1
|
Al Ghafari M, El Jaafari N, Mouallem M, Maassarani T, El-Sibai M, Abi-Habib R. Key genes altered in glioblastoma based on bioinformatics (Review). Oncol Lett 2025; 29:243. [PMID: 40182607 PMCID: PMC11966088 DOI: 10.3892/ol.2025.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis. Recent advancements in bioinformatics have contributed to uncovering the genetic alterations that underlie the development and progression of GBM. Analysis of extensive genomic data led to the identification of significant pathways involved in GBM, such as the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways, alongside key genes such as EGFR, TP53 and TERT. These findings have enhanced our understanding of GBM biology and led to the identification of new therapeutic targets. Bioinformatics has become an indispensable tool in pinpointing the genetic modifications that drive GBM, paving the way for innovative treatment strategies. This approach not only aids in comprehending the complexities of GBM but also holds promise for improving outcomes in patients suffering from this devastating disease. The ongoing integration of bioinformatics in GBM research continues to be vital for advancing therapeutic options.
Collapse
Affiliation(s)
- Marcelino Al Ghafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Nour El Jaafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mariam Mouallem
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tala Maassarani
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi-Habib
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
2
|
Alcântara GAS, do Nascimento MC, de Miranda LBL, de Almeida BO, Lima K, Rego EM, Costa-Lotufo LV, Machado-Neto JA. Eribulin exerts multitarget antineoplastic activity in glioma cells. Pharmacol Rep 2025:10.1007/s43440-025-00711-y. [PMID: 40056292 DOI: 10.1007/s43440-025-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Gliomas, particularly glioblastomas, are highly aggressive cancers with rapid proliferation and poor prognosis. Current treatments have limited efficacy, highlighting the need for new therapeutic strategies. Eribulin mesylate, a synthetic macrocyclic ketone, has shown potential as an anticancer agent in several malignancies. This study investigates the cellular and molecular effects of eribulin in glioma models, focusing on its impact on cell cycle progression, apoptosis, mitochondrial function, and migration. METHODS Glioma cell lines were treated with eribulin. Cell viability was measured by MTT assay, and the cell cycle was analyzed by flow cytometry. Apoptosis was assessed through morphological changes, PARP1 cleavage, and γH2AX expression. Mitochondrial integrity and reactive oxygen species levels were evaluated by flow cytometry. Cell migration was assessed using a spheroid-based assay, and protein expression changes were analyzed by Western blotting. RESULTS Eribulin reduced cell viability, with HOG cells exhibiting the highest sensitivity. Cell cycle analysis showed G2/M phase arrest and morphological examination revealed polyploidy and apoptotic features. Mitochondrial dysfunction was observed, with decreased mitochondrial membrane potential and increased reactive oxygen species, particularly in HOG and T98G cells. Molecular analysis indicated activation of apoptotic pathways (PARP1 cleavage and γH2AX elevation) and reduced stathmin 1 expression. Eribulin also significantly reduced cell migration in HOG cells. CONCLUSION Eribulin demonstrates potent anti-glioma effects through apoptosis, mitochondrial dysfunction, and cell cycle disruption. These findings support its potential as a therapeutic option for glioblastoma treatment, warranting further investigation into its mechanisms and clinical applicability.
Collapse
Affiliation(s)
- Guilherme Augusto Sousa Alcântara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Mariane Cristina do Nascimento
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, 01246-903, Brazil
| | - Livia Bassani Lins de Miranda
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Bruna Oliveira de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, 01246-903, Brazil
| | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, 01246-903, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil.
| |
Collapse
|
3
|
Murugan AK, Kannan S, Alzahrani AS. TERT promoter mutations in gliomas: Molecular roles in tumorigenesis, metastasis, diagnosis, prognosis, therapeutic targeting, and drug resistance. Biochim Biophys Acta Rev Cancer 2025; 1880:189243. [PMID: 39674418 DOI: 10.1016/j.bbcan.2024.189243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Telomerase reverse transcriptase (TERT), a critical player in cellular immortalization, has emerged as a focal point of investigation due to its frequent promoter mutations in various human malignancies. TERT promoter mutations exhibit a significant role in tumorigenesis, fostering unbridled cellular proliferation and survival. This comprehensive review delves into the landscape of TERT promoter mutations and their profound implications in cancer, particularly within the context of gliomas. This article meticulously examines the intricate interplay between TERT promoter mutations and the metastatic cascade, shedding light on their capacity to orchestrate invasive behavior in gliomas. Moreover, this review describes the recent trends in therapeutic targeting of the TERT and dissects the evolving landscape of drug resistance associated with TERT mutations, providing insights into potential therapeutic challenges. In addition, the diagnostic and prognostic implications of TERT promoter mutations in gliomas are scrutinized, unraveling their potential as robust biomarkers. It also discusses the recent advancements in molecular diagnostics, illustrating the promise of TERT mutations as diagnostic tools and prognostic indicators. This review collectively aims to contribute to a deeper understanding of TERT promoter mutations in gliomas, offering a foundation for future research endeavors and paving the way for innovative strategies in glioma management.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.
| | - Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
4
|
Eroglu Z, Synold T, Badie B, Liu A, Chowdhury A, Kilpatrick J, Blanchard S, Portnow J. An intracerebral microdialysis study to determine the neuropharmacokinetics of eribulin in patients with metastatic or primary brain tumors. Cancer Chemother Pharmacol 2024; 94:807-813. [PMID: 39422741 PMCID: PMC11573798 DOI: 10.1007/s00280-024-04711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/16/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Eribulin is an inhibitor of microtubule dynamics. It is not as highly protein bound as the taxanes and is less vulnerable to extrusion by P-glycoprotein in the blood-brain barrier (BBB). These features predict that eribulin could play an active role in managing brain tumors. Indeed, the small amount of published clinical data indicates eribulin may have some efficacy against breast cancer brain metastases. To better understand the potential of eribulin for treating brain tumors, we performed an intracerebral microdialysis study to determine the neuropharmacokinetics of eribulin in cancer patients undergoing tumor resection. METHODS After tumor removal, two microdialysis catheters were inserted into peritumoral brain tissue. Approximately 24 h after surgery, a single dose of eribulin 1.4 mg/m2 was administered intravenously. Dialysate samples were collected continuously for 72 h, with plasma samples collected in parallel. Eribulin concentrations were analyzed by tandem mass spectrometry. RESULTS Dialysate samples from 12 intracerebral microdialysis catheters placed in 7 study participants were included in the analysis. A statistically significant difference was observed between eribulin concentrations in brain tissue where BBB was disrupted versus intact, with a difference in mean maximum concentrations on log2 scale of 3.37 (std err = 0.59, p-value = 0.005). Nonetheless, overall brain to plasma ratios of eribulin only ranged from 0.13 to 1.99%. CONCLUSION Although we could detect higher concentrations of eribulin in brain tissue where BBB was disrupted, intracerebral eribulin levels were not sufficient to predict eribulin would have consistent clinically meaningful activity against tumors in the brain. CLINICALTRIALS GOV IDENTIFIER NCT02338037 (January 9, 2015).
Collapse
Affiliation(s)
- Zeynep Eroglu
- City of Hope Comprehensive Cancer Center, Department of Medical Oncology and Therapeutics Research, Duarte, CA, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Timothy Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Behnam Badie
- Department of Surgery, Division of Neurosurgery, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - An Liu
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Arnab Chowdhury
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Julie Kilpatrick
- Departmant of Clinical Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Suzette Blanchard
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jana Portnow
- City of Hope Comprehensive Cancer Center, Department of Medical Oncology and Therapeutics Research, Duarte, CA, USA.
| |
Collapse
|
5
|
Ordónez-Rubiano EG, Cómbita A, Baldoncini M, Payán-Gómez C, Gómez-Amarillo DF, Hakim F, Camargo J, Zorro-Sepúlveda V, Luzzi S, Zorro O, Parra-Medina R. Cellular Senescence in Diffuse Gliomas: From Physiopathology to Possible Treatments. World Neurosurg 2024; 191:138-148. [PMID: 39233309 DOI: 10.1016/j.wneu.2024.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Cellular senescence in gliomas is a complex process that is induced by aging and replication, ionizing radiation, oncogenic stress, and the use of temozolomide. However, the escape routes that gliomas must evade senescence and achieve cellular immortality are much more complex, in which the expression of telomerase and the alternative lengthening of telomeres, as well as the mutation of some proto-oncogenes or tumor suppressor genes, are involved. In gliomas, these molecular mechanisms related to cellular senescence can have a tumor-suppressing or promoting effect and are directly involved in tumor recurrence and progression. From these cellular mechanisms related to cellular senescence, it is possible to generate targeted senostatic and senolytic therapies that improve the response to currently available treatments and improve survival rates. This review aims to summarize the mechanisms of induction and evasion of cellular senescence in gliomas, as well as review possible treatments with therapies targeting pathways related to cellular senescence.
Collapse
Affiliation(s)
- Edgar G Ordónez-Rubiano
- Department of Neurological Surgery, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia; School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia; Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| | - Alba Cómbita
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia; Department of Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Matías Baldoncini
- School of Medicine, Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, University of Buenos Aires, Buenos Aires, Argentina; Department of Neurological Surgery, Hospital San Fernando, Buenos Aires, Argentina
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Diego F Gómez-Amarillo
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Fernando Hakim
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Julián Camargo
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Sabino Luzzi
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Oscar Zorro
- Department of Neurological Surgery, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia
| | - Rafael Parra-Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia; Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia
| |
Collapse
|
6
|
Tanriverdi G, Kaleci B, Yavuz F, Sahin H, Purelku M, Yazici Z, Kokturk S. The effects of the combination of temozolomide and Eribulin on T98G human glioblastoma cell line: an ultrastructural study. Ultrastruct Pathol 2024; 48:323-337. [PMID: 38916264 DOI: 10.1080/01913123.2024.2371821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Glioblastoma tumors are the most aggressive primary brain tumors that develop resistance to temozolomide (TMZ). Eribulin (ERB) exhibits a unique mechanism of action by inhibiting microtubule dynamics during the G2/M cell cycle phase. We utilized the T98G human glioma cell line to investigate the effects of ERB and TMZ, both individually and in combination. The experimental groups were established as follows: control, E5 (5 nM ERB), T0.75 (0.75 mM TMZ), T1 (1.0 mM TMZ), and combination groups (E5+T0.75 and E5+T1). All groups showed a significant decrease in cell proliferation. Apoptotic markers revealed a time-dependent increase in annexin-V expression, across all treatment groups at the 48-hour time point. Caspase-3, exhibited an increase in the combination treatment groups at the 48-hour mark. Transmission electron microscopy (TEM) revealed normal ultrastructural features in the glioma cells of the control group. However, treatments induced ultrastructural changes within the spheroid glioblastoma model, particularly in the combination groups. These changes included a dose-dependent increase in autophagic vacuoles and apoptotic morphology of the cells. In conclusion, the similarity in the mechanism of action between ERB and TMZ suggests the potential for synergistic effects when combined. Our results highlight that this combination induced severe damage and autophagy in glioma spheroids after 48 hours.
