (GSE16515). Functional and pathway enrichment analyses unveiled that miRNAs involved in RS diet are critical regulators of genes that control tumor growth and cell migration and metastasis, inflammatory response, and, as expected, synthesis of carbohydrate and glucose metabolism disorder. Mostly, overall survival analysis with clinical data from TCGA (n = 175) displayed that almost four miRNAs (miRNA-375, miRNA-148a-3p, miRNA-125a-5p, and miRNA-200a-3p) upregulated in tumors from mice fed with RS were a predictor of good prognosis for pancreatic cancer patients. These findings contribute to the understanding of the potential mechanisms through which resistant starch may affect cancer progression, suggesting also a possible integrative approach for enhancing the efficacy of existing cancer treatments.
Collapse
Affiliation(s)
- Nadia Trivieri
- Cancer Stem Cells Unit, ISBReMIT, Fondazione IRCCS “Casa Sollievo della Sofferenza”, viale Padre Pio, 7-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (N.T.); (R.P.)
| | - Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, viale dei Cappuccini, 1-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (C.P.); (A.V.); (F.P.)
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, viale dei Cappuccini, 1-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (C.P.); (A.V.); (F.P.)
| | - Riccardo Pracella
- Cancer Stem Cells Unit, ISBReMIT, Fondazione IRCCS “Casa Sollievo della Sofferenza”, viale Padre Pio, 7-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (N.T.); (R.P.)
| | - Tiziana Pia Latiano
- Oncology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, viale dei Cappuccini, 1-71013 San Giovanni Rotondo, 71100 Foggia, Italy;
| | - Francesco Perri
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, viale dei Cappuccini, 1-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (C.P.); (A.V.); (F.P.)
| | - Elena Binda
- Cancer Stem Cells Unit, ISBReMIT, Fondazione IRCCS “Casa Sollievo della Sofferenza”, viale Padre Pio, 7-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (N.T.); (R.P.)
- Correspondence: (E.B.); (V.P.)
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, viale dei Cappuccini, 1-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (C.P.); (A.V.); (F.P.)
- Correspondence: (E.B.); (V.P.)
| |
Collapse
|
21
|
Tanaka T, Okada R, Hozaka Y, Wada M, Moriya S, Satake S, Idichi T, Kurahara H, Ohtsuka T, Seki N. Molecular Pathogenesis of Pancreatic Ductal Adenocarcinoma: Impact of miR-30c-5p and miR-30c-2-3p Regulation on Oncogenic Genes. Cancers (Basel) 2020; 12:E2731. [PMID: 32977589 PMCID: PMC7598296 DOI: 10.3390/cancers12102731] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive types of cancer, and its prognosis is abysmal; only 25% of patients survive one year, and 5% live for five years. MicroRNA (miRNA) signature analysis of PDAC revealed that both strands of pre-miR-30c (miR-30c-5p, guide strand; miR-30c-2-3p, passenger strand) were significantly downregulated, suggesting they function as tumor-suppressors in PDAC cells. Ectopic expression assays demonstrated that these miRNAs attenuated the aggressiveness of PDAC cells, e.g., cell proliferation, migration, and invasiveness. Through a combination of in silico analyses and gene expression data, we identified 216 genes as putative oncogenic targets of miR-30c-5p and miR-30c-2-3p regulation in PDAC cells. Among these, the expression of 18 genes significantly predicted the 5-year survival rates of PDAC patients (p < 0.01). Importantly, the expression levels of 10 genes (YWHAZ, F3, TMOD3, NFE2L3, ENDOD1, ITGA3, RRAS, PRSS23, TOP2A, and LRRFIP1) were found to be independent prognostic factors for patient survival (p < 0.01). We focused on TOP2A (DNA Topoisomerase II Alpha) and investigated its potential as a therapeutic target for PDAC. The overexpression of TOP2A and its transcriptional activators (SP1 and HMGB2) was detected in PDAC clinical specimens. Moreover, the knockdown of TOP2A enhanced the sensitivity of PDAC cells to anticancer drugs. Our analyses of the PDAC miRNA signature and tumor-suppressive miRNAs provide important insights into the molecular pathogenesis of PDAC.
