1
|
Liu W, Zhang Y, Nie Y, Liu Y, Li Z, Zhang Z, Gong B, Ma M. AGBL2 promotes renal cell carcinoma cells proliferation and migration via α-tubulin detyrosination. Heliyon 2024; 10:e37086. [PMID: 39315218 PMCID: PMC11417249 DOI: 10.1016/j.heliyon.2024.e37086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background AGBL2's role in tumorigenesis and cancer progression has been reported in several cancer studies, and it is closely associated with α-tubulin detyrosination. The roles of AGBL2 and α-tubulin detyrosination in renal cell carcinoma (RCC) pathogenesis remain unclear and require further investigation. Methods In this study, we conducted an analysis of AGBL2 expression differences between renal clear cell carcinoma tissues and normal tissues using data from The Cancer Genome Atlas (TCGA). We performed a comprehensive prognostic analysis of AGBL2 in Kidney Renal Clear Cell Carcinoma (KIRC) using univariate and multivariate Cox regression. Based on the results of the Cox analysis, we constructed a prognostic model to assess its predictive capabilities. Receiver Operating Characteristic (ROC) analysis confirmed the diagnostic value of AGBL2 in renal cancer. We conducted further validation by analyzing cancer tissue samples and renal cancer cell lines, which confirmed the role of AGBL2 in promoting RCC cell proliferation and migration through in vitro experiments. Additionally, we verified the impact of AGBL2's detyrosination on α-tubulin using the tubulin carboxypeptidase (TCP) inhibitor parthenolide. Finally, we performed sequencing analysis on AGBL2 knockdown 786-O cells to investigate the correlation between AGBL2, immune infiltration, and AKT phosphorylation. Moreover, we experimentally demonstrated the enhancing effect of AGBL2 on AKT phosphorylation. Results TCGA analysis revealed a significant increase in AGBL2 expression in RCC patients, which was correlated with poorer overall survival (OS), disease-specific survival (DSS), and progression-free intervals (PFI). According to the analysis results, we constructed column-line plots to predict the 1-, 3-, and 5-year survival outcomes in RCC patients. Additionally, the calibration plots assessing the model's performance exhibited favorable agreement with the predicted outcomes. And the ROC curves showed that AGBL2 showed good diagnostic performance in KIRC (AUC = 0.836)). Cell phenotyping assays revealed that AGBL2 knockdown in RCC cells significantly inhibited cell proliferation and migration. Conversely, overexpression of AGBL2 resulted in increased cell proliferation and migration in RCC cells. We observed that AGBL2 is predominantly located in the nucleus and can elevate the detyrosination level of α-tubulin in RCC cells. Moreover, the enhancement of RCC cell proliferation and migration by AGBL2 was partially inhibited after treatment with the TCP inhibitor parthenolide. Analysis of the sequencing data revealed that AGBL2 is associated with a diverse array of biological processes, encompassing signal transduction and immune infiltration. Interestingly, AGBL2 expression exhibited a negative correlation with the majority of immune cell infiltrations. Additionally, AGBL2 was found to enhance the phosphorylation of AKT in RCC cells. Conclusion Our study suggests that AGBL2 fosters RCC cell proliferation and migration by enhancing α-tubulin detyrosination. Moreover, elevated AGBL2 expression increases phosphorylation of AKT in RCC cells.
Collapse
Affiliation(s)
- Wei Liu
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yifei Zhang
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yechen Nie
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yifu Liu
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongqi Li
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhicheng Zhang
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Binbin Gong
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ming Ma
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
| |
Collapse
|
2
|
Wu Q, Mao H, Jiang Z, Tang D. Tumour-associated neutrophils: Potential therapeutic targets in pancreatic cancer immunotherapy. Immunology 2024; 172:343-361. [PMID: 38402904 DOI: 10.1111/imm.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumour of the digestive system with poor therapeutic response and low survival rates. Immunotherapy has rapidly developed in recent years and has achieved significant outcomes in numerous malignant neoplasms. However, responses to immunotherapy in PC are rare, and the immunosuppressive and desmoplastic tumour microenvironment (TME) significantly hinders their efficacy in PC. Tumour-associated neutrophils (TANs) play a crucial role in the PC microenvironment and exert a profound influence on PC immunotherapy by establishing a robust stromal shelter and restraining immune cells to assist PC cells in immune escape, which may subvert the current status of PC immunotherapy. The present review aims to offer a comprehensive summary of the latest progress in understanding the involvement of TANs in PC desmoplastic and immunosuppressive functions and to emphasise the potential therapeutic implications of focusing on TANs in the immunotherapy of this deleterious disease. Finally, we provide an outlook for the future use of TANs in PC immunotherapy.