Collapse
Affiliation(s)
- Gamze Tanriverdi
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Belisa Kaleci
- Ministry of Health and Social Protection, University Dental Clinic, Tirane, Albania
| | - Furkan Yavuz
- Radiation Oncology Department, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Hakan Sahin
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merjem Purelku
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeliha Yazici
- Medical Pharmacology, Medicine, Istanbul Arel University, İstanbul, Türkiye
| | - Sibel Kokturk
- Department of Histology and Embryology, Medicine Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Kathad U, Biyani N, Peru y Colón De Portugal RL, Zhou J, Kochat H, Bhatia K. Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis. PLoS One 2024; 19:e0308604. [PMID: 39186767 PMCID: PMC11346940 DOI: 10.1371/journal.pone.0308604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/28/2024] [Indexed: 08/28/2024] Open
Abstract
Antibody-Drug Conjugates (ADCs) have emerged as a promising class of targeted cancer therapeutics. Further refinements are essential to unlock their full potential, which is currently limited by a lack of validated targets and payloads. Essential aspects of developing effective ADCs involve the identification of surface antigens, ideally distinguishing target tumor cells from healthy types, uniformly expressed, accompanied by a high potency payload capable of selective targeting. In this study, we integrated transcriptomics, proteomics, immunohistochemistry and cell surface membrane datasets from Human Protein Atlas, Xenabrowser and Gene Expression Omnibus utilizing Lantern Pharma's proprietary AI platform Response Algorithm for Drug positioning and Rescue (RADR®). We used this in combination with evidence based filtering to identify ADC targets with improved tumor selectivity. Our analysis identified a set of 82 targets and a total of 290 target indication combinations for effective tumor targeting. We evaluated the impact of tumor mutations on target expression levels by querying 416 genes in the TCGA mutation database against 22 tumor subtypes. Additionally, we assembled a catalog of compounds to identify potential payloads using the NCI-Developmental Therapeutics Program. Our payload mining strategy classified 729 compounds into three subclasses based on GI50 values spanning from pM to 10 nM range, in combination with sensitivity patterns across 9 different cancer indications. Our results identified a diverse range of both targets and payloads, that can serve to facilitate multiple choices for precise ADC targeting. We propose an initial approach to identify suitable target-indication-payload combinations, serving as a valuable starting point for development of future ADC candidates.
Collapse
Affiliation(s)
- Umesh Kathad
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Neha Biyani
- Lantern Pharma Inc., Dallas, TX, United States of America
| | | | - Jianli Zhou
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Harry Kochat
- The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Kishor Bhatia
- Lantern Pharma Inc., Dallas, TX, United States of America
| |
Collapse
|
8
|
Pennisi G, Bruzzaniti P, Burattini B, Piaser Guerrato G, Della Pepa GM, Sturiale CL, Lapolla P, Familiari P, La Pira B, D’Andrea G, Olivi A, D’Alessandris QG, Montano N. Advancements in Telomerase-Targeted Therapies for Glioblastoma: A Systematic Review. Int J Mol Sci 2024; 25:8700. [PMID: 39201386 PMCID: PMC11354571 DOI: 10.3390/ijms25168700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Glioblastoma (GBM) is a primary CNS tumor that is highly lethal in adults and has limited treatment options. Despite advancements in understanding the GBM biology, the standard treatment for GBM has remained unchanged for more than a decade. Only 6.8% of patients survive beyond five years. Telomerase, particularly the hTERT promoter mutations present in up to 80% of GBM cases, represents a promising therapeutic target due to its role in sustaining telomere length and cancer cell proliferation. This review examines the biology of telomerase in GBM and explores potential telomerase-targeted therapies. We conducted a systematic review following the PRISMA-P guidelines in the MEDLINE/PubMed and Scopus databases, from January 1995 to April 2024. We searched for suitable articles by utilizing the terms "GBM", "high-grade gliomas", "hTERT" and "telomerase". We incorporated studies addressing telomerase-targeted therapies into GBM studies, excluding non-English articles, reviews, and meta-analyses. We evaluated a total of 777 records and 46 full texts, including 36 studies in the final review. Several compounds aimed at inhibiting hTERT transcription demonstrated promising preclinical outcomes; however, they were unsuccessful in clinical trials owing to intricate regulatory pathways and inadequate pharmacokinetics. Direct hTERT inhibitors encountered numerous obstacles, including a prolonged latency for telomere shortening and the activation of the alternative lengthening of telomeres (ALT). The G-quadruplex DNA stabilizers appeared to be potential indirect inhibitors, but further clinical studies are required. Imetelstat, the only telomerase inhibitor that has undergone clinical trials, has demonstrated efficacy in various cancers, but its efficacy in GBM has been limited. Telomerase-targeted therapies in GBM is challenging due to complex hTERT regulation and inadequate inhibitor pharmacokinetics. Our study demonstrates that, despite promising preclinical results, no Telomerase inhibitors have been approved for GBM, and clinical trials have been largely unsuccessful. Future strategies may include Telomerase-based vaccines and multi-target inhibitors, which may provide more effective treatments when combined with a better understanding of telomere dynamics and tumor biology. These treatments have the potential to be integrated with existing ones and to improve the outcomes for patients with GBM.
Collapse
Affiliation(s)
- Giovanni Pennisi
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
| | - Placido Bruzzaniti
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza, University of Rome, 00157 Rome, Italy;
| | - Benedetta Burattini
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Giacomo Piaser Guerrato
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Carmelo Lucio Sturiale
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | | | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza, University of Rome, 00157 Rome, Italy;
| | - Biagia La Pira
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
| | - Giancarlo D’Andrea
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
| | - Alessandro Olivi
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Quintino Giorgio D’Alessandris
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Nicola Montano
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| |
Collapse
|
9
|
Wang Y, Xia B, Cao L, Yang J, Feng C, Jiang F, Li C, Gu L, Yang Y, Tian J, Cheng X, Furuuchi K, Fulmer J, Verdi A, Rybinski K, Soto A, Albone E, Uenaka T, Gong L, Liu T, Qin Q, Wei Z, Zhou Y. Preclinical studies of BB-1701, a HER2-targeting eribulin-containing ADC with potent bystander effect and ICD activity. Antib Ther 2024; 7:221-232. [PMID: 39036069 PMCID: PMC11259758 DOI: 10.1093/abt/tbae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Several HER2-targeting antibody-drug conjugates (ADC) have gained market approval for the treatment of HER2-expressing metastasis. Promising responses have been reported with the new generation of ADCs in patients who do not respond well to other HER2-targeting therapeutics. However, these ADCs still face challenges of resistance and/or severe adverse effects associated with their particular payload toxins. Eribulin, a therapeutic agent for the treatment of metastatic breast cancer and liposarcoma, is a new choice of ADC payload with a distinct mechanism of action and safety profile. METHODS We've generated a novel HER2-tageting eribulin-containing ADC, BB-1701. The potency of BB-1701 was tested in vitro and in vivo against cancer cells where HER2-expressing levels vary in a large range. Bystander killing effect and toxin-induced immunogenic cell death (ICD) of BB-1701 were also tested. RESULTS In comparison with HER2-targeting ADCs with DM1 and Dxd payload, eribulin-containing ADC demonstrated higher in vitro cytotoxicity in HER2-low cancer cell lines. BB-1701 also effectively suppressed tumors in models resistant to DM1 or Dxd containing ADCs. Mode of action studies showed that BB-1701 had a significant bystander effect on HER2-null cells adjacent to HER2-high cells. In addition, BB-1701 treatment induced ICD. Repeated doses of BB-1701 in nonhuman primates showed favorable pharmacokinetics and safety profiles at the intended clinical dosage, route of administration, and schedule. CONCLUSIONS The preclinical data support the test of BB-1701 in patients with various HER2-expressing cancers, including those resistant to other HER2-targeting ADCs. A phase I clinical trial of BB-1701 (NCT04257110) in patients is currently underway.
Collapse
Affiliation(s)
- Yang Wang
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Bing Xia
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Lixia Cao
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Jianfeng Yang
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Cui Feng
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Fangdun Jiang
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Chen Li
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Lixia Gu
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Yifan Yang
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Jing Tian
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Xin Cheng
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Keiji Furuuchi
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - James Fulmer
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Arielle Verdi
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Katherine Rybinski
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Allis Soto
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Earl Albone
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Toshimitsu Uenaka
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Likun Gong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingting Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiuping Qin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ziping Wei
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Yuhong Zhou
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| |
Collapse
|
10
|
Oey O, Wijaya W, Redfern A. Eribulin in breast cancer: Current insights and therapeutic perspectives. World J Exp Med 2024; 14:92558. [PMID: 38948420 PMCID: PMC11212747 DOI: 10.5493/wjem.v14.i2.92558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 06/19/2024] Open
Abstract
Eribulin is a non-taxane synthetic analogue approved in many countries as third-line treatment for the treatment of patients with metastatic breast cancer. In addition to its mitotic property, eribulin has non-mitotic properties including but not limited to, its ability to induce phenotypic reversal of epithelial to mesenchymal transition, vascular remodelling, reduction in immunosuppressive tumour microenvironment. Since approval, there has been a surge in studies investigating the application of eribulin as an earlier-line treatment and also in combination with other agents such as immunotherapy and targeted therapy across all breast cancer sub-types, including hormone receptor positive, HER2 positive and triple negative breast cancer, many demonstrating promising activity. This review will focus on the application of eribulin in the treatment of metastatic breast cancer across all subtypes including its role as an earlier-line agent, its toxicity profile, and potential future directions.