Collapse
Affiliation(s)
- Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (T.T.); (Y.H.); (M.W.); (S.S.); (T.I.); (H.K.); (T.O.)
| | - Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (T.T.); (Y.H.); (M.W.); (S.S.); (T.I.); (H.K.); (T.O.)
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (T.T.); (Y.H.); (M.W.); (S.S.); (T.I.); (H.K.); (T.O.)
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Souichi Satake
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (T.T.); (Y.H.); (M.W.); (S.S.); (T.I.); (H.K.); (T.O.)
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (T.T.); (Y.H.); (M.W.); (S.S.); (T.I.); (H.K.); (T.O.)
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (T.T.); (Y.H.); (M.W.); (S.S.); (T.I.); (H.K.); (T.O.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (T.T.); (Y.H.); (M.W.); (S.S.); (T.I.); (H.K.); (T.O.)
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| |
Collapse
|
22
|
Shimomura H, Okada R, Tanaka T, Hozaka Y, Wada M, Moriya S, Idichi T, Kita Y, Kurahara H, Ohtsuka T, Seki N. Role of miR-30a-3p Regulation of Oncogenic Targets in Pancreatic Ductal Adenocarcinoma Pathogenesis. Int J Mol Sci 2020; 21:E6459. [PMID: 32899691 PMCID: PMC7555373 DOI: 10.3390/ijms21186459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Our recent studies have implicated some passenger strands of miRNAs in the molecular pathogenesis of human cancers. Analysis of the microRNA (miRNA) expression signature in pancreatic ductal adenocarcinoma (PDAC) has shown that levels of miR-30a-3p, the passenger strand derived from pre-mir-30a, are significantly downregulated in PDAC tissues. This study aimed to identify the oncogenes closely involved in PDAC molecular pathogenesis under the regulation of miR-30a-3p. Ectopic expression assays showed that miR-30a-3p expression inhibited the aggressiveness of the PDAC cells, suggesting that miR-30a-3p acts as a tumor-suppressive miRNA in PDAC cells. We further identified 102 putative targets of miR-30a-3p regulation in PDAC cells by combining in silico analysis with gene expression data. Of these, ten genes (EPS8, HMGA2, ENDOD1, SLC39A10, TGM2, MGLL, SERPINE1, ITGA2, DTL, and UACA) were independent prognostic factors in multivariate analysis of survival of patients with PDAC (p < 0.01). We also investigated the oncogenic function of the integrin ITGA2 in PDAC cell lines. The integrin family comprises cell adhesion molecules expressed as heterodimeric, transmembrane proteins on the surface of various cells. Overexpression of ITGA2/ITGB1 (an ITGA2 binding partner) was detected in the PDAC clinical specimens. The knockdown of ITGA2 expression attenuated the malignant phenotypes of the PDAC cells. Together, results from these microRNA-based approaches can accelerate our understanding of PDAC molecular pathogenesis.
Collapse
Affiliation(s)
- Hiroki Shimomura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| |
Collapse
|
23
|
Kawagoe K, Wada M, Idichi T, Okada R, Yamada Y, Moriya S, Okubo K, Matsushita D, Arigami T, Kurahara H, Maemura K, Natsugoe S, Seki N. Regulation of aberrantly expressed SERPINH1 by antitumor miR-148a-5p inhibits cancer cell aggressiveness in gastric cancer. J Hum Genet 2020; 65:647-656. [PMID: 32235846 DOI: 10.1038/s10038-020-0746-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
RNA-sequencing-based microRNA (miRNA) expression signatures have revealed that miR-148a-5p (the passenger strand of the miR-148a-duplex) is downregulated in various kinds of cancer tissues. Analysis of The Cancer Genome Atlas (TCGA) database showed that low expression of miR-148a-5p was predictive of a lower survival rate (p = 0.041) in patients with gastric cancer (GC). Downregulation of miR-148a-5p was confirmed in GC clinical specimens, and its ectopic expression attenuated GC cell proliferation. Our search for miRNA target genes identified a total of 18 oncogenic targets of miR-148a-5p in GC cells. Among these targets, high expression levels of six genes (THBS2, P4HA3, SERPINH1, CDH11, BCAT1, and KCNG3) were closely associated with a poor prognosis (10-year survival rates) in GC patients (p < 0.05) according to TCGA database analyses. Furthermore, we focused on SERPINH1 as a chaperone protein involved in collagen folding in humans. Aberrant expression of SERPINH1 (mRNA and protein levels) was confirmed in GC clinical specimens. Knockdown assays of SERPINH1 using siRNAs resulted in inhibition of the aggressive phenotype of GC cells. Exploring the molecular networks controlled by miRNAs (including miRNA passenger strands) will broaden our understanding of the molecular pathogenesis of GC.
