1
|
Wang J, Du L, Chen X. Oncolytic virus: A catalyst for the treatment of gastric cancer. Front Oncol 2022; 12:1017692. [PMID: 36505792 PMCID: PMC9731121 DOI: 10.3389/fonc.2022.1017692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. According to the GLOBOCAN 2020 estimates of incidence and mortality for 36 cancers in 185 countries produced by the International Agency for Research on Cancer (IARC), GC ranks fifth and fourth, respectively, and seriously threatens the survival and health of people all over the world. Therefore, how to effectively treat GC has become an urgent problem for medical personnel and scientific workers at this stage. Due to the unobvious early symptoms and the influence of some adverse factors such as tumor heterogeneity and low immunogenicity, patients with advanced gastric cancer (AGC) cannot benefit significantly from treatments such as radical surgical resection, radiotherapy, chemotherapy, and targeted therapy. As an emerging cancer immunotherapy, oncolytic virotherapies (OVTs) can not only selectively lyse cancer cells, but also induce a systemic antitumor immune response. This unique ability to turn unresponsive 'cold' tumors into responsive 'hot' tumors gives them great potential in GC therapy. This review integrates most experimental studies and clinical trials of various oncolytic viruses (OVs) in the diagnosis and treatment of GC. It also exhaustively introduces the concrete mechanism of invading GC cells and the viral genome composition of adenovirus and herpes simplex virus type 1 (HSV-1). At the end of the article, some prospects are put forward to determine the developmental directions of OVTs for GC in the future.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
2
|
Tazawa H, Shigeyasu K, Noma K, Kagawa S, Sakurai F, Mizuguchi H, Kobayashi H, Imamura T, Fujiwara T. Tumor‐targeted fluorescence labeling systems for cancer diagnosis and treatment. Cancer Sci 2022; 113:1919-1929. [PMID: 35398956 PMCID: PMC9207361 DOI: 10.1111/cas.15369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022] Open
Abstract
Conventional imaging techniques are available for clinical identification of tumor sites. However, detecting metastatic tumor cells that are spreading from primary tumor sites using conventional imaging techniques remains difficult. In contrast, fluorescence‐based labeling systems are useful tools for detecting tumor cells at the single‐cell level in cancer research. The ability to detect fluorescent‐labeled tumor cells enables investigations of the biodistribution of tumor cells for the diagnosis and treatment of cancer. For example, the presence of fluorescent tumor cells in the peripheral blood of cancer patients is a predictive biomarker for early diagnosis of distant metastasis. The elimination of fluorescent tumor cells without damaging normal tissues is ideal for minimally invasive treatment of cancer. To capture fluorescent tumor cells within normal tissues, however, tumor‐specific activated target molecules are needed. This review focuses on recent advances in tumor‐targeted fluorescence labeling systems, in which indirect reporter labeling using tumor‐specific promoters is applied to fluorescence labeling of tumor cells for the diagnosis and treatment of cancer. Telomerase promoter‐dependent fluorescence labeling using replication‐competent viral vectors produces fluorescent proteins that can be used to detect and eliminate telomerase‐positive tumor cells. Tissue‐specific promoter‐dependent fluorescence labeling enables identification of specific tumor cells. Vimentin promoter‐dependent fluorescence labeling is a useful tool for identifying tumor cells that undergo epithelial–mesenchymal transition (EMT). The evaluation of tumor cells undergoing EMT is important for accurately assessing metastatic potential. Thus, tumor‐targeted fluorescence labeling systems represent novel platforms that enable the capture of tumor cells for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Hiroshi Tazawa
- Department of Gastroenterological Surgery Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
- Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
- Minimally Invasive Therapy Center Okayama University Hospital Okayama Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan
| | - Hisataka Kobayashi
- Molecular Imaging Branch Center for Cancer Research National Cancer Institute National Institutes of Health Bethesda MD USA
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis Ehime University Graduate School of Medicine Ehime Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
3
|
Kato T, Nakamori M, Matsumura S, Nakamura M, Ojima T, Fukuhara H, Ino Y, Todo T, Yamaue H. Oncolytic virotherapy with human telomerase reverse transcriptase promoter regulation enhances cytotoxic effects against gastric cancer. Oncol Lett 2021; 21:490. [PMID: 33968206 PMCID: PMC8100961 DOI: 10.3892/ol.2021.12751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
Currently, gastric cancer is the third most common cause of cancer-associated mortality worldwide. Oncolytic virotherapy using herpes simplex virus (HSV) has emerged as a novel therapeutic strategy against cancer. Telomerase is activated in >90of malignant tumors, including gastric cancer, and human telomerase reverse transcriptase (hTERT) is one of the major components of telomerase enzyme. Therefore, in oncolytic HSV, placing the essential genes under the regulation of the hTERT promoter may enhance its antitumor efficacy. The present study examined the antitumor effect of fourth-generation oncolytic HSVs, which contain the ICP6 gene under the regulation of the hTERT promoter (T-hTERT). To examine the association between hTERT expression and prognosis in patients with gastric cancer, immunohistochemical analysis of resected tumor specimens was performed. The enhanced efficacy of T-hTERT was determined in human gastric cancer cell lines in vitro and in human gastric adenocarcinoma specimens in vivo. In in vitro experiments, enhanced cytotoxicity of T-hTERT was observed in MKN1, MKN28 and MKN45 cells compared with that of a third-generation oncolytic HSV, T-null. In particular, the cytotoxicity of T-hTERT was markedly enhanced in MKN45 cells. Furthermore, in vivo experiments demonstrated that 36.7 and 54.9% of cells were found to be lysed 48 h after infection with T-null or T-hTERT viruses at 0.01 pfu/cell, respectively. The T-hTERT-treated group exhibited considerably lower cell viability than the control [phosphate-buffered saline (-)] group. Therefore, employing oncolytic HSVs that contain the ICP6 gene under the regulation of the hTERT promoter may be an effective therapeutic strategy for gastric cancer. To the best of our knowledge, the present study was the first to describe the effect of an oncolytic HSV with ICP6 expression regulated by the hTERT promoter on gastric cancer cells.