Collapse
Affiliation(s)
- Qihang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Han Mao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
3
|
Nakashima Y, Tanabe K, Mifune T, Nakadoi T, Hayashi H, Nakagami H, Sato Y, Wada J. Preventive effects of vasohibin-2-targeting peptide vaccine for diabetic nephropathy. Am J Physiol Renal Physiol 2024; 326:F1054-F1065. [PMID: 38695075 DOI: 10.1152/ajprenal.00341.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Diabetic nephropathy remains the leading cause of end-stage kidney disease in many countries, and additional therapeutic targets are needed to prevent its development and progression. Some angiogenic factors are involved in the pathogenesis of diabetic nephropathy. Vasohibin-2 (VASH2) is a novel proangiogenic factor, and our previous study showed that glomerular damage is inhibited in diabetic Vash2 homozygous knockout mice. Therefore, we established a VASH2-targeting peptide vaccine as a tool for anti-VASH2 therapy in diabetic nephropathy. In this study, the preventive effects of the VASH2-targeting peptide vaccine against glomerular injury were examined in a streptozotocin (STZ)-induced diabetic mouse model. The mice were subcutaneously injected with the vaccine at two doses 2 wk apart and then intraperitoneally injected with 50 mg/kg STZ for 5 consecutive days. Glomerular injury was evaluated 20 wk after the first vaccination. Treatment with the VASH2-targeting peptide vaccine successfully induced circulating anti-VASH2 antibody without inflammation in major organs. Although the vaccination did not affect blood glucose levels, it significantly prevented hyperglycemia-induced increases in urinary albumin excretion and glomerular volume. The vaccination did not affect increased VASH2 expression but significantly inhibited renal angiopoietin-2 (Angpt2) expression in the diabetic mice. Furthermore, it significantly prevented glomerular macrophage infiltration. The preventive effects of vaccination on glomerular injury were also confirmed in db/db mice. Taken together, the results of this study suggest that the VASH2-targeting peptide vaccine may prevent diabetic glomerular injury in mice by inhibiting Angpt2-mediated microinflammation.NEW & NOTEWORTHY This study demonstrated preventive effects of VASH2-targeting peptide vaccine therapy on albuminuria and glomerular microinflammation in STZ-induced diabetic mouse model by inhibiting renal Angpt2 expression. The vaccination was also effective in db/db mice. The results highlight the importance of VASH2 in the pathogenesis of early-stage diabetic nephropathy and the practicability of anti-VASH2 strategy as a vaccine therapy.