Collapse
Affiliation(s)
- Kosuke Kawagoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba, Japan
| | - Keishi Okubo
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Daisuke Matsushita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
24
|
Hu H, Zhang Q, Chen W, Wu T, Liu S, Li X, Luo B, Zhang T, Yan G, Lu H, Lu Z. MicroRNA-301a promotes pancreatic cancer invasion and metastasis through the JAK/STAT3 signaling pathway by targeting SOCS5. Carcinogenesis 2020; 41:502-514. [PMID: 31233116 DOI: 10.1093/carcin/bgz121] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer is one of the most lethal digestive malignant tumors. We had previously found that microRNA-301a (miR-301a) is a oncogenic microRNA whose recognized conduce to nuclear factor-kappa B (NF-κB) activation in pancreatic cancer, yet the underlying mechanisms of miR-301a in promoting pancreatic cancer invasion and migration is obscure. In this work we found that high expression of miR-301a in human pancreatic cancer patients is related to poor survival. Overexpression of miR-301a enhances pancreatic cancer cell invasion, angiogenesis and migration, whereas inhibition of miR-301a suppresses pancreatic cancer cell invasion and reduces orthotopic pancreatic tumor growth and metastasis. Furthermore, suppressor of cytokine signaling 5 (SOCS5) is identified as a target gene of miR-301a. We found that miR-301a suppressed the expression of SOCS5 leads to janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) activation and is related to poor overall survival of pancreatic cancer patients. Taken together, our data show for the first time that the feedback loop between miR-301a and JAK/STAT3 pathway may play a significant role in pancreatic cancer invasion and metastasis. Targeting the loop may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Hui Hu
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Weiqun Chen
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Research Institute of Wuhan, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangwei Wu
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiyi Liu
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Research Institute of Wuhan, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Li
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Luo
- Department of Pathology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianzhu Zhang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ge Yan
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hongda Lu
- Cancer Research Institute of Wuhan, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongxin Lu
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Cancer Research Institute of Wuhan, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Ma Z, Lou S, Jiang Z. PHLDA2 regulates EMT and autophagy in colorectal cancer via the PI3K/AKT signaling pathway. Aging (Albany NY) 2020; 12:7985-8000. [PMID: 32385195 PMCID: PMC7244065 DOI: 10.18632/aging.103117] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022]
Abstract
High levels of the imprinted gene pleckstrin homology like domain family A member 2 (PHLDA2) correlate with tumor progression in several malignancies. Here, we investigated the effects of PHDLDA2 expression in CRC through assays of cellular proliferation, invasion, migration, and apoptosis. We also screened for possible mechanisms of action. Our results show that PHLDA2 was upregulated in CRC tissues. Knockdown of PHLDA2 inhibited cellular proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) in vitro. Knockout of PHLDA2 promoted cellular apoptosis, in part by activating autophagy. PHLDA2 knockout also inhibited tumorigenesis and expression of KI67 protein in vivo. The effects of PHLDA2 on autophagy and EMT were mediated in part via the PI3K/AKT signaling pathway. Taken together, these results suggest that downregulation of PHLDA2 inhibits tumor growth and PI3K, thereby promoting autophagy and inhibiting EMT, in part through the PI3K/AKT/mTOR and PI3K/AKT/GSK-3β signaling pathways.