Collapse
Affiliation(s)
- Tomoya Kato
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| | - Mikihito Nakamori
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| | - Shuichi Matsumura
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| | - Masaki Nakamura
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| | - Toshiyasu Ojima
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University, School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| |
Collapse
|
4
|
Ito A, Kagawa S, Sakamoto S, Kuwada K, Kajioka H, Yoshimoto M, Kikuchi S, Kuroda S, Yoshida R, Tazawa H, Fujiwara T. Extracellular vesicles shed from gastric cancer mediate protumor macrophage differentiation. BMC Cancer 2021; 21:102. [PMID: 33509150 PMCID: PMC7845052 DOI: 10.1186/s12885-021-07816-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Background Peritoneal dissemination often develops in gastric cancer. Tumor-associated macrophages (TAMs) are present in the peritoneal cavity of gastric cancer patients with peritoneal dissemination, facilitating tumor progression. However, the mechanism by which macrophages differentiate into tumor-associated macrophages in the peritoneal cavity is not well understood. In this study, the interplay between gastric cancer-derived extracellular vesicles (EVs) and macrophages was investigated. Methods The association between macrophages and EVs in peritoneal ascitic fluid of gastric cancer patients, or from gastric cancer cell lines was examined, and their roles in differentiation of macrophages and potentiation of the malignancy of gastric cancer were further explored. Results Immunofluorescent assays of the ascitic fluid showed that M2 macrophages were predominant along with the cancer cells in the peritoneal cavity. EVs purified from gastric cancer cells, as well as malignant ascitic fluid, differentiated peripheral blood mononuclear cell-derived macrophages into the M2-like phenotype, which was demonstrated by their morphology and expression of CD163/206. The macrophages differentiated by gastric cancer-derived EVs promoted the migration ability of gastric cancer cells, and the EVs carried STAT3 protein. Conclusion EVs derived from gastric cancer play a role by affecting macrophage phenotypes, suggesting that this may be a part of the underlying mechanism that forms the intraperitoneal cancer microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07816-6.
Collapse
Affiliation(s)
- Atene Ito
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan.
| | - Shuichi Sakamoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuya Kuwada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroki Kajioka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masashi Yoshimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
5
|
Lan Q, Chen Y, Dai C, Li S, Fei X, Dong J, Shen Y, Dai X, Lu Z, Liu B, Wang Q, Wang H, Zhou Z, Ji X, Wang Z, Huang Q. Novel enhanced GFP-positive congenic inbred strain establishment and application of tumor-bearing nude mouse model. Cancer Sci 2020; 111:3626-3638. [PMID: 32589305 PMCID: PMC7540977 DOI: 10.1111/cas.14545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
Transgenic GFP gene mice are widely used. Given the unique advantages of immunodeficient animals in the field of oncology research, we aim to establish a nude mouse inbred strain that stably expresses enhanced GFP (EGFP) for use in transplanted tumor microenvironment (TME) research. Female C57BL/6-Tg(CAG-EGFP) mice were backcrossed with male BALB/c nude mice for 11 generations. The genotype and phenotype of novel inbred strain Foxn1nu .B6-Tg(CAG-EGFP) were identified by biochemical loci detection, skin transplantation and flow cytometry. PCR and fluorescence spectrophotometry were performed to evaluate the relative expression of EGFP in different parts of the brain. Red fluorescence protein (RFP) gene was stably transfected into human glioma stem cells (GSC), SU3, which were then transplanted intracerebrally or ectopically into Foxn1nu .B6-Tg(CAG-EGFP) mice. Cell co-expression of EGFP and RFP in transplanted tissues was further analyzed with the Live Cell Imaging System (Cell'R, Olympus) and FISH. The inbred strain Foxn1nu .B6-Tg(CAG-EGFP) shows different levels of EGFP expression in brain tissue. The hematological and immune cells of the inbred strain mice were close to those of nude mice. EGFP was stably expressed in multiple sites of Foxn1nu .B6-Tg(CAG-EGFP) mice, including brain tissue. With the dual-fluorescence tracing transplanted tumor model, we found that SU3 induced host cell malignant transformation in TME, and tumor/host cell fusion. In conclusion, EGFP is differentially and widely expressed in brain tissue of Foxn1nu .B6-Tg(CAG-EGFP), which is an ideal model for TME investigation. With Foxn1nu .B6-Tg(CAG-EGFP) mice, our research demonstrated that host cell malignant transformation and tumor/host cell fusion play an important role in tumor progression.