Collapse
Affiliation(s)
- Yuri Nakashima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Tanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyo Mifune
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takato Nakadoi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasufumi Sato
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
4
|
Lee ES, Suzuki Y, Tomioka H, Nakagami H, Sato Y. Development of a Novel and Simple Anti-Metastatic Cancer Treatment Targeting Vasohibin-2. TOHOKU J EXP MED 2023; 261:239-247. [PMID: 37704418 DOI: 10.1620/tjem.2023.j076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Vasohibin-2 (VASH2), a homologue of vasohibin-1 (VASH1), is overexpressed in various cancer cells and promotes tumor progression. We therefore regard VASH2 as a molecular target for cancer treatment. Here we applied vaccine technology to develop a therapy against VASH2. We selected two amino acid sequences of VASH2 protein; the MTG and RRR peptides, which contain possible B cell epitopes. These sequences are identical between the human and murine VASH2 proteins and distinct from those of the VASH1 protein. We conjugated these peptides with the carrier protein keyhole limpet hemocyanin, mixed with an adjuvant, and injected subcutaneously twice at a 2-week interval in mice. Both vaccines increased antibodies against the antigen peptide; however, only the MTG peptide vaccine increased antibodies that recognized the recombinant VASH2 protein. When Lewis lung cancer (LLC) cells were subcutaneously inoculated, tumors isolated from mice immunized with the MTG peptide vaccine showed a significant decrease in the expression of epithelial-to-mesenchymal transition (EMT) markers. EMT is responsible for cancer cell invasion and metastasis. When the LLC cells were injected into the tail vein, the MTG peptide vaccine inhibited lung metastasis. Moreover, the MTG peptide vaccine inhibited the metastasis of pancreatic cancer cells to the liver in an orthotopic mouse model, and there was a significant inverse correlation between the ELISA titer and metastasis inhibition. Therefore, we propose that the MTG peptide vaccine is a novel anti-metastatic cancer treatment that targets VASH2 and can be applied even in the most malignant and highly metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Eun-Seo Lee
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University
- New Industry Creation Hatchery Center, Tohoku University
| | | | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University
- New Industry Creation Hatchery Center, Tohoku University
| |
Collapse
|
5
|
Horie S, Suzuki Y, Yamamoto T, Obika S, Mohri K, Kiyota C, Ren Q, Warashina S, Wada Y, Watanabe Y, Mukai H, Sato Y. Novel strategy of liver cancer treatment with modified antisense oligonucleotides targeting human vasohibin-2. Cancer Sci 2023; 114:3740-3749. [PMID: 37430466 PMCID: PMC10475766 DOI: 10.1111/cas.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Vasohihibin-2 (VASH2) is a homolog of vasohibin-1 (VASH1) and is overexpressed in various cancers. Vasohihibin-2 acts on both cancer cells and cancer microenvironmental cells. Previous analyses have shown that VASH2 promotes cancer progression and abrogation of VASH2 results in significant anticancer effects. We therefore propose VASH2 to be a practical molecular target for cancer treatment. Modifications of antisense oligonucleotide (ASO) such as bridged nucleic acids (BNA)-based modification increases the specificity and stability of ASO, and are now applied to the development of a number of oligonucleotide-based drugs. Here we designed human VASH2-ASOs, selected an optimal one, and developed 2',4'-BNA-based VASH2-ASO. When systemically administered, naked 2',4'-BNA-based VASH2-ASO accumulated in the liver and showed its gene-silencing activity. We then examined the effect of 2',4'-BNA-based VASH2-ASO in liver cancers. Intraperitoneal injection of naked 2',4'-BNA-based VASH2-ASO exerted a potent antitumor effect on orthotopically inoculated human hepatocellular carcinoma cells. The same manipulation also showed potent antitumor activity on the splenic inoculation of human colon cancer cells for liver metastasis. These results provide a novel strategy for the treatment of primary as well as metastatic liver cancers by using modified ASOs targeting VASH2.