Collapse
Affiliation(s)
- Zhan Ma
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shuping Lou
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
26
|
Tawfik D, Zaccagnino A, Bernt A, Szczepanowski M, Klapper W, Schwab A, Kalthoff H, Trauzold A. The A818-6 system as an in-vitro model for studying the role of the transportome in pancreatic cancer. BMC Cancer 2020; 20:264. [PMID: 32228510 PMCID: PMC7106758 DOI: 10.1186/s12885-020-06773-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background The human pancreatic cancer cell line A818–6 can be grown in vitro either as a highly malignant, undifferentiated monolayer (ML) or as three-dimensional (3D) single layer hollow spheres (HS) simulating a benign, highly differentiated, duct-like pancreatic epithelial structure. This characteristic allowing A818–6 cells to switch from one phenotype to another makes these cells a unique system to characterize the cellular and molecular modifications during differentiation on one hand and malignant transformation on the other hand. Ion channels and transport proteins (transportome) have been implicated in malignant transformation. Therefore, the current study aimed to analyse the transportome gene expression profile in the A818–6 cells growing as a monolayer or as hollow spheres. Methods & Results The study identified the differentially expressed transportome genes in both cellular states of A818–6 using Agilent and Nanostring arrays and some targets were validated via immunoblotting. Additionally, these results were compared to a tissue Affymetrix microarray analysis of pancreatic adenocarcinoma patients’ tissues. The overall transcriptional profile of the ML and HS cells confirmed the formerly described mesenchymal features of ML and epithelial nature of HS which was further verified via high expression of E-cadherin and low expression of vimentin found in HS in comparison to ML. Among the predicted features between HS and ML was the involvement of miRNA-9 in this switch. Importantly, the bioinformatics analysis also revealed substantial number (n = 126) of altered transportome genes. Interestingly, three genes upregulated in PDAC tissue samples (GJB2, GJB5 and SLC38A6) were found to be also upregulated in ML and 3 down-regulated transportome genes (KCNQ1, TRPV6 and SLC4A) were also reduced in ML. Conclusion This reversible HS/ML in vitro system might help in understanding the pathophysiological impact of the transportome in the dedifferentiation process in pancreatic carcinogenesis. Furthermore, the HS/ML model represents a novel system for studying the role of the transportome during the switch from a more benign, differentiated (HS) to a highly malignant, undifferentiated (ML) phenotype.
Collapse
Affiliation(s)
- Doaa Tawfik
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Angela Zaccagnino
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Alexander Bernt
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Monika Szczepanowski
- Clinic for Internal Medicine II, Christian-Albrechts-University of Kiel, UKSH, Kiel, Germany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, Christian-Albrechts-University of Kiel, UKSH, Kiel, Germany
| | - Albrecht Schwab
- Institute of Physiology II, Westfälische Wilhelms-Universität, Münster, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany.
| |
Collapse
|
27
|
Gong R, Jiang Y. Non-coding RNAs in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:309. [PMID: 32257946 PMCID: PMC7089935 DOI: 10.3389/fonc.2020.00309] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are reported to be expressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). These ncRNAs affect the growth, migration and invasion of tumor cells by regulating cell cycle and apoptosis, as well as playing important roles in epigenetic processes, transcription and post-transcriptional regulation. It is still unclear whether alterations in ncRNAs influence PDAC development and progression. Because of this, analysis based on existing data on ncRNAs, which are crucial for modulating pancreatic tumorigenesis, will be important for future research on PDAC. Here, we summarize ncRNAs with tumor-promoting functions: HOTAIR, HOTTIP, MALAT1, lncRNA H19, lncRNA PVT1, circ-RNA ciRS-7, circ-0030235, circ-RNA_100782, circ-LDLRAD3, circ-0007534, circRHOT1, circZMYM2, circ-IARS, circ-RNA PDE8A, miR-21, miR-155, miR-221/222, miR-196b, miR-10a. While others including GAS5, MEG3, and lncRNA ENST00000480739, has_circ_0001649, miR-34a, miR-100, miR-217, miR-143 inhibit the proliferation and invasion of PDAC. Hence, we summarize the functions of ncRNAs in the occurrence, development and metastasis of PDAC, with the goal to provide guidance in the clinical diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Ruining Gong