Collapse
Affiliation(s)
- Qing Lan
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yanming Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chungang Dai
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shenggang Li
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xifeng Fei
- Department of NeurosurgerySuzhou Kowloon Hospital of Shanghai Jiaotong University School of MedicineSuzhouChina
| | - Jun Dong
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yanhua Shen
- Laboratory Animal CenterSoochow UniversitySuzhouChina
| | - Xingliang Dai
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Zhaohui Lu
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bing Liu
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qilong Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Haiyang Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhengyu Zhou
- Laboratory Animal CenterSoochow UniversitySuzhouChina
| | - Xiaoyan Ji
- Department of OphthalmologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhimin Wang
- Department of NeurosurgerySuzhou Kowloon Hospital of Shanghai Jiaotong University School of MedicineSuzhouChina
| | - Qiang Huang
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
6
|
Ishikawa W, Kikuchi S, Ogawa T, Tabuchi M, Tazawa H, Kuroda S, Noma K, Nishizaki M, Kagawa S, Urata Y, Fujiwara T. Boosting Replication and Penetration of Oncolytic Adenovirus by Paclitaxel Eradicate Peritoneal Metastasis of Gastric Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:262-271. [PMID: 32728614 PMCID: PMC7378855 DOI: 10.1016/j.omto.2020.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Peritoneal metastasis is the most frequent form of distant metastasis and recurrence in gastric cancer, and the prognosis is extremely poor due to the resistance of systemic chemotherapy. Here, we demonstrate that intraperitoneal (i.p.) administration of a green fluorescence protein (GFP)-expressing attenuated adenovirus with oncolytic potency (OBP-401) synergistically suppressed the peritoneal metastasis of gastric cancer in combination with paclitaxel (PTX). OBP-401 synergistically suppressed the viability of human gastric cancer cells in combination with PTX. PTX enhanced the antitumor effect of OBP-401 due to enhanced viral replication in cancer cells. The combination therapy increased induction of mitotic catastrophe, resulting in accelerated autophagy and apoptosis. Peritoneally disseminated nodules were selectively visualized as GFP-positive spots by i.p. administration of OBP-401 in an orthotopic human gastric cancer peritoneal dissemination model. PTX enhanced the deep penetration of OBP-401 into the disseminated nodules. Moreover, a non-invasive in vivo imaging system demonstrated that the combination therapy of i.p. OBP-401 administration with PTX significantly inhibited growth of peritoneal metastatic tumors and the amount of malignant ascites. i.p. virotherapy with PTX may be a promising treatment strategy for the peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Wataru Ishikawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Corresponding author: Satoru Kikuchi, Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Toshihiro Ogawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Motoyasu Tabuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiko Nishizaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc., Tokyo 106-0032, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
7
|
Tazawa H, Hasei J, Yano S, Kagawa S, Ozaki T, Fujiwara T. Bone and Soft-Tissue Sarcoma: A New Target for Telomerase-Specific Oncolytic Virotherapy. Cancers (Basel) 2020; 12:cancers12020478. [PMID: 32085583 PMCID: PMC7072448 DOI: 10.3390/cancers12020478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Adenovirus serotype 5 (Ad5) is widely and frequently used as a virus vector in cancer gene therapy and oncolytic virotherapy. Oncolytic virotherapy is a novel antitumor treatment for inducing lytic cell death in tumor cells without affecting normal cells. Based on the Ad5 genome, we have generated three types of telomerase-specific replication-competent oncolytic adenoviruses: OBP-301 (Telomelysin), green fluorescent protein (GFP)-expressing OBP-401 (TelomeScan), and tumor suppressor p53-armed OBP-702. These viruses drive the expression of the adenoviral E1A and E1B genes under the control of the hTERT (human telomerase reverse transcriptase-encoding gene) promoter, providing tumor-specific virus replication. This review focuses on the therapeutic potential of three hTERT promoter-driven oncolytic adenoviruses against bone and soft-tissue sarcoma cells with telomerase activity. OBP-301 induces the antitumor effect in monotherapy or combination therapy with chemotherapeutic drugs via induction of autophagy and apoptosis. OBP-401 enables visualization of sarcoma cells within normal tissues by serving as a tumor-specific labeling reagent for fluorescence-guided surgery via induction of GFP expression. OBP-702 exhibits a profound antitumor effect in OBP-301-resistant sarcoma cells via activation of the p53 signaling pathway. Taken together, telomerase-specific oncolytic adenoviruses are promising antitumor reagents that are expected to provide novel therapeutic options for the treatment of bone and soft-tissue sarcomas.