Collapse
Affiliation(s)
- Oliver Oey
- Faculty of Medicine, University of Western Australia, Nedlands 6009, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands 6009, WA, Australia
| | - Wynne Wijaya
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Department of Internal Medicine, Universitas Gadjah Mada, Sleman 55281, Indonesia
| | - Andrew Redfern
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch 6150, WA, Australia
| |
Collapse
|
11
|
Stillger MN, Li MJ, Hönscheid P, von Neubeck C, Föll MC. Advancing rare cancer research by MALDI mass spectrometry imaging: Applications, challenges, and future perspectives in sarcoma. Proteomics 2024; 24:e2300001. [PMID: 38402423 DOI: 10.1002/pmic.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
MALDI mass spectrometry imaging (MALDI imaging) uniquely advances cancer research, by measuring spatial distribution of endogenous and exogenous molecules directly from tissue sections. These molecular maps provide valuable insights into basic and translational cancer research, including tumor biology, tumor microenvironment, biomarker identification, drug treatment, and patient stratification. Despite its advantages, MALDI imaging is underutilized in studying rare cancers. Sarcomas, a group of malignant mesenchymal tumors, pose unique challenges in medical research due to their complex heterogeneity and low incidence, resulting in understudied subtypes with suboptimal management and outcomes. In this review, we explore the applicability of MALDI imaging in sarcoma research, showcasing its value in understanding this highly heterogeneous and challenging rare cancer. We summarize all MALDI imaging studies in sarcoma to date, highlight their impact on key research fields, including molecular signatures, cancer heterogeneity, and drug studies. We address specific challenges encountered when employing MALDI imaging for sarcomas, and propose solutions, such as using formalin-fixed paraffin-embedded tissues, and multiplexed experiments, and considerations for multi-site studies and digital data sharing practices. Through this review, we aim to spark collaboration between MALDI imaging researchers and clinical colleagues, to deploy the unique capabilities of MALDI imaging in the context of sarcoma.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mujia Jenny Li
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Pia Hönscheid
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, German Cancer Research Center Heidelberg, Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| |
Collapse
|
12
|
Feng Z, Wang Y, Fu Z, Liao J, Liu H, Zhou M. Exploring the Causal Effects of Mineral Metabolism Disorders on Telomere and Mitochondrial DNA: A Bidirectional Two-Sample Mendelian Randomization Analysis. Nutrients 2024; 16:1417. [PMID: 38794655 PMCID: PMC11123946 DOI: 10.3390/nu16101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this study was to assess the causal relationships between mineral metabolism disorders, representative of trace elements, and key aging biomarkers: telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN). Utilizing bidirectional Mendelian randomization (MR) analysis in combination with the two-stage least squares (2SLS) method, we explored the causal relationships between mineral metabolism disorders and these aging indicators. Sensitivity analysis can be used to determine the reliability and robustness of the research results. The results confirmed that a positive causal relationship was observed between mineral metabolism disorders and TL (p < 0.05), while the causal relationship with mtDNA-CN was not significant (p > 0.05). Focusing on subgroup analyses of specific minerals, our findings indicated a distinct positive causal relationship between iron metabolism disorders and both TL and mtDNA-CN (p < 0.05). In contrast, disorders in magnesium and phosphorus metabolism did not exhibit significant causal effects on either aging biomarker (p > 0.05). Moreover, reverse MR analysis did not reveal any significant causal effects of TL and mtDNA-CN on mineral metabolism disorders (p > 0.05). The combination of 2SLS with MR analysis further reinforced the positive causal relationship between iron levels and both TL and mtDNA-CN (p < 0.05). Notably, the sensitivity analysis did not indicate significant pleiotropy or heterogeneity within these causal relationships (p > 0.05). These findings highlight the pivotal role of iron metabolism in cellular aging, particularly in regulating TL and sustaining mtDNA-CN, offering new insights into how mineral metabolism disorders influence aging biomarkers. Our research underscores the importance of trace element balance, especially regarding iron intake, in combating the aging process. This provides a potential strategy for slowing aging through the adjustment of trace element intake, laying the groundwork for future research into the relationship between trace elements and healthy aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China or (Z.F.); (Y.W.); (Z.F.); (J.L.); (H.L.)
| |
Collapse
|
13
|
Mochizuki T, Ikegami M, Akiyama T. Factors predictive of second-line chemotherapy in soft tissue sarcoma: An analysis of the National Genomic Profiling Database. Cancer Sci 2024; 115:575-588. [PMID: 38115234 PMCID: PMC10859616 DOI: 10.1111/cas.16050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Of the drugs used in second-line chemotherapy for soft tissue sarcoma (STS), trabectedin is effective for liposarcoma and leiomyosarcoma (L-sarcoma), eribulin for liposarcoma, and pazopanib for non-liposarcoma. The indications for these drugs in STS other than L-sarcoma have not been established. Here we explored the prognosis, mutation profiles, and drug-response factors in STS using real-world big data. Clinicogenomic data on 1761 patients with sarcoma who underwent FoundationOne CDx were obtained from a national database in Japan. Patients with TP53 and KDM2D mutations had a significantly shorter survival period of 253 (95% CI, 99-404) and 330 (95% CI, 20-552) days, respectively, than those without mutations. Non-supervised clustering based on mutation profiles generated 13 tumor clusters. The response rate (RR) to trabectedin was highest in an MDM2-amplification cluster (odds ratio [OR]: 2.2; p = 0.2). The RR was lowest for eribulin in an MDM2-amplification cluster (OR: 0.4; p = 0.03) and highest in a TERT-mutation cluster (OR: 3.0; p = 0.03). The RR was highest for pazopanib in a PIK3CA/PTEN-wild type cluster (OR: 2.1; p = 0.03). In particular, patients harboring mutations in genes regulating the PI3K/Akt/mTOR pathway had a lower RR than patients without mutations (OR: 0.3; p = 0.04). In STS, mutation profiles were more useful in predicting the drug response than histology. The present study demonstrated the potential of tailored therapy guided by mutation profiles established by comprehensive genomic profiling testing in optimizing second-line chemotherapy for STS. The findings of this study will hopefully contribute some valuable insights into enhancing STS treatment strategies and outcomes.
Collapse
Affiliation(s)
- Takao Mochizuki
- Department of Orthopaedic Surgery, Saitama Medical CenterJichi Medical UniversitySaitamaJapan
- Department of Musculoskeletal OncologyTokyo Metropolitan Cancer and Infectious Diseases Center, Komagome HospitalTokyoJapan
| | - Masachika Ikegami
- Department of Musculoskeletal OncologyTokyo Metropolitan Cancer and Infectious Diseases Center, Komagome HospitalTokyoJapan
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Toru Akiyama
- Department of Orthopaedic Surgery, Saitama Medical CenterJichi Medical UniversitySaitamaJapan
| |
Collapse
|
14
|
Chojak R, Fares J, Petrosyan E, Lesniak MS. Cellular senescence in glioma. J Neurooncol 2023; 164:11-29. [PMID: 37458855 DOI: 10.1007/s11060-023-04387-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/01/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor and is often associated with treatment resistance and poor prognosis. Standard treatment typically involves radiotherapy and temozolomide-based chemotherapy, both of which induce cellular senescence-a tumor suppression mechanism. DISCUSSION Gliomas employ various mechanisms to bypass or escape senescence and remain in a proliferative state. Importantly, senescent cells remain viable and secrete a large number of factors collectively known as the senescence-associated secretory phenotype (SASP) that, paradoxically, also have pro-tumorigenic effects. Furthermore, senescent cells may represent one form of tumor dormancy and play a role in glioma recurrence and progression. CONCLUSION In this article, we delineate an overview of senescence in the context of gliomas, including the mechanisms that lead to senescence induction, bypass, and escape. Furthermore, we examine the role of senescent cells in the tumor microenvironment and their role in tumor progression and recurrence. Additionally, we highlight potential therapeutic opportunities for targeting senescence in glioma.
Collapse
Affiliation(s)
- Rafał Chojak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA.
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
15
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
16
|
Kurimoto M, Rockenbach Y, Kato A, Natsume A. Prediction of Tumor Development and Urine-Based Liquid Biopsy for Molecule-Targeted Therapy of Gliomas. Genes (Basel) 2023; 14:1201. [PMID: 37372381 DOI: 10.3390/genes14061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The timing of the acquisition of tumor-specific gene mutations and the systems by which these gene mutations are acquired during tumorigenesis were clarified. Advances in our understanding of tumorigenesis are being made every day, and therapies targeting fundamental genetic alterations have great potential for cancer treatment. Moreover, our research team successfully estimated tumor progression using mathematical modeling and attempted early diagnosis of brain tumors. We developed a nanodevice that enables urinary genetic diagnosis in a simple and noninvasive manner. Mainly on the basis of our research and experience, this review article presents novel therapies being developed for central nervous system cancers and six molecules, which upon mutation cause tumorigenesis and tumor progression. Further understanding of the genetic characteristics of brain tumors will lead to the development of precise drugs and improve individual treatment outcomes.
Collapse
Affiliation(s)
- Michihiro Kurimoto
- Department of Neurosurgery, Aichi Children's Health and Medical Center, Obu 464-8710, Japan
| | - Yumi Rockenbach
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Akira Kato
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Atsushi Natsume
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
17
|
Hsu CY, Yanagi T, Maeda T, Nishihara H, Miyamoto K, Kitamura S, Tokuchi K, Ujiie H. Eribulin inhibits growth of cutaneous squamous cell carcinoma cell lines and a novel patient-derived xenograft. Sci Rep 2023; 13:8650. [PMID: 37244956 DOI: 10.1038/s41598-023-35811-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Advanced cutaneous squamous cell carcinoma (cSCC) is treated with chemotherapy and/or radiotherapy, but these typically fail to achieve satisfactory clinical outcomes. There have been no preclinical studies to evaluate the effectiveness of eribulin against cSCC. Here, we examine the effects of eribulin using cSCC cell lines and a novel cSCC patient-derived xenograft (PDX) model. In the cSCC cell lines (A431 and DJM-1 cells), eribulin was found to inhibit tumor cell proliferation in vitro as assessed by cell ATP levels. DNA content analysis by fluorescence-activated cell sorting (FACS) showed that eribulin induced G2/M cell cycle arrest and apoptosis. In xenograft models of cSCC cell lines, the administration of eribulin suppressed tumor growth in vivo. We also developed a cSCC patient-derived xenograft (PDX) which reproduces the histological and genetic characteristics of a primary tumor. Pathogenic mutations in TP53 and ARID2 were detected in the patient's metastatic tumor and in the PDX tumor. The cSCC-PDX responded well to the administration of eribulin and cisplatin. In conclusion, the present study shows the promising antineoplastic effects of eribulin in cSCC. Also, we established a novel cSCC-PDX model that preserves the patient's tumor. This PDX could assist researchers who are exploring innovative therapies for cSCC.