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueping Jiang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Cai J, Ding L, Gong P, Huang J. A colorimetric detection of microRNA-148a in gastric cancer by gold nanoparticle-RNA conjugates. NANOTECHNOLOGY 2020; 31:095501. [PMID: 31703221 DOI: 10.1088/1361-6528/ab55b7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For the early diagnosis of gastric cancer, microRNA-148a (miRNA-148a) as a promising biomarker is measured by a simple colorimetric biosensor due to its unique surface plasmon resonance (SPR) absorption of gold nanoparticles (AuNPs). In the assay system, the sensing probes are facilitated by the conjugation of AuNPs with RNA probes (RNAP) via Au-S bonds, which align in a tail-to-tail fashion onto the target RNA. When miRNA-148a is introduced, a sandwich hybridization reaction is triggered between the AuNP-RNAP conjugates and targets, resulting in changes in the SPR absorption band, microscopic distribution and macroscopic color of the AuNP solution. Following this principle, this colorimetric method is able to quantitatively detect miRNA-148a at nanomolar level with a limit of ∼1.9 nM, and exhibits high sensitivity and selectivity by a low-cost UV-vis spectrometer or even the naked eye. Moreover, the AuNP network materials with a characteristic sharp 'melting transition' provide significant guidance for the reusability of DNA or RNA biosensors.
Collapse
Affiliation(s)
- Jun Cai
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Toda H, Seki N, Kurozumi S, Shinden Y, Yamada Y, Nohata N, Moriya S, Idichi T, Maemura K, Fujii T, Horiguchi J, Kijima Y, Natsugoe S. RNA-sequence-based microRNA expression signature in breast cancer: tumor-suppressive miR-101-5p regulates molecular pathogenesis. Mol Oncol 2020; 14:426-446. [PMID: 31755218 PMCID: PMC6998431 DOI: 10.1002/1878-0261.12602] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrantly expressed microRNA (miRNA) are known to disrupt intracellular RNA networks in cancer cells. Exploring miRNA-dependent molecular networks is a major challenge in cancer research. In this study, we performed RNA-sequencing of breast cancer (BrCa) clinical specimens to identify tumor-suppressive miRNA in BrCa. In total, 64 miRNA were identified as candidate tumor-suppressive miRNA in BrCa cells. Analysis of our BrCa signature revealed that several miRNA duplexes (guide strand/passenger strand) derived from pre-miRNA were downregulated in BrCa tissues (e.g. miR-99a-5p/-3p, miR-101-5p/-3p, miR-126-5p/-3p, miR-143-5p/-3p, and miR-144-5p/-3p). Among these miRNA, we focused on miR-101-5p, the passenger strand of pre-miR-101, and investigated its tumor-suppressive roles and oncogenic targets in BrCa cells. Low expression of miR-101-5p predicted poor prognosis in patients with BrCa (overall survival rate: P = 0.0316). Ectopic expression of miR-101-5p attenuated aggressive phenotypes, e.g. proliferation, migration, and invasion, in BrCa cells. Finally, we identified seven putative oncogenic genes (i.e. High Mobility Group Box 3, Epithelial splicing regulatory protein 1, GINS complex subunit 1 (GINS1), Tumor Protein D52, Serine/Arginine-Rich Splicing Factor Kinase 1, Vang-like protein 1, and Mago Homolog B) regulated by miR-101-5p in BrCa cells. The expression of these target genes was associated with the molecular pathogenesis of BrCa. Furthermore, we explored the oncogenic roles of GINS1, whose function had not been previously elucidated, in BrCa cells. Aberrant expression of GINS1 mRNA and protein was observed in BrCa clinical specimens, and high GINS1 expression significantly predicted poor prognosis in patients with BrCa (overall survival rate: P = 0.0126). Knockdown of GINS1 inhibited the malignant features of BrCa cells. Thus, identification of tumor-suppressive miRNA and molecular networks controlled by these miRNA in BrCa cells may be an effective strategy for elucidation of the molecular pathogenesis of this disease.