Collapse
Affiliation(s)
- Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
- Correspondence: ; Tel.: +81-86-235-7491; Fax: +81-86-235-7492
| | - Joe Hasei
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (J.H.); (T.O.)
| | - Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (J.H.); (T.O.)
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
| |
Collapse
|
8
|
Sakamoto S, Kagawa S, Kuwada K, Ito A, Kajioka H, Kakiuchi Y, Watanabe M, Kagawa T, Yoshida R, Kikuchi S, Kuroda S, Tazawa H, Fujiwara T. Intraperitoneal cancer-immune microenvironment promotes peritoneal dissemination of gastric cancer. Oncoimmunology 2019; 8:e1671760. [PMID: 31741772 PMCID: PMC6844331 DOI: 10.1080/2162402x.2019.1671760] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
A solid tumor consists of cancer and stromal cells, which comprise the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are usually abundant in the TME, contributing to tumor progression. In cases of peritoneal dissemination of gastric cancer (GC), the contribution of intraperitoneal TAMs remains unclear. Macrophages from peritoneal washings of GC patients were analyzed, and the link between intraperitoneal TAMs and GC cells was investigated to clarify the interaction between them in peritoneal dissemination. Macrophages were predominant among leukocytes constituting the microenvironment of the peritoneal cavity. The proportion of CD163-positive TAMs was significantly higher in stage IV than in stage I GC. Co-culture with TAMs potentiated migration and invasion of GC. IL-6 was the most increased in the medium of in vitro co-culture of macrophages and GC, and IL-6 elevation was also observed in the peritoneal washes with peritoneal dissemination. An elevated concentration of intraperitoneal IL-6 was correlated with a poor prognosis in clinical cases. In conclusion, intraperitoneal TAMs are involved in promoting peritoneal dissemination of GC via secreted IL-6. TAM-derived IL-6 could be a potential therapeutic target for peritoneal dissemination of GC.
Collapse
Affiliation(s)
- Shuichi Sakamoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Kazuya Kuwada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atene Ito
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Kajioka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Megumi Watanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Watanabe M, Kagawa S, Kuwada K, Hashimoto Y, Shigeyasu K, Ishida M, Sakamoto S, Ito A, Kikuchi S, Kuroda S, Kishimoto H, Tomida S, Yoshida R, Tazawa H, Urata Y, Fujiwara T. Integrated fluorescent cytology with nano-biologics in peritoneally disseminated gastric cancer. Cancer Sci 2018; 109:3263-3271. [PMID: 30076658 PMCID: PMC6172043 DOI: 10.1111/cas.13760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer patients positive for peritoneal cytology are at increased risk of tumor recurrence, but although a certain proportion of cytology‐positive patients relapse rapidly with aggressive progression, others survive longer with conventional chemotherapies. This heterogeneity makes it difficult to stratify patients for more intensive therapy and poses a substantial challenge for the implementation of precision medicine. We developed a new approach to identify biologically malignant subpopulations in cytology‐positive gastric cancer patients, using a green fluorescent protein (GFP)‐expressing attenuated adenovirus in which the telomerase promoter regulates viral replication (TelomeScan, OBP‐401). The fluorescence emitted from TelomeScan‐positive cells was successfully quantified using a multi‐mode microplate reader. We then analyzed clinical peritoneal washes obtained from 68 gastric cancer patients and found that patients positive for TelomeScan had a significantly worse prognosis. In 21 cytology‐positive patients, the median survival time of those who were TelomeScan positive (235 days) was significantly shorter than that for those who were TelomeScan negative (671 days; P = 0.0062). This fluorescent virus‐guided cytology detects biologically malignant cancer cells from the peritoneal washes of gastric cancer patients and may thus be useful for both therapy stratification and precision medicine approaches based on genetic profiling of disseminated cells.
Collapse
Affiliation(s)
- Megumi Watanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuya Kuwada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuuri Hashimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michihiro Ishida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuichi Sakamoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atene Ito
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Translational Research Network Project, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | | | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|