Collapse
Affiliation(s)
- Sachiko Horie
- Department of Vascular BiologyInstitute of Development, Aging and Cancer, Tohoku UniversitySendaiJapan
| | - Yasuhiro Suzuki
- Department of Vascular BiologyInstitute of Development, Aging and Cancer, Tohoku UniversitySendaiJapan
- New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan
| | - Tsuyoshi Yamamoto
- Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Present address:
Department of Chemistry of Biofunctional Molecules, School of Pharmaceutical SciencesNagasaki UniversityNagasakiJapan
| | - Satoshi Obika
- Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Kohta Mohri
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Chizuru Kiyota
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Qin Ren
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Shota Warashina
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health ScienceRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health ScienceRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Department of Pharmaceutical Informatics, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Yasufumi Sato
- Department of Vascular BiologyInstitute of Development, Aging and Cancer, Tohoku UniversitySendaiJapan
- New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan
| |
Collapse
|
6
|
Cheishvili D, Wong C, Karim MM, Kibria MG, Jahan N, Das PC, Yousuf MAK, Islam MA, Das DC, Noor-E-Alam SM, Szyf M, Alam S, Khan WA, Al Mahtab M. A high-throughput test enables specific detection of hepatocellular carcinoma. Nat Commun 2023; 14:3306. [PMID: 37286539 DOI: 10.1038/s41467-023-39055-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
High-throughput tests for early cancer detection can revolutionize public health and reduce cancer morbidity and mortality. Here we show a DNA methylation signature for hepatocellular carcinoma (HCC) detection in liquid biopsies, distinct from normal tissues and blood profiles. We developed a classifier using four CpG sites, validated in TCGA HCC data. A single F12 gene CpG site effectively differentiates HCC samples from other blood samples, normal tissues, and non-HCC tumors in TCGA and GEO data repositories. The markers were validated in a separate plasma sample dataset from HCC patients and controls. We designed a high-throughput assay using next-generation sequencing and multiplexing techniques, analyzing plasma samples from 554 clinical study participants, including HCC patients, non-HCC cancers, chronic hepatitis B, and healthy controls. HCC detection sensitivity was 84.5% at 95% specificity and 0.94 AUC. Implementing this assay for high-risk individuals could significantly decrease HCC morbidity and mortality.
Collapse
Affiliation(s)
- David Cheishvili
- HKG Epitherapeutics Ltd. Unit 313-315, 3/F Biotech Center 2, 11 Science Park west Avenue, Shatin, Hong Kong, SAR, China.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada.
| | - Chifat Wong
- HKG Epitherapeutics Ltd. Unit 313-315, 3/F Biotech Center 2, 11 Science Park west Avenue, Shatin, Hong Kong, SAR, China
| | - Mohammad Mahbubul Karim
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Mohammad Golam Kibria
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Nusrat Jahan
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Pappu Chandra Das
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Md Abul Khair Yousuf
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Md Atikul Islam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Dulal Chandra Das
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | | | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Sarwar Alam
- Department of Clinical Oncology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Wasif A Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| |
Collapse
|
7
|
Mitsufuji S, Iwagami Y, Kobayashi S, Sasaki K, Yamada D, Tomimaru Y, Akita H, Asaoka T, Noda T, Gotoh K, Takahashi H, Tanemura M, Doki Y, Eguchi H. Inhibition of Clusterin Represses Proliferation by Inducing Cellular Senescence in Pancreatic Cancer. Ann Surg Oncol 2022; 29:4937-4946. [PMID: 35397747 DOI: 10.1245/s10434-022-11668-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2023]
Abstract
BACKGROUND The outcome of pancreatic ductal adenocarcinoma (PDAC) is unsatisfactory, and the identification of novel therapeutic targets is urgently needed. Clinical studies on the antisense oligonucleotide that targets clusterin (CLU) expression have been conducted and have shown efficacy in other cancers. We aimed to investigate the effects of CLU in PDAC and the underlying mechanisms with a view to the clinical application of existing drugs. METHODS We knocked down CLU in PDAC cells and evaluated changes in cell proliferation. To elucidate the mechanism responsible for these changes, we performed western blot analysis, cell cycle assay, and senescence-associated β-galactosidase (SA-β-gal) staining. To evaluate the clinical significance of CLU, immunohistochemistry was performed, and CLU expression was analyzed in specimens resected from PDAC patients not treated with preoperative chemotherapy. RESULTS Knockdown of CLU significantly decreased cell proliferation and did not induce apoptosis, but did induce cellular senescence by increasing the percentage of G1-phase and SA-β-gal staining-positive cells. A marker of DNA damage such as γH2AX and factors related to cellular senescence, such as p21 and the senescence-associated secretory phenotype, were upregulated by knockdown of CLU. CLU expression in resected PDAC specimens was located in the cytoplasm of tumor cells and revealed significantly better recurrence-free survival and overall survival in the CLU-low group than in the CLU-high group. CONCLUSIONS We identified that CLU inhibition leads to cellular senescence in PDAC. Our findings suggest that CLU is a novel therapeutic target that contributes to the prognosis of PDAC by inducing cellular senescence.