Collapse
Affiliation(s)
- Che-Yuan Hsu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan.
| | - Takuya Maeda
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Kodai Miyamoto
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Shinya Kitamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Keiko Tokuchi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| |
Collapse
|
18
|
Niwa T, Tahara T, Chase CE, Fang FG, Nakaoka T, Irie S, Hayashinaka E, Wada Y, Mukai H, Masutomi K, Watanabe Y, Cui Y, Hosoya T. Synthesis of 11C-Radiolabeled Eribulin as a Companion Diagnostics PET Tracer for Brain Glioblastoma. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2023. [DOI: 10.1246/bcsj.20220335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Takashi Niwa
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tsuyoshi Tahara
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of in vivo Imaging, Advanced Research Promoting Center, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Charles E. Chase
- Eisai Inc., 35 Cambridgepark Drive Suite 200, Cambridge, MA 02140, USA
| | - Francis G. Fang
- Eisai Inc., 35 Cambridgepark Drive Suite 200, Cambridge, MA 02140, USA
| | - Takayoshi Nakaoka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Emi Hayashinaka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
19
|
Toda Y, Kobayashi E, Kubota D, Miyakita Y, Narita Y, Kawai A. A retrospective analysis of the prognosis of Japanese patients with sarcoma brain metastasis. Cancer Med 2023; 12:9471-9481. [PMID: 36811144 PMCID: PMC10166921 DOI: 10.1002/cam4.5710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Bone and soft tissue sarcomas are rare tumors and extremely rarely metastasize to the brain. Previous studies have examined the characteristics and poor prognostic factors in cases of sarcoma brain metastasis (BM). Due to the rarity of cases of BM from sarcoma, limited data exist concerning the prognostic factors and treatment strategies. METHODS A retrospective single-center study was performed on sarcoma patients with BM. The clinicopathological characteristics and treatment options for BM of sarcoma were investigated to identify predictive prognostic factors. RESULTS Between 2006 and 2021, 32 patients treated for newly diagnosed BM at our hospital were retrieved among 3133 bone and soft tissue sarcoma patients via our database. The most common symptom was headache (34%), and the most common histological subtypes were alveolar soft part sarcoma (ASPS) and undifferentiated pleomorphic sarcoma (25%). Non-ASPS (p = 0.022), presence of lung metastasis (p = 0.046), a short duration between initial metastasis, and the diagnosis of brain metastasis (p = 0.020), and the absence of stereotactic radiosurgery for BM (p = 0.0094) were significantly correlated with a poor prognosis. CONCLUSIONS In conclusion, the prognosis of patients with brain metastases of sarcomas is still dismal, but it is necessary to be aware of the factors associated with a relatively favorable prognosis and to select treatment options appropriately.
Collapse
Affiliation(s)
- Yu Toda
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Daisuke Kubota
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
20
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Abstract
Glioblastoma is the most aggressive primary brain tumor with a poor prognosis. The 2021 WHO CNS5 classification has further stressed the importance of molecular signatures in diagnosis although therapeutic breakthroughs are still lacking. In this review article, updates on the current and novel therapies in IDH-wildtype GBM will be discussed.
Collapse
Affiliation(s)
- Jawad M Melhem
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - James R Perry
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
22
|
Precision neuro-oncology: a pilot analysis of personalized treatment in recurrent glioma. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04050-w. [PMID: 35953681 DOI: 10.1007/s00432-022-04050-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE When brain cancer relapses, treatment options are scarce. The use of molecularly matched targeted therapies may provide a feasible and efficacious way to treat individual patients based on the molecular tumor profile. Since little information is available on this strategy in neuro-oncology, we retrospectively analyzed the clinical course of 41 patients who underwent advanced molecular testing at disease relapse. METHODS We performed Sanger sequencing, targeted next generation sequencing, and immunohistochemistry for analysis of potential targets, including programmed death ligand 1, cyclin D1, phosphorylated mechanistic target of rapamycin, telomerase reverse transcriptase promoter mutation, cyclin-dependent kinase inhibitor 2A/B deletion, or BRAF-V600E mutation. In selected patients, whole exome sequencing was conducted. RESULTS The investigation included 41 patients, of whom 32 had isocitrate dehydrogenase (IDH) wildtype glioblastoma. Molecular analysis revealed actionable targets in 31 of 41 tested patients and 18 patients were treated accordingly (matched therapy group). Twenty-three patients received molecularly unmatched empiric treatment (unmatched therapy group). In both groups, 16 patients were diagnosed with recurrent IDH wildtype glioblastoma. The number of severe adverse events was comparable between the therapy groups. Regarding the IDH wildtype glioblastoma patients, median progression-free survival (mPFS) and median overall survival (mOS) were longer in the matched therapy group (mPFS: 3.8 versus 2.0 months, p = 0.0057; mOS: 13.0 versus 4.3 months, p = 0.0357). CONCLUSION These encouraging data provide a rationale for molecularly matched targeted therapy in glioma patients. For further validation, future study designs need to additionally consider the prevalence and persistence of actionable molecular alterations in patient tissue.
Collapse
|
23
|
Jin Y, Wang Z, Xiang K, Zhu Y, Cheng Y, Cao K, Jiang J. Comprehensive development and validation of gene signature for predicting survival in patients with glioblastoma. Front Genet 2022; 13:900911. [PMID: 36035145 PMCID: PMC9399759 DOI: 10.3389/fgene.2022.900911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common brain tumor, with rapid proliferation and fatal invasiveness. Large-scale genetic and epigenetic profiling studies have identified targets among molecular subgroups, yet agents developed against these targets have failed in late clinical development. We obtained the genomic and clinical data of GBM patients from the Chinese Glioma Genome Atlas (CGGA) and performed the least absolute shrinkage and selection operator (LASSO) Cox analysis to establish a risk model incorporating 17 genes in the CGGA693 RNA-seq cohort. This risk model was successfully validated using the CGGA325 validation set. Based on Cox regression analysis, this risk model may be an independent indicator of clinical efficacy. We also developed a survival nomogram prediction model that combines the clinical features of OS. To determine the novel classification based on the risk model, we classified the patients into two clusters using ConsensusClusterPlus, and evaluated the tumor immune environment with ESTIMATE and CIBERSORT. We also constructed clinical traits-related and co-expression modules through WGCNA analysis. We identified eight genes (ANKRD20A4, CLOCK, CNTRL, ICA1, LARP4B, RASA2, RPS6, and SET) in the blue module and three genes (MSH2, ZBTB34, and DDX31) in the turquoise module. Based on the public website TCGA, two biomarkers were significantly associated with poorer OS. Finally, through GSCALite, we re-evaluated the prognostic value of the essential biomarkers and verified MSH2 as a hub biomarker.
Collapse
Affiliation(s)
- Yi Jin
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Kaimin Xiang
- Department of Gastroenterological Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiaode Jiang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jiaode Jiang,
| |
Collapse
|
24
|
Leone A, Colamaria A, Fochi NP, Sacco M, Landriscina M, Parbonetti G, de Notaris M, Coppola G, De Santis E, Giordano G, Carbone F. Recurrent Glioblastoma Treatment: State of the Art and Future Perspectives in the Precision Medicine Era. Biomedicines 2022; 10:1927. [PMID: 36009473 PMCID: PMC9405902 DOI: 10.3390/biomedicines10081927] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022] Open
Abstract
Current treatment guidelines for the management of recurrent glioblastoma (rGBM) are far from definitive, and the prognosis remains dismal. Despite recent advancements in the pharmacological and surgical fields, numerous doubts persist concerning the optimal strategy that clinicians should adopt for patients who fail the first lines of treatment and present signs of progressive disease. With most recurrences being located within the margins of the previously resected lesion, a comprehensive molecular and genetic profiling of rGBM revealed substantial differences compared with newly diagnosed disease. In the present comprehensive review, we sought to examine the current treatment guidelines and the new perspectives that polarize the field of neuro-oncology, strictly focusing on progressive disease. For this purpose, updated PRISMA guidelines were followed to search for pivotal studies and clinical trials published in the last five years. A total of 125 articles discussing locoregional management, radiotherapy, chemotherapy, and immunotherapy strategies were included in our analysis, and salient findings were critically summarized. In addition, an in-depth description of the molecular profile of rGBM and its distinctive characteristics is provided. Finally, we integrate the above-mentioned evidence with the current guidelines published by international societies, including AANS/CNS, EANO, AIOM, and NCCN.
Collapse
Affiliation(s)
- Augusto Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Nicola Pio Fochi
- Department of Neurosurgery, University of Foggia, 71122 Foggia, Italy
| | - Matteo Sacco
- Department of Neurosurgery, Riuniti Hospital, 71122 Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical
Oncology and Biomolecular Therapy, Department of Medical and Surgical
Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Matteo de Notaris
- Department of Neurosurgery, “Rummo” Hospital, 82100 Benevento, Italy
| | - Giulia Coppola
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Elena De Santis
- Department of Anatomical Histological Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Guido Giordano
- Unit of Medical
Oncology and Biomolecular Therapy, Department of Medical and Surgical
Sciences, University of Foggia, 71122 Foggia, Italy
| | - Francesco Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
- Department of Neurosurgery, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
25
|
Montella L, Del Gaudio N, Bove G, Cuomo M, Buonaiuto M, Costabile D, Visconti R, Facchini G, Altucci L, Chiariotti L, Della Monica R. Looking Beyond the Glioblastoma Mask: Is Genomics the Right Path? Front Oncol 2022; 12:926967. [PMID: 35875139 PMCID: PMC9306486 DOI: 10.3389/fonc.2022.926967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/15/2022] Open
Abstract
Glioblastomas are the most frequent and malignant brain tumor hallmarked by an invariably poor prognosis. They have been classically differentiated into primary isocitrate dehydrogenase 1 or 2 (IDH1 -2) wild-type (wt) glioblastoma (GBM) and secondary IDH mutant GBM, with IDH wt GBMs being commonly associated with older age and poor prognosis. Recently, genetic analyses have been integrated with epigenetic investigations, strongly implementing typing and subtyping of brain tumors, including GBMs, and leading to the new WHO 2021 classification. GBM genomic and epigenomic profile influences evolution, resistance, and therapeutic responses. However, differently from other tumors, there is a wide gap between the refined GBM profiling and the limited therapeutic opportunities. In addition, the different oncogenes and tumor suppressor genes involved in glial cell transformation, the heterogeneous nature of cancer, and the restricted access of drugs due to the blood–brain barrier have limited clinical advancements. This review will summarize the more relevant genetic alterations found in GBMs and highlight their potential role as potential therapeutic targets.
Collapse
Affiliation(s)
- Liliana Montella
- Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, ASL Napoli 2 NORD-, Pozzuoli, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mariella Cuomo
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Michela Buonaiuto
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Davide Costabile
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,SEMM-European School of Molecular Medicine, Milano, Italy
| | - Roberta Visconti
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Institute of Experimental Endocrinology and Oncology, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Gaetano Facchini
- Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, ASL Napoli 2 NORD-, Pozzuoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy.,BIOGEM, Ariano Irpino, Italy
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
26
|
Vagvala S, Guenette JP, Jaimes C, Huang RY. Imaging diagnosis and treatment selection for brain tumors in the era of molecular therapeutics. Cancer Imaging 2022; 22:19. [PMID: 35436952 PMCID: PMC9014574 DOI: 10.1186/s40644-022-00455-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/29/2022] [Indexed: 01/12/2023] Open
Abstract
Currently, most CNS tumors require tissue sampling to discern their molecular/genomic landscape. However, growing research has shown the powerful role imaging can play in non-invasively and accurately detecting the molecular signature of these tumors. The overarching theme of this review article is to provide neuroradiologists and neurooncologists with a framework of several important molecular markers, their associated imaging features and the accuracy of those features. A particular emphasis is placed on those tumors and mutations that have specific or promising imaging correlates as well as their respective therapeutic potentials.