Collapse
Affiliation(s)
- Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Naohiko Seki
- Department of Functional GenomicsChiba University Graduate School of MedicineJapan
| | - Sasagu Kurozumi
- Department of General Surgical ScienceGunma University Graduate School of MedicineJapan
| | - Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Yasutaka Yamada
- Department of Functional GenomicsChiba University Graduate School of MedicineJapan
| | | | - Shogo Moriya
- Department of Biochemistry and GeneticsChiba University Graduate School of MedicineJapan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Takaaki Fujii
- Department of General Surgical ScienceGunma University Graduate School of MedicineJapan
| | - Jun Horiguchi
- Department of Breast SurgeryInternational University of Health and WelfareChibaJapan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
- Department of Breast SurgeryFujita Health UniversityAichiJapan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| |
Collapse
|
30
|
Liu L, Lin J, He H. Identification of Potential Crucial Genes Associated With the Pathogenesis and Prognosis of Endometrial Cancer. Front Genet 2019; 10:373. [PMID: 31105744 PMCID: PMC6499025 DOI: 10.3389/fgene.2019.00373] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Endometrial cancer (EC) is a common gynecological malignancy worldwide. Despite advances in the development of strategies for treating EC, prognosis of the disease remains unsatisfactory, especially for advanced EC. The aim of this study was to identify novel genes that can be used as potential biomarkers for identifying the prognosis of EC and to construct a novel risk stratification using these genes. Methods and Results An mRNA sequencing dataset, corresponding survival data and expression profiling of an array of EC patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, respectively. Common differentially expressed genes (DEGs) were identified based on sequencing and expression as given in the profiling dataset. Pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization, and Integrated Discovery. The protein-protein interaction network was established using the string online database in order to identify hub genes. Univariate and multivariable Cox regression analyses were used to screen prognostic DEGs and to construct a prognostic signature. Survival analysis based on the prognostic signature was performed on TCGA EC dataset. A total of 255 common DEGs were found and 11 hub genes (TOP2A, CDK1, CCNB1, CCNB2, AURKA, PCNA, CCNA2, BIRC5, NDC80, CDC20, and BUB1BA) that may be closely related to the pathogenesis of EC were identified. A panel of 7 DEG signatures consisting of PHLDA2, GGH, ESPL1, FAM184A, KIAA1644, ESPL1, and TRPM4 were constructed. The signature performed well for prognosis prediction (p < 0.001) and time-dependent receiver-operating characteristic (ROC) analysis displayed an area under the curve (AUC) of 0.797, 0.734, 0.729, and 0.647 for 1, 3, 5, and 10-year overall survival (OS) prediction, respectively. Conclusion This study identified potential genes that may be involved in the pathophysiology of EC and constructed a novel gene expression signature for EC risk stratification and prognosis prediction.
Collapse
Affiliation(s)
- Li Liu
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongying He
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
31
|
Fukuhisa H, Seki N, Idichi T, Kurahara H, Yamada Y, Toda H, Kita Y, Kawasaki Y, Tanoue K, Mataki Y, Maemura K, Natsugoe S. Gene regulation by antitumor miR-130b-5p in pancreatic ductal adenocarcinoma: the clinical significance of oncogenic EPS8. J Hum Genet 2019; 64:521-534. [DOI: 10.1038/s10038-019-0584-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
|
32
|
Khalid M, Idichi T, Seki N, Wada M, Yamada Y, Fukuhisa H, Toda H, Kita Y, Kawasaki Y, Tanoue K, Kurahara H, Mataki Y, Maemura K, Natsugoe S. Gene Regulation by Antitumor miR-204-5p in Pancreatic Ductal Adenocarcinoma: The Clinical Significance of Direct RACGAP1 Regulation. Cancers (Basel) 2019; 11:cancers11030327. [PMID: 30866526 PMCID: PMC6468488 DOI: 10.3390/cancers11030327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Previously, we established a microRNA (miRNA) expression signature in pancreatic ductal adenocarcinoma (PDAC) tissues using RNA sequencing and found significantly reduced expression of miR-204-5p. Here, we aimed to investigate the functional significance of miR-204-5p and to identify miR-204-5p target genes involved in PDAC pathogenesis. Cancer cell migration and invasion were significantly inhibited by ectopic expression of miR-204-5p in PDAC cells. Comprehensive gene expression analyses and