Collapse
Affiliation(s)
- Suguru Mitsufuji
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
An T, Yin H, Lu Y, Liu F. The Emerging Potential of Parthenolide Nanoformulations in Tumor Therapy. Drug Des Devel Ther 2022; 16:1255-1272. [PMID: 35517982 PMCID: PMC9063801 DOI: 10.2147/dddt.s355059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Plant-derived sesquiterpene lactones are promising natural sources for the discovery of anti-cancer drugs. As an extensively studied sesquiterpene lactone, the tumor suppression effect of parthenolide (PTL) has been clarified by targeting a number of prominent signaling pathways and key protein regulators in carcinogenesis. Notably, PTL was also the first small molecule reported to eradicate cancer stem cells. Nevertheless, the clinical application of PTL as an antitumor agent remains limited, owing to some disadvantages such as low water solubility and poor bioavailability. Thus, nanomedicine has attracted much interest because of its great potential for transporting poorly soluble drugs to desired body sites. In view of the significant advantages over their free small-molecule counterparts, nanoparticle delivery systems appear to be a potential solution for addressing the delivery of hydrophobic drugs, including PTL. In this review, we summarized the key anticancer mechanisms underlined by PTL as well as engineered PTL nanoparticles synthesized to date. Therefore, PTL nanoformulations could be an alternative strategy to maximize the therapeutic value of PTL.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Huanhuan Yin
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Feng Liu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center (SDATC), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
9
|
Assessment of the Concentration of Endogenous Factors Regulating Angiogenesis, VASH-1 and VEGF-A, in the Blood Serum of Patients with Neuroendocrine Neoplasms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9084393. [PMID: 35372578 PMCID: PMC8966743 DOI: 10.1155/2022/9084393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/18/2022]
Abstract
Neuroendocrine neoplasms (NENs) constitute about 2% of all malignant neoplasms, and the angiogenesis process in these tumors is still of a great interest. Vasohibin-1 (VASH-1) is an angiogenesis inhibitor, while vascular endothelial growth factor A (VEGF-A) is one of the main factors promoting vascular formation. The subject of this study was to assess serum concentration of these factors in patients with diagnosed NEN and in control group. Methods. The study group consisted of 120 patients with diagnosed NENs, while the control group consisted of 69 healthy volunteers. The concentrations of VASH-1 and VEGF-A in serum were tested using the ELISA. We also analyzed the association of the concentration of these factors with demographic data (e.g., age and gender), body mass index (BMI), primary tumor location, histological grade, metastasis, clinical staging, selected biochemical parameters and markers of NENs, and information on smoking habits. Results. The mean concentration of VASH-1 was 218.8 ± 359.8 pg/ml in the study group and 973.1 ± 1239.4 pg/ml in the control group, that difference was statistically significant (p < 0.05). In the NEN group, the highest concentration of VASH-1 was in patients with pancreatic NENs in relation to NENs with different location of the primary tumor (p < 0.05). Negative correlation was found between the concentration of VASH-1 and serotonin (rS = −0.19, p < 0.05). No statistically significant differences were observed for VEGF-A (p = 0.658). Conclusions. Patients with NENs showed lower serum level of VASH-1 in comparison to healthy volunteers. The highest level of VASH-1 was observed in tumors localized in pancreas. This might reflect the relevant function of VASH-1 in NENs and requires further evaluation to further knowledge of angiogenesis in NENs. Furthermore, the serum concentration of VEGF-A showed no statistical differences and probably does not have diagnostic value in this group of patients.
Collapse
|
10
|
Hao Z, Li R, Wang Y, Li S, Hong Z, Han Z. Landscape of Myeloid-derived Suppressor Cell in Tumor Immunotherapy. Biomark Res 2021; 9:77. [PMID: 34689842 PMCID: PMC8543853 DOI: 10.1186/s40364-021-00333-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a group of immature cells that produced by emergency myelopoiesis. Emerging evidences have identified the vital role of MDSC in cancer microenvironment, in which MDSC exerts both immunological and non-immunological activities to assist the progression of cancer. Advances in pre-clinical research have provided us the understanding of MDSC in cancer context from the perspective of molecular mechanism. In clinical scenario, MDSC and its subsets have been discovered to exist in peripheral blood and tumor site of patients from various types of cancers. In this review, we highlight the clinical value of MDSC in predicting prognosis of cancer patients and the responses of immunotherapies, therefore to propose the MDSC-inhibiting strategy in the scenario of cancer immunotherapies. Phenotypes and biological functions of MDSC in cancer microenvironment are comprehensively summarized to provide potential targets of MDSC-inhibiting strategy from the aspect of molecular mechanisms.