Collapse
Affiliation(s)
- Saivenkat Vagvala
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA
| | - Jeffrey P Guenette
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA
| | - Camilo Jaimes
- Division of Neuroradiology, Boston Children's, 300 Longwood Ave., 2nd floor, Main Building, Boston, MA, 02115, USA
| | - Raymond Y Huang
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 386] [Impact Index Per Article: 128.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
Affiliation(s)
- Keyang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Weijie Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
28
|
Matsuda Y, Yamashita T, Ye J, Yasukawa M, Yamakawa K, Mukai Y, Machitani M, Daigo Y, Miyagi Y, Yokose T, Oshima T, Ito H, Morinaga S, Kishida T, Minamoto T, Yamada S, Takei J, Kaneko MK, Kojima M, Kaneko S, Masaki T, Hirata M, Haba R, Kontani K, Kanaji N, Miyatake N, Okano K, Kato Y, Masutomi K. Phosphorylation of
hTERT
at threonine 249 is a novel tumor biomarker of aggressive cancer with poor prognosis in multiple organs. J Pathol 2022; 257:172-185. [PMID: 35094384 PMCID: PMC9315154 DOI: 10.1002/path.5876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/07/2022]
Abstract
Recent evidence indicates that RNA‐dependent RNA polymerase (RdRP) activity of human telomerase reverse transcriptase (hTERT) regulates expression of target genes and is directly involved in tumor formation in a telomere‐independent manner. Non‐canonical function of hTERT has been considered as a therapeutic target for cancer therapy. We have previously shown that hTERT phosphorylation at threonine 249 (p‐hTERT), which promotes RdRP activity, is an indicator of an aggressive phenotype and poor prognosis in liver and pancreatic cancers, using two cohorts with small sample sizes with polyclonal p‐hTERT antibody. To clarify the clinical relevance of p‐hTERT, we developed a specific monoclonal antibody and determined the diagnostic and prognostic value of p‐hTERT in cancer specimens using a large cohort. A monoclonal antibody for phosphorylated hTERT (p‐hTERT) at threonine 249 was developed and validated. The antibody was used for the immunohistochemical staining of formalin‐fixed, paraffin‐embedded specimens from 1523 cases of lung, colon, stomach, pancreatic, liver, breast, and kidney cancers. We detected elevated p‐hTERT expression levels in cases with a high mitotic activity, high pathological grade, and high nuclear pleomorphism. Elevated p‐hTERT expression was an independent prognostic factor for lung, pancreatic, and liver cancers. Furthermore, p‐hTERT expression was associated with immature and aggressive features, such as adenosquamous carcinoma (lung and pancreas), invasive type of cancer (lung), high serum alpha‐fetoprotein level (liver), and triple‐negative status (breast). In conclusion, RdRP activity indicated by p‐hTERT expression predicts aggressive cancer phenotypes in various types of cancer. Thus, p‐hTERT is a novel biomarker for the diagnosis of aggressive cancers with a poor prognosis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host‐Defense, Faculty of Medicine Kagawa University, 1750‐1 Ikenobe, Miki‐cho Kita‐gun Kagawa 761‐0793 Japan
| | - Taro Yamashita
- Department of Gastroenterology Kanazawa University Graduate School of Medical Sciences 13‐1 Takara‐machi Kanazawa Ishikawa 920‐8641 Japan
| | - Juanjuan Ye
- Oncology Pathology, Department of Pathology and Host‐Defense, Faculty of Medicine Kagawa University, 1750‐1 Ikenobe, Miki‐cho Kita‐gun Kagawa 761‐0793 Japan
| | - Mami Yasukawa
- Division of Cancer Stem Cell National Cancer Center Research Institute 5‐1‐1 Tsukiji, Chuo‐ku Tokyo 104‐0045 Japan
| | - Keiko Yamakawa
- Oncology Pathology, Department of Pathology and Host‐Defense, Faculty of Medicine Kagawa University, 1750‐1 Ikenobe, Miki‐cho Kita‐gun Kagawa 761‐0793 Japan
| | - Yuri Mukai
- Oncology Pathology, Department of Pathology and Host‐Defense, Faculty of Medicine Kagawa University, 1750‐1 Ikenobe, Miki‐cho Kita‐gun Kagawa 761‐0793 Japan
| | - Mitsuhiro Machitani
- Division of Cancer Stem Cell National Cancer Center Research Institute 5‐1‐1 Tsukiji, Chuo‐ku Tokyo 104‐0045 Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center
- Center for Advanced Medicine against Cancer, Shiga University of Medical Science Otsu Shiga 520‐2192 Japan
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science Hospital, The University of Tokyo Tokyo 108‐8639 Japan
| | - Yohei Miyagi
- Kanagawa Cancer Center Research Institute, 2‐3‐2 Nakao, Asahi‐ku Yokohama 241‐8515 Japan
| | | | | | | | | | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, 2‐3‐2 Nakao, Asahi‐ku Yokohama 241‐8515 Japan
| | - Toshinari Minamoto
- Divison of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, 13‐1 Takara‐machi Kanazawa 920‐0934 Japan
| | - Shinji Yamada
- Department of Antibody Drug Development Tohoku University Graduate School of Medicine, 2‐1 Seiryo‐machi, Aoba‐ku Sendai Miyagi 980‐8575 Japan
| | - Junko Takei
- Department of Antibody Drug Development Tohoku University Graduate School of Medicine, 2‐1 Seiryo‐machi, Aoba‐ku Sendai Miyagi 980‐8575 Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development Tohoku University Graduate School of Medicine, 2‐1 Seiryo‐machi, Aoba‐ku Sendai Miyagi 980‐8575 Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6‐5‐1 Kashiwanoha, Kashiwa‐shi Chiba 277‐0882 Japan
| | - Shuichi Kaneko
- Department of Gastroenterology Kanazawa University Graduate School of Medical Sciences 13‐1 Takara‐machi Kanazawa Ishikawa 920‐8641 Japan
| | | | | | | | | | - Nobuhiro Kanaji
- Department of Internal Medicine, Division of Hematology Rheumatology and Respiratory Medicine
| | | | - Keiichi Okano
- Department of Gastroenterological Surgery, Faculty of Medicine Kagawa University, 1750‐1 Ikenobe, Miki‐cho Kita‐gun Kagawa 761‐0793 Japan
| | - Yukinari Kato
- Department of Antibody Drug Development Tohoku University Graduate School of Medicine, 2‐1 Seiryo‐machi, Aoba‐ku Sendai Miyagi 980‐8575 Japan
- Department of Molecular Pharmacology Tohoku University Graduate School of Medicine, 2‐1 Seiryo‐machi, Aoba‐ku Sendai Miyagi 980‐8575 Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell National Cancer Center Research Institute 5‐1‐1 Tsukiji, Chuo‐ku Tokyo 104‐0045 Japan
| |
Collapse
|
29
|
Nakano T, Fujimoto K, Tomiyama A, Takahashi M, Achiha T, Arita H, Kawauchi D, Yasukawa M, Masutomi K, Kondo A, Narita Y, Maehara T, Ichimura K. Eribulin prolongs survival in an orthotopic xenograft mouse model of malignant meningioma. Cancer Sci 2021; 113:697-708. [PMID: 34839570 PMCID: PMC8819309 DOI: 10.1111/cas.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022] Open
Abstract
Meningioma is the most common intracranial tumor, with generally favorable patient prognosis. However, patients with malignant meningioma typically experience recurrence, undergo multiple surgical resections, and ultimately have a poor prognosis. Thus far, effective chemotherapy for malignant meningiomas has not been established. We recently reported the efficacy of eribulin (Halaven) for glioblastoma with a telomerase reverse transcriptase (TERT) promoter mutation. This study investigated the anti–tumor effect of eribulin against TERT promoter mutation‐harboring human malignant meningioma cell lines in vitro and in vivo. Two meningioma cell lines, IOMM‐Lee and HKBMM, were used in this study. The strong inhibition of cell proliferation by eribulin via cell cycle arrest was demonstrated through viability assay and flow cytometry. Apoptotic cell death in malignant meningioma cell lines was determined through vital dye assay and immunoblotting. Moreover, a wound healing assay revealed the suppression of tumor cell migration after eribulin exposure. Intraperitoneal administration of eribulin significantly prolonged the survival of orthotopic xenograft mouse models of both malignant meningioma cell lines implanted in the subdural space (P < .0001). Immunohistochemistry confirmed apoptosis in brain tumor tissue treated with eribulin. Overall, these results suggest that eribulin is a potential therapeutic agent for malignant meningiomas.
Collapse
Affiliation(s)
- Tomoyuki Nakano
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.,Department of Brain Disease Translational Research, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kenji Fujimoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Neurosurgery, Graduate School of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Arata Tomiyama
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Brain Disease Translational Research, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.,Department of Neurosurgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masamichi Takahashi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Takamune Achiha
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Kawauchi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chuo-ku, Chiba-shi, Chiba, Japan
| | - Mami Yasukawa
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Brain Disease Translational Research, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
30
|
Yamamuro S, Takahashi M, Satomi K, Sasaki N, Kobayashi T, Uchida E, Kawauchi D, Nakano T, Fujii T, Narita Y, Kondo A, Wada K, Yoshino A, Ichimura K, Tomiyama A. Lomustine and nimustine exert efficient antitumor effects against glioblastoma models with acquired temozolomide resistance. Cancer Sci 2021; 112:4736-4747. [PMID: 34536314 PMCID: PMC8586660 DOI: 10.1111/cas.15141] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Glioblastomas (GBM) often acquire resistance against temozolomide (TMZ) after continuous treatment and recur as TMZ‐resistant GBM (TMZ‐R‐GBM). Lomustine (CCNU) and nimustine (ACNU), which were previously used as standard therapeutic agents against GBM before TMZ, have occasionally been used for the salvage therapy of TMZ‐R‐GBM; however, their efficacy has not yet been thoroughly examined. Therefore, we investigated the antitumor effects of CCNU and ACNU against TMZ‐R‐GBM. As a model of TMZ‐R‐GBM, TMZ resistant clones of human GBM cell lines (U87, U251MG, and U343MG) were established (TMZ‐R‐cells) by the culture of each GBM cells under continuous TMZ treatment, and the antitumor effects of TMZ, CCNU, or ACNU against these cells were analyzed in vitro and in vivo. As a result, although growth arrest and apoptosis were triggered in all TMZ‐R‐cells after the administration of each drug, the antitumor effects of TMZ against TMZ‐R‐cells were significantly reduced compared to those of parental cells, whereas CCNU and ACNU demonstrated efficient antitumor effects on TMZ‐R‐cells as well as parental cells. It was also demonstrated that TMZ resistance of TMZ‐R‐cells was regulated at the initiation of DNA damage response. Furthermore, survival in mice was significantly prolonged by systemic treatment with CCNU or ACNU but not TMZ after implantation of TMZ‐R‐cells. These findings suggest that CCNU or ACNU may serve as a therapeutic agent in salvage treatment against TMZ‐R‐GBM.