in silico database searches revealed 25 putative targets regulated by miR-204-5p in PDAC cells. Among these target genes, high expression levels of RACGAP1, DHRS9, AP1S3, FOXC1, PRP11, RHBDL2 and MUC4 were significant predictors of a poor prognosis of patients with PDAC. In this study, we focused on RACGAP1 (Rac guanosine triphosphatase-activating protein 1) because its expression was most significantly predictive of PDAC pathogenesis (overall survival rate: p = 0.0000548; disease-free survival rate: p = 0.0014). Overexpression of RACGAP1 was detected in PDAC clinical specimens, and its expression enhanced the migration and invasion of PDAC cells. Moreover, downstream genes affected by RACGAP1 (e.g., MMP28, CEP55, CDK1, ANLN and S100A14) are involved in PDAC pathogenesis. Our strategy to identify antitumor miRNAs and their target genes will help elucidate the molecular pathogenesis of PDAC.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Haruhi Fukuhisa
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yota Kawasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Kiyonori Tanoue
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| |
Collapse
|
33
|
Shimonosono M, Idichi T, Seki N, Yamada Y, Arai T, Arigami T, Sasaki K, Omoto I, Uchikado Y, Kita Y, Kurahara H, Maemura K, Natsugoe S. Molecular pathogenesis of esophageal squamous cell carcinoma: Identification of the antitumor effects of miR‑145‑3p on gene regulation. Int J Oncol 2019; 54:673-688. [PMID: 30535463 DOI: 10.3892/ijo.2018.4657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Although miR‑145‑5p (the guide strand of the miR‑145 duplex) is established as a tumor suppressive microRNA (miRNA or miR), the functional significance of miR‑145‑3p (the passenger strand of the miR‑145 duplex) in cancer cells and its targets remains obscure. In our continuing analysis of esophageal squamous cell carcinoma (ESCC) pathogenesis, the aim of the present study was to identify important oncogenes and proteins that are controlled by miR‑145‑3p. Overexpression of miR‑145‑3p significantly reduced cancer cell proliferation, migration and invasive abilities, and further increased apoptotic abilities. In ESCC cells, 30 possible oncogenic targets were identified that might be regulated by miR‑145‑3p. Among these targets, dehydrogenase/reductase member 2 (DHRS2) and myosin IB (MYO1B) were focused on to investigate their functional roles in ESCC cells. DHRS2 and MYO1B were directly regulated by miR‑145‑3p in ESCC cells by dual luciferase reporter assays. Aberrantly expressed DHRS2 and MYOIB were detected in ESCC clinical specimens, and their overexpression enhanced cancer cell aggressiveness. Genes regulated by antitumor miR‑145‑3p were closely associated with the molecular pathogenesis of ESCC. The approach based on antitumor miRNAs may contribute to the understanding of ESCC molecular pathogenesis.
Collapse
Affiliation(s)
- Masataka Shimonosono
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260‑8670, Japan
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260‑8670, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260‑8670, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Ken Sasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Itaru Omoto
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Yasuto Uchikado
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| |
Collapse
|
34
|
Yue H, Liu L, Song Z. miR-212 regulated by HIF-1α promotes the progression of pancreatic cancer. Exp Ther Med 2019; 17:2359-2365. [PMID: 30867721 DOI: 10.3892/etm.2019.7213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNA-212 (miR-212) is dysregulated in numerous tissues and cancer types and serves a role in the progression of human cancer. However, the function and mechanism of miR-212 in the development of pancreatic ductal adenocarcinoma (PDAC) remain unknown, particularly in a hypoxic microenvironment. In the present study, miR-212 expression was observed to be significantly upregulated in PDAC tissues compared with normal tissues. Clinical data analysis indicated that miR-212 was positively associated with a large tumor size, Tumor-Node-Metastasis stage, lymph node metastasis and vessel invasion, and influenced the overall survival time. Notably, there was a positive association between the expression of hypoxia-inducible factor-1α (HIF-1α) and miR-212 in vivo and in vitro in hypoxic conditions. Mechanistically, HIF-1α bound directly to a hypoxia response element in the miR-212 promoter region and activated miR-212 expression in PDAC cells. Collectively, these results demonstrated that HIF-1α positively regulated miR-212 expression and resulted in PDAC progression.