Collapse
Affiliation(s)
- Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Ruyuan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Gynecology and Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
11
|
Post-translational modifications of tubulin: their role in cancers and the regulation of signaling molecules. Cancer Gene Ther 2021; 30:521-528. [PMID: 34671113 DOI: 10.1038/s41417-021-00396-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022]
Abstract
Microtubules play an important role in regulating several vital cellular activities, including cell division and tissue organization, through their dynamic protofilament network. In addition to forming the cytoskeleton, microtubules regulate the intracellular trafficking of cytoplasmic components and various signaling molecules, depending on the presence of post-transitional modifications (PTMs) and binding proteins. Accumulating evidence indicates the significant role of microtubule PTMs on cancer behavior. The PTMs that frequently occur on microtubules include acetylation, detyrosination, tyrosination, polyglutamylation, and polyglycylation. Alterations in these PTMs cause global effects on intracellular signal transduction, strongly linked to cancer pathogenesis. This review provides an update on the role of microtubule PTMs in cancer aggressiveness, particularly regarding cell death, sensitivity to chemotherapy, cell migration, and invasion. Additionally, it provides a mechanistic explanation of the molecular signaling pathways involved. This information might prove useful for predictive or therapeutic purposes.
Collapse
|
12
|
Jin L, Kim HS, Shi J. Neutrophil in the Pancreatic Tumor Microenvironment. Biomolecules 2021; 11:1170. [PMID: 34439836 PMCID: PMC8394314 DOI: 10.3390/biom11081170] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a poor prognosis and low survival rates. PDAC is characterized by a fibroinflammatory tumor microenvironment enriched by abundant fibroblasts and a variety of immune cells, contributing to its aggressiveness. Neutrophils are essential infiltrating immune cells in the PDAC microenvironment. Recent studies have identified several cellular mechanisms by which neutrophils are recruited to tumor lesion and promote tumorigenesis. This review summarizes the current understanding of the interplay between neutrophils, tumor cells, and other components in the PDAC tumor microenvironment. The prognosis and therapeutic implications of neutrophils in PDAC are also discussed.
Collapse
Affiliation(s)
| | | | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA; (L.J.); (H.S.K.)
| |
Collapse
|
13
|
Otaka N, Uchida HA, Okuyama M, Hada Y, Onishi Y, Kakio Y, Takeuchi H, Umebayashi R, Tanabe K, Subramanian V, Daugherty A, Sato Y, Wada J. Vasohibin-2 Aggravates Development of Ascending Aortic Aneurysms but not Abdominal Aortic Aneurysms nor Atherosclerosis in ApoE-Deficient Mice. Am J Hypertens 2021; 34:467-475. [PMID: 33180898 DOI: 10.1093/ajh/hpaa181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 11/09/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vasohibin-2 (VASH2) has been isolated as a homologue of vasohibin-1 (VASH1) that promotes angiogenesis counteracting with VASH1. Chronic angiotensin II (AngII) infusion promotes both ascending and abdominal aortic aneurysms (AAs) in mice. The present study aimed to investigate whether exogenous VASH2 influenced AngII-induced vascular pathology in apolipoprotein E-deficient (ApoE-/-) mice. METHODS Male, ApoE-/- mice (9-14 weeks old) were injected with Ad LacZ or Ad VASH2. After a week, saline or AngII (1,000 ng/kg/minute) was infused into the mice subcutaneously via mini-osmotic pumps for 3 weeks. Consequently, all these mice were divided into 4 groups: saline + LacZ (n = 5), saline + VASH2 (n = 5), AngII + LacZ (n = 18), and AngII + VASH2 (n = 17). RESULTS Exogenous VASH2 had no significant effect on ex vivo maximal diameters of abdominal aortas (AngII + LacZ: 1.67 ± 0.17 mm, AngII + VASH2: 1.52 ± 0.16 mm, n.s.) or elastin fragmentation and accumulation of inflammatory cells. Conversely, exogenous VASH2 significantly increased intima areas of aortic arches (AngII + LacZ: 16.6 ± 0.27 mm2, AngII + VASH2: 18.6 ± 0.64 mm2, P = 0.006). VASH2 effect of AngII-induced ascending AAs was associated with increased cleaved caspase-3 abundance. AngII-induced atherosclerosis was not altered by VASH2. CONCLUSIONS The present study demonstrated that augmented VASH2 expression had no effect of AngII-induced abdominal AAs or atherosclerosis, while increasing dilation in the ascending aorta.