Collapse
Affiliation(s)
- Shun Yamamuro
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurological Surgery, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Masamichi Takahashi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Kaishi Satomi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Diagnostic Pathology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Nobuyoshi Sasaki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery, Faculty of Medicine, Kyorin University, Mitaka, Japan
| | - Tatsuya Kobayashi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Eita Uchida
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka-City, Japan
| | - Daisuke Kawauchi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba-shi, Japan
| | - Tomoyuki Nakano
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Takashi Fujii
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan.,Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University School of Medicine, Bunkyo-ku, Japan
| | - Kojiro Wada
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Atsuo Yoshino
- Department of Neurological Surgery, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Arata Tomiyama
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan.,Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
31
|
Takahashi J, Nagasawa S, Doi M, Takahashi M, Narita Y, Yamamoto J, Ikemoto MJ, Iwahashi H. In Vivo Study of the Efficacy and Safety of 5-Aminolevulinic Radiodynamic Therapy for Glioblastoma Fractionated Radiotherapy. Int J Mol Sci 2021; 22:ijms22189762. [PMID: 34575921 PMCID: PMC8470662 DOI: 10.3390/ijms22189762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
To treat malignant glioma, standard fractionated radiotherapy (RT; 60 Gy/30 fractions over 6 weeks) was performed post-surgery in combination with temozolomide to improve overall survival. Malignant glioblastoma recurrence rate is extremely high, and most recurrent tumors originate from the excision cavity in the high-dose irradiation region. In our previous study, protoporphyrin IX physicochemically enhanced reactive oxygen species generation by ionizing radiation and combined treatment with 5-aminolevulinic acid (5-ALA) and ionizing radiation, while radiodynamic therapy (RDT) improved tumor growth suppression in vivo in a melanoma mouse model. We examined the effect of 5-ALA RDT on the standard fractionated RT protocol using U251MG- or U87MG-bearing mice. 5-ALA was orally administered at 60 or 120 mg/kg, 4 h prior to irradiation. In both models, combined treatment with 5-ALA slowed tumor progression and promoted regression compared to treatment with ionizing radiation alone. The standard fractionated RT protocol of 60 Gy in 30 fractions with oral administration of 120 and 240 mg/kg 5-ALA, the human equivalent dose of photodynamic diagnosis, revealed no significant increase in toxicity to normal skin or brain tissue compared to ionizing radiation alone. Thus, RDT is expected to enhance RT treatment of glioblastoma without severe toxicity under clinically feasible conditions.
Collapse
Affiliation(s)
- Junko Takahashi
- Graduate School of Information, Production and Systems, Waseda University, Fukuoka 808-0135, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan;
- Correspondence: ; Tel.: +81-936-92-5154
| | - Shinsuke Nagasawa
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan;
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (M.T.); (Y.N.)
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (M.T.); (Y.N.)
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan;
| | - Mitsushi J. Ikemoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan;
| | - Hitoshi Iwahashi
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan;
| |
Collapse
|
32
|
Aquilanti E, Kageler L, Wen PY, Meyerson M. Telomerase as a therapeutic target in glioblastoma. Neuro Oncol 2021; 23:2004-2013. [PMID: 34473298 DOI: 10.1093/neuonc/noab203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common primary malignant brain tumor in adults and it continues to have a dismal prognosis. The development of targeted therapeutics has been particularly challenging, in part due to a limited number of oncogenic mutations and significant intra-tumoral heterogeneity. TERT promoter mutations were first discovered in melanoma and later found to be present in up to 80% of glioblastoma samples. They are also frequent clonal alterations in this tumor. TERT promoter mutations are one of the mechanisms for telomerase reactivation, providing cancers with cellular immortality. Telomerase is a reverse transcriptase ribonucleoprotein complex that maintains telomere length in cells with high proliferative ability. In this article we present genomic and pre-clinical data that supports telomerase as a potential "Achilles' heel" for glioblastoma. We also summarize prior experience with anti-telomerase agents and potential new approaches to tackle this target.
Collapse
Affiliation(s)
- Elisa Aquilanti
- Division of Neuro Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Lauren Kageler
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Patrick Y Wen
- Division of Neuro Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew Meyerson
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Onizuka H, Masui K, Amano K, Kawamata T, Yamamoto T, Nagashima Y, Shibata N. Metabolic Reprogramming Drives Pituitary Tumor Growth through Epigenetic Regulation of TERT. Acta Histochem Cytochem 2021; 54:87-96. [PMID: 34276102 PMCID: PMC8275863 DOI: 10.1267/ahc.21-00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Pituitary adenomas are common, benign brain tumors. Some tumors show aggressive phenotypes including early recurrence, local invasion and distant metastasis, but the underlying mechanism to drive the progression of pituitary tumors has remained to be clarified. Aerobic glycolysis known as the Warburg effect is one of the emerging hallmarks of cancer, which has an impact on the tumor biology partly through epigenetic regulation of the tumor-promoting genes. Here, we demonstrate metabolic reprogramming in pituitary tumors contributes to tumor cell growth with epigenetic changes such as histone acetylation. Notably, a shift in histone acetylation increases the expression of telomerase reverse transcriptase (TERT) oncogene, which drives metabolism-dependent cell proliferation in pituitary tumors. These indicate that epigenetic changes could be the specific biomarker for predicting the behavior of pituitary tumors and exploitable as a novel target for the aggressive types of the pituitary tumors.
Collapse
Affiliation(s)
- Hiromi Onizuka
- Department of Surgical Pathology, Tokyo Women’s Medical University
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women’s Medical University
| | - Kenta Masui
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women’s Medical University
| | - Kosaku Amano
- Department of Neurosurgery, Tokyo Women’s Medical University
| | | | - Tomoko Yamamoto
- Department of Surgical Pathology, Tokyo Women’s Medical University
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women’s Medical University
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women’s Medical University
| | - Noriyuki Shibata
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women’s Medical University
| |
Collapse
|
34
|
Fabi A, Terrenato I, Vidiri A, Villani V, Tanzilli A, Airoldi M, Pedani F, Magri V, Palleschi M, Donadio M, Catania G, Nisticò C, Carapella C, Rudà R, Pace A, Maschio M, Telera S, Cognetti F. Eribulin in brain metastases of breast cancer: outcomes of the EBRAIM prospective observational trial. Future Oncol 2021; 17:3445-3456. [PMID: 34044585 DOI: 10.2217/fon-2021-0300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Eribulin shows some activity in controlling brain metastasis in breast cancer. Methods: This observational, multicenter study evaluated brain disease control rates, survival and safety in patients with brain metastatic breast cancer treated with eribulin in clinical practice. Results: A total of 34 patients were enrolled (mean age 49 years, 91% with visceral metastases) and 29 were evaluable for brain disease. Fourteen achieved disease control and showed a longer time without progression: 10 months (95% CI: 2.3-17.7) versus 4 months (95% CI: 3.3-4.7) in the control group (p = 0.029). Patients with clinical benefits at 6 months had longer survival. Leukopenia and neutropenia were the most frequent grade 3-4 toxicities. Conclusion: Eribulin confirms its effectiveness in patients with brain metastatic breast cancer. Further studies on larger cohorts are needed to confirm the results.
Collapse
Affiliation(s)
- Alessandra Fabi
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy.,Phase I Clinical Studies & Precision Medicine, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy
| | - Irene Terrenato
- Clinical Trial Center - Biostatistics & Bioinformatics, IRCCS Regina Elena National Cancer Institute, 53 - 00144, Rome, Italy
| | - Antonello Vidiri
- Radiology & Diagnostic Imaging, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy
| | - Veronica Villani
- Neuroncology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy
| | - Antonio Tanzilli
- Neuroncology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy
| | - Mario Airoldi
- Medical Oncology, Health & Science City, Corso Bramante 88, 10126, Turin, Italy
| | - Fulvia Pedani
- Medical Oncology, Health & Science City, Corso Bramante 88, 10126, Turin, Italy
| | - Valentina Magri
- Medical Oncology, La Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Michela Palleschi
- Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, 47014, Italy
| | - Michela Donadio
- Medical Oncology, Breast Unit, Health & Science City, Corso Bramante 88, 10126,Turin, Italy
| | - Giovanni Catania
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy
| | - Cecilia Nisticò
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy
| | - Carmine Carapella
- Neurosurgery Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, City of Health & Science, Corso Bramante 88, 10126, Turin, Italy
| | - Andrea Pace
- Neuroncology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy
| | - Marta Maschio
- Neuroncology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy
| | - Stefano Telera
- Neurosurgery Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53 - 00144, Rome, Italy
| | | |
Collapse
|
35
|
Kawauchi D, Takahashi M, Satomi K, Yamamuro S, Kobayashi T, Uchida E, Honda-Kitahara M, Narita Y, Iwadate Y, Ichimura K, Tomiyama A. The ALK inhibitors, alectinib and ceritinib, induce ALK-independent and STAT3-dependent glioblastoma cell death. Cancer Sci 2021; 112:2442-2453. [PMID: 33728771 PMCID: PMC8177803 DOI: 10.1111/cas.14885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most common, but extremely malignant, brain tumor; thus, the development of novel therapeutic strategies for GBMs is imperative. Many tyrosine kinase inhibitors (TKIs) have been approved for various cancers, yet none has demonstrated clinical benefit against GBM. Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that is confirmed only during the embryonic development period in humans. In addition, various ALK gene alterations are known to act as powerful oncogenes and therapeutic targets in various tumors. The antitumor activity of various TKIs was tested against three human GBM cell lines (U87MG, LN229, and GSC23), which expressed substantially low ALK levels; second‐generation ALK inhibitors, alectinib and ceritinib, effectively induced GBM cell death. In addition, treatment with either alectinib or ceritinib modulated the activation of various molecules downstream of RTK signaling and induced caspase‐dependent/‐independent cell death mainly by inhibiting signal transducer and activator of transcription 3 activation in human GBM cells. In addition, alectinib and ceritinib also showed antitumor activity against a U87MG cell line with acquired temozolomide resistance. Finally, oral administration of alectinib and ceritinib prolonged the survival of mice harboring intracerebral GBM xenografts compared with controls. These results suggested that treatment with the second‐generation ALK inhibitors, alectinib and ceritinib, might serve as a potent therapeutic strategy against GBM.