Collapse
Affiliation(s)
- Hui Yue
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesia, Cancer Institute, National Clinical Research Center for Cancer, Tianjin Medical University Hospital, Tianjin 300060, P.R. China
| | - Lin Liu
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesia, Cancer Institute, National Clinical Research Center for Cancer, Tianjin Medical University Hospital, Tianjin 300060, P.R. China
| | - Zhenguo Song
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesia, Cancer Institute, National Clinical Research Center for Cancer, Tianjin Medical University Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
35
|
Molecular pathogenesis of triple-negative breast cancer based on microRNA expression signatures: antitumor miR-204-5p targets AP1S3. J Hum Genet 2018; 63:1197-1210. [PMID: 30228364 DOI: 10.1038/s10038-018-0510-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of cancer associated with a poor prognosis. Identification of novel therapeutic targets in TNBC is urgently needed. Here, we investigated the microRNA (miRNA) expression signature of TNBC using clinical specimens. In total, 104 miRNAs (56 upregulated and 48 downregulated) were significantly dysregulated in TNBC tissues; miR-204-5p showed the most dramatic downregulation. We then examined the antitumor roles of miR-204-5p in breast cancer (BC) cells. Notably, cancer cell migration and invasion were significantly reduced by ectopic expression of miR-204-5p in BC cells. Genome-wide gene expression analysis and in silico database search revealed that 32 genes were putative miR-204-5p targets. High expression of AP1S3, RACGAP1, ELOVL6, and LRRC59 was significantly associated with poor prognosis in patients with BC, and adaptor-related protein complex 1 sigma 3 subunit (AP1S3) was directly regulated by miR-204-5p, as demonstrated by luciferase reporter assays. AP1S3 overexpression was detected in TNBC clinical specimens and enhanced cancer cell aggressiveness. We further analyzed downstream RNA networks regulated by AP1S3 in BC cells. Overall, this miRNA signature is expected to be an effective tool for identification of miRNA-mediated molecular mechanisms of TNBC pathogenesis.
Collapse
|
36
|
Idichi T, Seki N, Kurahara H, Fukuhisa H, Toda H, Shimonosono M, Okato A, Arai T, Kita Y, Mataki Y, Kijima Y, Maemura K, Natsugoe S. Molecular pathogenesis of pancreatic ductal adenocarcinoma: Impact of passenger strand of pre-miR-148a on gene regulation. Cancer Sci 2018; 109:2013-2026. [PMID: 29660218 PMCID: PMC5989856 DOI: 10.1111/cas.13610] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/05/2023] Open
Abstract
We previously used RNA sequencing to establish the microRNA (miRNA) expression signature of pancreatic ductal adenocarcinoma (PDAC). We found that both strands of pre-miR-148a (miR-148a-5p: the passenger strand and miR-148a-3p: the guide strand) were downregulated in cancer tissues. Ectopic expression of miR-148a-5p and miR-148a-3p significantly inhibited cancer cell migration and invasion, indicating that both strands of pre-miR-148a had tumor-suppressive roles in PDAC cells. In silico database and genome-wide gene expression analyses identified a total of 15 genes that were putative targets regulated by these miRNAs. High expression of miR-148a-5p targets (PHLDA2, LPCAT2 and AP1S3) and miR-148a-3p targets (SMA, ENDOD1 and UHMK1) was associated with poor prognosis of patients with PDAC. Moreover, knockdown of PHLDA2 expression inhibited cancer cell aggressiveness, suggesting PHLDA2 acted as an oncogene in PDAC cells. Involvement of the passenger strand of pre-miR-148a (miR-148-5p) is a new concept in cancer research. Novel approaches that identify tumor-suppressive miRNA regulatory networks in lethal PDAC might provide new prognostic markers and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Haruhi Fukuhisa
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Masataka Shimonosono
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|