Collapse
Affiliation(s)
- Nozomu Otaka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruhito A Uchida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michihiro Okuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Yoshiko Hada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiro Onishi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Kakio
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidemi Takeuchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryoko Umebayashi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Tanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
14
|
Kuroda R, Eguchi S. The Mysterious Role of Vasohibin-2 in Ascending Aorta Pathology. Am J Hypertens 2021; 34:453-455. [PMID: 33493261 DOI: 10.1093/ajh/hpab025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ryohei Kuroda
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Müller M, Ringer K, Hub F, Kamm N, Worzfeld T, Jacob R. TTL-Expression Modulates Epithelial Morphogenesis. Front Cell Dev Biol 2021; 9:635723. [PMID: 33614664 PMCID: PMC7892909 DOI: 10.3389/fcell.2021.635723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Epithelial monolayer formation depends on the architecture and composition of the microtubule cytoskeleton. Microtubules control bidirectional trafficking and determine the positioning of structural cellular proteins. We studied the role of tubulin tyrosination in epithelial cell shape and motility. Tubulin tyrosine ligase (TTL), the enzyme that adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, was depleted or overexpressed in 2D epithelial monolayers as well as in 3D intestinal organoids. We demonstrate qualitatively and quantitatively that in the absence of TTL the cells comprise high levels of detyrosinated tubulin, change their shape into an initial flat morphology and retardedly acquire a differentiated columnar epithelial cell shape. Enhanced adhesion and accelerated migration patterns of TTL-knockout cells combined with reverse effects in TTL-overexpressing cells indicate that the loss of TTL affects the organization of cell adhesion foci. Precipitation of detyrosinated tubulin with focal adhesion scaffold components coincides with increased quantities and persistence of focal adhesion plaques. Our results indicate that the equilibrium between microtubules enriched in detyrosinated or tyrosinated tubulin modulates epithelial tissue formation, cell morphology, and adhesion.
Collapse
Affiliation(s)
- Manuel Müller
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| | - Karina Ringer
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Hub
- Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany
| | - Natalia Kamm
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | - Thomas Worzfeld
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany.,Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
16
|
Yang Y, Chen P, Zhao L, Zhang B, Xu C, Zhang H, Zhou J. Design, synthesis and biological evaluation of imidazolopyridone derivatives as novel BRD4 inhibitors. Bioorg Med Chem 2020; 29:115857. [PMID: 33191086 DOI: 10.1016/j.bmc.2020.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 11/17/2022]
Abstract
Bromodomain containing protein 4 (BRD4) has been demonstrated to play critical roles in cellular proliferation and cell cycle progression. In this study, using the BRD4 inhibitor Fragment 9 as a lead compound, a series of imidazolopyridone derivatives were designed and tested for their inhibitory activity against BRD4 protein in vitro. Among them, HB100-A7 showed excellent BRD4(1) inhibitory activities with an IC50 value of 0.035 μM in amplified luminescent proximity homogeneous assay (Alphascreen). The result of MTT assay showed that HB100-A7 could suppress the proliferation of pancreatic cancer cells. In addition, flow cytometry further illustrated that HB100-A7 treatment resulted in G0/G1 phase arrest and promoted apoptosis of BxPc3 cells. Furthermore, the in vivo study found that HB100-A7 displayed significant tumor growth inhibition in a pancreatic mouse tumor model (Panc-02). Moreover, IHC staining suggested that HB100-A7 induce cell apoptosis in pancreatic cancer tumor tissue. Together, this study revealed, for the first time, HB100-A7 is a promising lead compound for further development as a new generation of small molecule inhibitors targeting the BRD4 protein.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Pan Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Leilei Zhao
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bing Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China.
