1
|
Seyama Y, Sudo K, Yamada T, Tsuchiya K, Nakamura Y. Ascorbic acid predominantly kills cancer stem cell-like cells in the hepatocellular carcinoma cell line Li-7 and is more effective at low cell density and in small spheroids. Biochem Biophys Res Commun 2024; 709:149816. [PMID: 38547607 DOI: 10.1016/j.bbrc.2024.149816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
The development of therapies that target cancer stem cells (CSCs) is an important challenge in cancer research. The antioxidant system is enhanced in CSCs, which may lead to resistance to existing therapies. Ascorbic acid (AA) has the potential to act as both an antioxidant and a pro-oxidant agent, but its effects on CSCs are a subject of current research. Here, we investigated the effect of AA focusing specifically on CSCs with the hepatocellular carcinoma cell line Li-7. The Li-7 cell line is heterogenous consisting of CD166- and CD166+ cells; CD166- cells include CSC-like cells (CD13+CD166- cells) and CD13-CD166- cells that can revert to CD13+CD166- cells. The addition of AA to the culture medium caused cell death in both cell populations in CD166- cells in a concentration dependent manner. In contrast, AA administration had a limited effect on CD166+ non-CSC cells. The level of reactive oxygen species after AA treatment was elevated only in CD166- cells. The effect of AA only occurred at low cell densities in 2D and 3D cultures. In a mouse tumor model injected with Li-7 cells, intraperitoneal administration of AA failed to prevent tumor formation but appeared to delay tumor growth. Our findings shed light on why AA administration has not become a mainstream treatment for cancer treatment; however, they also show the possibility that AA can be used in therapies to suppress CSCs.
Collapse
Affiliation(s)
- Yusuke Seyama
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kazuhiro Sudo
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan.
| | - Takeshi Yamada
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Division of Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kiichiro Tsuchiya
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan.
| |
Collapse
|
2
|
Seyama Y, Sudo K, Hirose S, Hamano Y, Yamada T, Hiroyama T, Sasaki R, Hirai MY, Hyodo I, Tsuchiya K, Nakamura Y. Identification of a gene set that maintains tumorigenicity of the hepatocellular carcinoma cell line Li-7. Hum Cell 2023; 36:2074-2086. [PMID: 37610679 PMCID: PMC10587214 DOI: 10.1007/s13577-023-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
The identification and development of therapeutic targets in cancer stem cells that lead to tumor development, recurrence, metastasis, and drug resistance is an important goal in cancer research. The hepatocellular carcinoma cell line Li-7 contains functionally different types of cells. Cells with tumor-forming activity are enriched in cancer stem cell-like CD13+CD166- cells and this cell population gradually decreases during culture in conventional culture medium (RPMI1640 containing 10% fetal bovine serum). When Li-7 cells are cultured in mTeSR1, a medium developed for human pluripotent stem cells, CD13+CD166- cells, and their tumorigenicity is maintained. Here, we sought to identify the mechanisms of tumorigenicity in this sub-population. We compared gene expression profiles of CD13+CD166- cells with other cell sub-populations and identified nine overexpressed genes (ENPP2, SCGN, FGFR4, MCOLN3, KCNJ16, SMIM22, SMIM24, SERPINH1, and TMPRSS2) in CD13+CD166- cells. After transfer from mTeSR1 to RPMI1640 containing 10% fetal bovine serum, the expression of these nine genes decreased in Li-7 cells and they lost tumorigenicity. In contrast, when these genes of Li-7 cells were forcibly expressed in cultures using RPMI1640 containing 10% fetal bovine serum, Li-7 cells maintained tumorigenicity. A metabolome analysis using capillary electrophoresis-mass spectrometry showed that two metabolic pathways, "Alanine, aspartate and glutamate metabolism" and "Arginine biosynthesis" were activated in cancer stem-cell-like cells. Our analyses here showed potential therapeutic target genes and metabolites for treatment of cancer stem cells in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yusuke Seyama
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kazuhiro Sudo
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan.
| | - Suguru Hirose
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Yukako Hamano
- Department of Gastroenterology, Hitachi General Hospital, Hitachi, Japan
| | - Takeshi Yamada
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Hiroyama
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Ryosuke Sasaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Ichinosuke Hyodo
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Kiichiro Tsuchiya
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan.
| |
Collapse
|
3
|
Sato Y, Yamada T, Hiroyama T, Sudo K, Hasegawa N, Hyodo I, Nakamura Y. A robust culture method for maintaining tumorigenic cancer stem cells in the hepatocellular carcinoma cell line Li-7. Cancer Sci 2019; 110:1644-1652. [PMID: 30784169 PMCID: PMC6500967 DOI: 10.1111/cas.13978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/23/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer tissues contain small populations of highly tumorigenic cells termed cancer stem cells (CSCs). Immortalized cell lines containing CSCs are valuable and powerful experimental tools for research into the characteristics of these stem cells. We previously reported that the hepatocellular carcinoma cell line Li‐7 includes abundant CD13+CD166−CSCs; however, the number of these cells decreases after long‐term culture as a result of differentiation to non‐CSC populations. To ensure consistent and reproducible results in experiments using Li‐7 cells, it is important that the CSC population is maintained stably regardless of culture duration and passage. In the present study, we found that a commercially available culture medium for maintenance of embryonic stem cells and induced pluripotent stem cells, mTeSR1, effectively prevented spontaneous differentiation by CD13+CD166− cells to CD13−CD166+ cells and therefore maintained the CSC population in Li‐7 cell cultures. CD13+CD166−CSCs maintained using this culture medium retained high tumorigenicity after transplantation into mice; they also showed the ability to differentiate in vitro into non‐CSC populations in RPMI‐1640 with 10% FBS medium. We analyzed gene expression profiles of CSC and non‐CSC populations in Li‐7 cultures using an RNA sequencing method. Genes such as FGFR, NOTCH1, and JAG1, that are associated with tumorigenicity and stemness, were upregulated in the CSC population. Our results suggest that CSCs can be maintained in immortalized cancer cell lines cultured over an extended period using a medium developed for culture of embryonic/induced pluripotent stem cells.
Collapse
Affiliation(s)
- Yukako Sato
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Takeshi Yamada
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Division of Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Hiroyama
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kazuhiro Sudo
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Naoyuki Hasegawa
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ichinosuke Hyodo
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| |
Collapse
|