Collapse
Affiliation(s)
- Daisuke Kawauchi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masamichi Takahashi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kaishi Satomi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Shun Yamamuro
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Tatsuya Kobayashi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Eita Uchida
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka-City, Japan
| | - Mai Honda-Kitahara
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Arata Tomiyama
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
36
|
An Alternative Pipeline for Glioblastoma Therapeutics: A Systematic Review of Drug Repurposing in Glioblastoma. Cancers (Basel) 2021; 13:cancers13081953. [PMID: 33919596 PMCID: PMC8073966 DOI: 10.3390/cancers13081953] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma is a devastating malignancy that has continued to prove resistant to a variety of therapeutics. No new systemic therapy has been approved for use against glioblastoma in almost two decades. This observation is particularly disturbing given the amount of money invested in identifying novel therapies for this disease. A relatively rapid and economical pipeline for identification of novel agents is drug repurposing. Here, a comprehensive review detailing the state of drug repurposing in glioblastoma is provided. We reveal details on studies that have examined agents in vitro, in animal models and in patients. While most agents have not progressed beyond the initial stages, several drugs, from a variety of classes, have demonstrated promising results in early phase clinical trials. Abstract The treatment of glioblastoma (GBM) remains a significant challenge, with outcome for most pa-tients remaining poor. Although novel therapies have been developed, several obstacles restrict the incentive of drug developers to continue these efforts including the exorbitant cost, high failure rate and relatively small patient population. Repositioning drugs that have well-characterized mechanistic and safety profiles is an attractive alternative for drug development in GBM. In ad-dition, the relative ease with which repurposed agents can be transitioned to the clinic further supports their potential for examination in patients. Here, a systematic analysis of the literature and clinical trials provides a comprehensive review of primary articles and unpublished trials that use repurposed drugs for the treatment of GBM. The findings demonstrate that numerous drug classes that have a range of initial indications have efficacy against preclinical GBM models and that certain agents have shown significant potential for clinical benefit. With examination in randomized, placebo-controlled trials and the targeting of particular GBM subgroups, it is pos-sible that repurposing can be a cost-effective approach to identify agents for use in multimodal anti-GBM strategies.
Collapse
|
37
|
Affiliation(s)
- Elio Mikhael
- Department of Hematology-Oncology, Faculty of Medicine, Saint-Joseph University of Beirut, Lebanon
| | - Hampig Raphaël Kourie
- Department of Hematology-Oncology, Faculty of Medicine, Saint-Joseph University of Beirut, Lebanon
| |
Collapse
|
38
|
TERT Promoter Alterations in Glioblastoma: A Systematic Review. Cancers (Basel) 2021; 13:cancers13051147. [PMID: 33800183 PMCID: PMC7962450 DOI: 10.3390/cancers13051147] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Glioblastoma is the most common malignant primary brain tumor in adults. Glioblastoma accounts for 2 to 3 cases per 100,000 persons in North America and Europe. Glioblastoma classification is now based on histopathological and molecular features including isocitrate dehydrogenase (IDH) mutations. At the end of the 2000s, genome-wide sequencing of glioblastoma identified recurrent somatic genetic alterations involved in oncogenesis. Among them, the alterations in the promoter region of the telomerase reverse transcriptase (TERTp) gene are highly recurrent and occur in 70% to 80% of all glioblastomas, including glioblastoma IDH wild type and glioblastoma IDH mutated. This review focuses on recent advances related to physiopathological mechanisms, diagnosis, and clinical implications. Abstract Glioblastoma, the most frequent and aggressive primary malignant tumor, often presents with alterations in the telomerase reverse transcriptase promoter. Telomerase is responsible for the maintenance of telomere length to avoid cell death. Telomere lengthening is required for cancer cell survival and has led to the investigation of telomerase activity as a potential mechanism that enables cancer growth. The aim of this systematic review is to provide an overview of the available data concerning TERT alterations and glioblastoma in terms of incidence, physiopathological understanding, and potential therapeutic implications.
Collapse
|
39
|
He Q, Sun C, Liu J, Pan Y. MALDI-MSI analysis of cancer drugs: Significance, advances, and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Di Cintio F, Dal Bo M, Baboci L, De Mattia E, Polano M, Toffoli G. The Molecular and Microenvironmental Landscape of Glioblastomas: Implications for the Novel Treatment Choices. Front Neurosci 2020; 14:603647. [PMID: 33324155 PMCID: PMC7724040 DOI: 10.3389/fnins.2020.603647] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary central nervous system tumor. Surgery followed by radiotherapy and chemotherapy with alkylating agents constitutes standard first-line treatment of GBM. Complete resection of the GBM tumors is generally not possible given its high invasive features. Although this combination therapy can prolong survival, the prognosis is still poor due to several factors including chemoresistance. In recent years, a comprehensive characterization of the GBM-associated molecular signature has been performed. This has allowed the possibility to introduce a more personalized therapeutic approach for GBM, in which novel targeted therapies, including those employing tyrosine kinase inhibitors (TKIs), could be employed. The GBM tumor microenvironment (TME) exerts a key role in GBM tumor progression, in particular by providing an immunosuppressive state with low numbers of tumor-infiltrating lymphocytes (TILs) and other immune effector cell types that contributes to tumor proliferation and growth. The use of immune checkpoint inhibitors (ICIs) has been successfully introduced in numerous advanced cancers as well as promising results have been shown for the use of these antibodies in untreated brain metastases from melanoma and from non-small cell lung carcinoma (NSCLC). Consequently, the use of PD-1/PD-L1 inhibitors has also been proposed in several clinical trials for the treatment of GBM. In the present review, we will outline the main GBM molecular and TME aspects providing also the grounds for novel targeted therapies and immunotherapies using ICIs for GBM.
Collapse
Affiliation(s)
- Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
41
|
Abstract
As a result of rapid progress in genome medicine technologies, such as the evolution of DNA sequencing and the development of molecular targeted drugs, the era of precision cancer medicine has begun. In 2019, a nationwide genome medicine system was established and cancer gene panel sequencing began being covered by national health insurance in Japan. However, patients with brain tumors have not benefited much from genome medicine, even though gliomas contain many potential molecular targets, such as alterations in EGFR, IDH1/2, BRAF, and Histone H3K27. Targeted therapies for these molecules are currently under enthusiastic development; however, such attempts have not yet achieved remarkable success. To date, only a limited number of targeted drugs for brain tumors such as immune checkpoint, neurotrophic tyrosine receptor kinase (NTRK), and Bruton tyrosine kinase (BTK) inhibitors are available, and only in limited cases. Several obstacles remain in the development of drugs to treat brain tumors, including the difficulties in conducting clinical trials because of the relatively rare incidence and in drug delivery through the blood–brain barrier (BBB). Furthermore, general problems for numerous types of cancer, such as tumor heterogeneity, also exist for brain tumors. We hope that overcoming these issues could enable precision genome medicine to be more beneficial for patients with brain tumors such as malignant gliomas. In addition, careful consideration of ethical, legal, and social issues (ELSIs) is important as it is indispensable for maintaining good relationships with patients, which is one of the keys for genome medicine promotion.
Collapse
Affiliation(s)
- Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
42
|
Machitani M, Yasukawa M, Nakashima J, Furuichi Y, Masutomi K. RNA-dependent RNA polymerase, RdRP, a promising therapeutic target for cancer and potentially COVID-19. Cancer Sci 2020; 111:3976-3984. [PMID: 32805774 PMCID: PMC7461281 DOI: 10.1111/cas.14618] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
A recent outbreak of coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has driven a global pandemic with catastrophic consequences. The rapid development of promising therapeutic strategies against COVID-19 is keenly anticipated. Family Coronaviridae comprises positive, single-stranded RNA viruses that use RNA-dependent RNA polymerase (RdRP) for viral replication and transcription. As the RdRP of viruses in this family and others plays a pivotal role in infection, it is a promising therapeutic target for developing antiviral agents against them. A critical genetic driver for many cancers is the catalytic subunit of telomerase: human telomerase reverse transcriptase (hTERT), identified initially as an RNA-dependent DNA polymerase. However, even though hTERT is a DNA polymerase, it has phylogenetic and structural similarities to viral RdRPs. Researchers worldwide, including the authors of this review, are engaged in developing therapeutic strategies targeting hTERT. We have published a series of papers reporting that hTERT has RdRP activity and that this RdRP activity in hTERT is essential for tumor formation. Here, we review the enzymatic function of RdRP in virus proliferation and tumor development, reminding us of how the study of the novel coronavirus has brought us to the unexpected intersection of cancer research and RNA virus research.
Collapse
Affiliation(s)
- Mitsuhiro Machitani
- Division of Cancer Stem CellNational Cancer Center Research InstituteTokyoJapan
| | - Mami Yasukawa
- Division of Cancer Stem CellNational Cancer Center Research InstituteTokyoJapan
| | - Jotaro Nakashima
- Division of Cancer Stem CellNational Cancer Center Research InstituteTokyoJapan
| | | | - Kenkichi Masutomi
- Division of Cancer Stem CellNational Cancer Center Research InstituteTokyoJapan
| |
Collapse
|
43
|
Campanella R, Guarnaccia L, Caroli M, Zarino B, Carrabba G, La Verde N, Gaudino C, Rampini A, Luzzi S, Riboni L, Locatelli M, Navone SE, Marfia G. Personalized and translational approach for malignant brain tumors in the era of precision medicine: the strategic contribution of an experienced neurosurgery laboratory in a modern neurosurgery and neuro-oncology department. J Neurol Sci 2020; 417:117083. [PMID: 32784071 DOI: 10.1016/j.jns.2020.117083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Personalized medicine (PM) aims to optimize patient management, taking into account the individual traits of each patient. The main purpose of PM is to obtain the best response, improving health care and lowering costs. Extending traditional approaches, PM introduces novel patient-specific paradigms from diagnosis to treatment, with greater precision. In neuro-oncology, the concept of PM is well established. Indeed, every neurosurgical intervention for brain tumors has always been highly personalized. In recent years, PM has been introduced in neuro-oncology also to design and prescribe specific therapies for the patient and the patient's tumor. The huge advances in basic and translational research in the fields of genetics, molecular and cellular biology, transcriptomics, proteomics, and metabolomics have led to the introduction of PM into clinical practice. The identification of a patient's individual variation map may allow to design selected therapeutic protocols that ensure successful outcomes and minimize harmful side effects. Thus, clinicians can switch from the "one-size-fits-all" approach to PM, ensuring better patient care and high safety margin. Here, we review emerging trends and the current literature about the development of PM in neuro-oncology, considering the positive impact of innovative advanced researches conducted by a neurosurgical laboratory.