| | - Huibin Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
17
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the USA, and pancreatic ductal adenocarcinoma (PDA) constitutes 85% of pancreatic cancer diagnoses. PDA frequently metastasizes to the peritoneum, but effective treatment of peritoneal metastasis remains a clinical challenge. Despite this unmet need, understanding of the biological mechanisms that contribute to development and progression of PDA peritoneal metastasis is sparse. By contrast, a vast number of studies have investigated mechanisms of peritoneal metastasis in ovarian and gastric cancers. Here, we contrast similarities and differences between peritoneal metastasis in PDA as compared with those in gastric and ovarian cancer by outlining molecular mediators involved in each step of the peritoneal metastasis cascade. This review aims to provide mechanistic insights that could be translated into effective targeted therapies for patients with peritoneal metastasis from PDA.
Collapse
|
18
|
Freund RRA, Gobrecht P, Fischer D, Arndt HD. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep 2020; 37:541-565. [DOI: 10.1039/c9np00049f] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(−)-Parthenolide is a germacrane sesquiterpene lactone, available in ample amounts from the traditional medical plant feverfew (Tanacetum parthenium).
Collapse
Affiliation(s)
- Robert R. A. Freund
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| | - Philipp Gobrecht
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Dietmar Fischer
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Hans-Dieter Arndt
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| |
Collapse
|
19
|
Iida-Norita R, Kawamura M, Suzuki Y, Hamada S, Masamune A, Furukawa T, Sato Y. Vasohibin-2 plays an essential role in metastasis of pancreatic ductal adenocarcinoma. Cancer Sci 2019; 110:2296-2308. [PMID: 31074083 PMCID: PMC6609860 DOI: 10.1111/cas.14041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/28/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022] Open
Abstract
Vasohibin-2 (VASH2) is expressed in various cancers and promotes their progression. We recently reported that pancreatic cancer patients with higher VASH2 expression show poorer prognosis. Herein, we sought to characterize the role of VASH2 in pancreatic cancer. We used LSL-KrasG12D ; LSL-Trp53R172H ; Pdx-1-Cre (KPC) mice, a mouse model of pancreatic ductal adenocarcinoma (PDAC), and cells isolated from them (KPC cells). Knockdown of Vash2 from PDAC cells did not affect their proliferation, but decreased their migration. When Vash2-knockdown PDAC cells were orthotopically inoculated, liver metastasis and peritoneal dissemination were reduced, and the survival period was significantly prolonged. When KPC mice were crossed with Vash2-deficient mice, metastasis was significantly decreased in Vash2-deficient KPC mice. VASH2 was recently identified to have tubulin carboxypeptidase activity. VASH2 knockdown decreased, whereas VASH2 overexpression increased tubulin detyrosination of PDAC cells, and tubulin carboxypeptidase (TCP) inhibitor parthenolide inhibited VASH2-induced cell migration. We next clarified its role in the tumor microenvironment. Tumor angiogenesis was significantly abrogated in vivo when VASH2 was knocked down or deleted. We further examined genes downregulated by Vash2 knockdown in KPC cells, and found chemokines and cytokines that were responsible for the recruitment of myeloid derived suppressor cells (MDSC). Indeed, MDSC were accumulated in PDAC of KPC mice, and they were significantly decreased in Vash2-deficient KPC mice. These findings suggest that VASH2 plays an essential role in the metastasis of PDAC with multiple effects on both cancer cells and the tumor microenvironment, including tubulin detyrosination, tumor angiogenesis and evasion of tumor immunity.
Collapse
Affiliation(s)
- Rie Iida-Norita
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Minaho Kawamura
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Furukawa
- Department of Histopathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|