Collapse
Affiliation(s)
- Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Manuela Caroli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Zarino
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Carrabba
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Gaudino
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Rampini
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy.
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Moosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
44
|
Hamada A. [Drug Development Based on Intracellular Pharmacokinetic Analysis of Molecular Target Drug in Mice Bearing Patient-derived Xenograft Model]. YAKUGAKU ZASSHI 2020; 140:641-648. [PMID: 32378664 DOI: 10.1248/yakushi.19-00218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditionally, anticancer drug discovery research has been conducted based on immortalized cancer cell lines, either cultured in vitro or grown in vivo. In the USA and Europe, patient derived xenograft (PDX) model is rapidly expelling traditional in vitro and in vivo models due to the good predictability of clinical outcome and its nature of retaining characteristics and heterogeneity in the original tumor. Furthermore, a significant association was also reported between drug responses in patient and corresponding PDX as high as 87%. We are preparing a PDX model for Japanese cancer patients including drug resistance examples and rare cancers. Using the established PDX model, we confirmed the possibility that the tumor microenvironment might affect the efficacy and distribution of drugs even if the target receptor is expressed in tumor sites as compared to the cell line (CDX) model, which has been widely used in drug discovery. Interestingly, although expressing a target receptor in viable tumor cells, we also have found a PDX model with a lower distribution of molecular target drug. Therefore we will evaluate the usefulness of the PDX model in drug development by exploring new biomarkers and elucidating the mechanisms of drug resistance in target tumors. Moreover, pharmaco-imaging system will allow us to visualize the exposure and distribution of drugs in tumors at macro and micro levels. Finally, we evaluate relations between distribution of drugs in the tumor microenvironment including target tumor cells, neovessels, stromal cells, immune cells, and fibroblasts.
Collapse
Affiliation(s)
- Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| |
Collapse
|
45
|
Correlation between IDH, ATRX, and TERT promoter mutations in glioma. Brain Tumor Pathol 2020; 37:33-40. [PMID: 32227259 DOI: 10.1007/s10014-020-00360-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
According to the 2016 World Health Organization (WHO) classification of central nervous system tumors, diffuse astrocytic and oligodendroglial tumors are differentiated by the presence of isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation and the combined loss of the short arm of chromosome 1 and the long arm of chromosome 19 (1p/19q co-deletion). IDH-mutant astrocytoma often has p53 and alpha-thalassemia/mental retardation syndrome X-linked (ATRX) mutation, showing the alternative lengthening of telomeres (ALT) phenotype, while IDH-mutant and 1p/19q-co-deleted oligodendroglioma often have wild-type p53 and telomerase reverse transcriptase (TERT) promoter mutation, showing telomerase activation. This study analyzed IDH, ATRX, and TERT promoter mutations, and the correlation between them. Immortalized cells overcome the telomere-related crisis by activating telomerase or ALT. In glioma, telomerase is mainly activated by TERT promoter mutation, while ALT is usually associated with ATRX mutation. Although the mechanism of how ATRX mutation induces ALT remains unclear, ATRX loss alone is believed to be insufficient to induce ALT. Treatments targeting telomere maintenance are promising.
Collapse
|
46
|
Tanaka S, Ishii T, Sato F, Toi M, Itou J. Eribulin mesylate-induced c-Fos upregulation enhances cell survival in breast cancer cell lines. Biochem Biophys Res Commun 2020; 526:154-157. [PMID: 32201082 DOI: 10.1016/j.bbrc.2020.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Anticancer agents are used for cancer therapy. Studies on the biological response to treatment with an agent facilitate its effective use. Eribulin mesylate (eribulin) is an anticancer agent. In this study, we found that c-Fos is upregulated in response to eribulin treatment in the triple-negative breast cancer cell lines MDA-MB-231 and HCC70, which have low eribulin sensitivity. c-Fos expression was not upregulated in other cell lines investigated, including high eribulin-sensitive cells. We hypothesized that c-Fos upregulation is involved in low eribulin sensitivity and thus used the c-Fos inhibitor, T-5224. In MDA-MB-231 and HCC70 cells, combined treatment with eribulin and T-5224 showed a stronger anticancer effect than treatment with eribulin alone in cell growth assays, cell death assays and a mouse xenograft tumor model, whereas T-5224 alone showed no anticancer effect. These results suggest that T-5224 may enhance the anticancer effect of eribulin. Our findings contribute to the improvement of cancer therapy.
Collapse
Affiliation(s)
- Sunao Tanaka
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Tomoko Ishii
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Fumiaki Sato
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Japan; Department of Breast Surgery, Kansai Electric Power Hospital & Kansai Electric Power Medical Research Institute, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Junji Itou
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Japan; Laboratory of Molecular Life Science, Institute for Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Japan.
| |
Collapse
|
47
|
Abstract
As cells replicate their DNA during mitosis, telomeres are shortened due to the inherent limitations of the DNA replication process. Maintenance of telomere length is critical for cancer cells to overcome cellular senescence induced by telomere shortening. Telomerase reverse transcriptase (TERT) is the rate-limiting catalytic subunit of telomerase, an RNA-dependent DNA polymerase that lengthens telomeric DNA to maintain telomere homeostasis. TERT promoter mutations, which result in the upregulation of TERT transcription, have been identified in several central nervous system (CNS) tumors, including meningiomas, medulloblastomas, and primary glial neoplasms. Furthermore, TERT promoter hypermethylation, which also results in increased TERT transcription, has been observed in ependymomas and pediatric brain tumors. The high frequency of TERT dysregulation observed in a variety of high-grade cancers makes telomerase activity an attractive target for developing novel therapeutics. In this review, we briefly discuss normal telomere biology, as well as the structure, function, and regulation of TERT in normal human cells. We also highlight the role of TERT in cancer biology, focusing on primary CNS tumors. Finally, we summarize the clinical significance of TERT promoter mutations in cancer, the molecular mechanisms through which these mutations promote oncogenesis, and recent advances in cancer therapies targeting TERT.
Collapse
Affiliation(s)
- Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rukayat Taiwo
- Department of Neurological Surgery, Stanford University, Stanford, California, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
48
|
Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P, Reifenberger G, Weller M. Molecular targeted therapy of glioblastoma. Cancer Treat Rev 2019; 80:101896. [PMID: 31541850 DOI: 10.1016/j.ctrv.2019.101896] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/09/2019] [Indexed: 01/30/2023]
Abstract
Glioblastomas are intrinsic brain tumors thought to originate from neuroglial stem or progenitor cells. More than 90% of glioblastomas are isocitrate dehydrogenase (IDH)-wildtype tumors. Incidence increases with age, males are more often affected. Beyond rare instances of genetic predisposition and irradiation exposure, there are no known glioblastoma risk factors. Surgery as safely feasible followed by involved-field radiotherapy plus concomitant and maintenance temozolomide chemotherapy define the standard of care since 2005. Except for prolonged progression-free, but not overall survival afforded by the vascular endothelial growth factor antibody, bevacizumab, no pharmacological intervention has been demonstrated to alter the course of disease. Specifically, targeting cellular pathways frequently altered in glioblastoma, such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), the p53 and the retinoblastoma (RB) pathways, or epidermal growth factor receptor (EGFR) gene amplification or mutation, have failed to improve outcome, likely because of redundant compensatory mechanisms, insufficient target coverage related in part to the blood brain barrier, or poor tolerability and safety. Yet, uncommon glioblastoma subsets may exhibit specific vulnerabilities amenable to targeted interventions, including, but not limited to: high tumor mutational burden, BRAF mutation, neurotrophic tryrosine receptor kinase (NTRK) or fibroblast growth factor receptor (FGFR) gene fusions, and MET gene amplification or fusions. There is increasing interest in targeting not only the tumor cells, but also the microenvironment, including blood vessels, the monocyte/macrophage/microglia compartment, or T cells. Improved clinical trial designs using pharmacodynamic endpoints in enriched patient populations will be required to develop better treatments for glioblastoma.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland; Neuro-oncology, Department of Neurosurgery, University Hospital, Lille, France
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, and Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Patrick Roth
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - David A Reardon
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| | - Martin van den Bent
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, Netherlands
| | - Patrick Wen
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Düsseldorf, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Takahashi M, Miki S, Fujimoto K, Fukuoka K, Matsushita Y, Maida Y, Yasukawa M, Hayashi M, Shinkyo R, Kikuchi K, Mukasa A, Nishikawa R, Tamura K, Narita Y, Hamada A, Masutomi K, Ichimura K. Eribulin penetrates brain tumor tissue and prolongs survival of mice harboring intracerebral glioblastoma xenografts. Cancer Sci 2019; 110:2247-2257. [PMID: 31099446 PMCID: PMC6609810 DOI: 10.1111/cas.14067] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is one of the most devastating human malignancies for which a novel efficient treatment is urgently required. This pre-clinical study shows that eribulin, a specific inhibitor of telomerase reverse transcriptase (TERT)-RNA-dependent RNA polymerase, is an effective anticancer agent against glioblastoma. Eribulin inhibited the growth of 4 TERT promoter mutation-harboring glioblastoma cell lines in vitro at subnanomolar concentrations. In addition, it suppressed the growth of glioblastoma cells transplanted subcutaneously or intracerebrally into mice, and significantly prolonged the survival of mice harboring brain tumors at a clinically equivalent dose. A pharmacokinetics study showed that eribulin quickly penetrated brain tumors and remained at a high concentration even when it was washed away from plasma, kidney or liver 24 hours after intravenous injection. Moreover, a matrix-assisted laser desorption/ionization mass spectrometry imaging analysis revealed that intraperitoneally injected eribulin penetrated the brain tumor and was distributed evenly within the tumor mass at 1 hour after the injection whereas only very low levels of eribulin were detected in surrounding normal brain. Eribulin is an FDA-approved drug for refractory breast cancer and can be safely repositioned for treatment of glioblastoma patients. Thus, our results suggest that eribulin may serve as a novel therapeutic option for glioblastoma. Based on these data, an investigator-initiated registration-directed clinical trial to evaluate the safety and efficacy of eribulin in patients with recurrent GBM (UMIN000030359) has been initiated.
Collapse
Affiliation(s)
- Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Shunichiro Miki
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenji Fujimoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kohei Fukuoka
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuko Matsushita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshiko Maida
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Mami Yasukawa
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Mitsuhiro Hayashi
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Raku Shinkyo
- Tsukuba Research Laboratory, Eisai, Tsukuba, Japan
| | | | - Akitake Mukasa
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|