1
|
Yamada Y, Imaoka T, Iwasaki T, Kobayashi J, Misumi M, Sakai K, Sugihara T, Suzuki K, Tauchi H, Yasuda H, Yoshinaga S, Sasatani M, Tanaka S, Doi K, Tomita M, Iizuka D, Kakinuma S, Sasaki M, Kai M. Establishment and activity of the planning and acting network for low dose radiation research in Japan (PLANET): 2016-2023. JOURNAL OF RADIATION RESEARCH 2024; 65:561-574. [PMID: 39007844 PMCID: PMC11420843 DOI: 10.1093/jrr/rrae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Indexed: 07/16/2024]
Abstract
The Planning and Acting Network for Low Dose Radiation Research in Japan (PLANET) was established in 2017 in response to the need for an all-Japan network of experts. It serves as an academic platform to propose strategies and facilitate collaboration to improve quantitative estimation of health risks from ionizing radiation at low-doses and low-dose-rates. PLANET established Working Group 1 (Dose-Rate Effects in Animal Experiments) to consolidate findings from animal experiments on dose-rate effects in carcinogenesis. Considering international trends in this field as well as the situation in Japan, PLANET updated its priority research areas for Japanese low-dose radiation research in 2023 to include (i) characterization of low-dose and low-dose-rate radiation risk, (ii) factors to be considered for individualization of radiation risk, (iii) biological mechanisms of low-dose and low-dose-rate radiation effects and (iv) integration of epidemiology and biology. In this context, PLANET established Working Group 2 (Dose and Dose-Rate Mapping for Radiation Risk Studies) to identify the range of doses and dose rates at which observable effects on different endpoints have been reported; Working Group 3 (Species- and Organ-Specific Dose-Rate Effects) to consider the relevance of stem cell dynamics in radiation carcinogenesis of different species and organs; and Working Group 4 (Research Mapping for Radiation-Related Carcinogenesis) to sort out relevant studies, including those on non-mutagenic effects, and to identify priority research areas. These PLANET activities will be used to improve the risk assessment and to contribute to the revision of the next main recommendations of the International Commission on Radiological Protection.
Collapse
Affiliation(s)
- Yutaka Yamada
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiyasu Iwasaki
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Junya Kobayashi
- Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba 286-8686, Japan
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Kazuo Sakai
- Tokyo Healthcare University, 2-5-1 Higashiaoka, Meguro-ku, Tokyo 152-8558, Japan
| | - Takashi Sugihara
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hiroshi Tauchi
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Shinji Yoshinaga
- Department of Environmetrics and Biometrics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masanori Tomita
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Michiya Sasaki
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| |
Collapse
|
2
|
Iizuka D, Sasatani M, Ishikawa A, Daino K, Hirouchi T, Kamiya K. Newly discovered genomic mutation patterns in radiation-induced small intestinal tumors of ApcMin/+ mice. PLoS One 2023; 18:e0292643. [PMID: 37824459 PMCID: PMC10569626 DOI: 10.1371/journal.pone.0292643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
Among the small intestinal tumors that occur in irradiated mice of the established mouse model B6/B6-Chr18MSM-F1 ApcMin/+, loss of heterozygosity analysis can be utilized to estimate whether a deletion in the wild-type allele containing the Adenomatous polyposis coli (Apc) region (hereafter referred to as Deletion), a duplication in the mutant allele with a nonsense mutation at codon 850 of Apc (Duplication), or no aberration (Unidentified) has occurred. Previous research has revealed that the number of Unidentified tumors tends to increase with the radiation dose. In the present study, we investigated the molecular mechanisms underlying the development of an Unidentified tumor type in response to radiation exposure. The mRNA expression levels of Apc were significantly lower in Unidentified tumors than in normal tissues. We focused on epigenetic suppression as the mechanism underlying this decreased expression; however, hypermethylation of the Apc promoter region was not observed. To investigate whether deletions occur that cannot be captured by loss of heterozygosity analysis, we analyzed chromosome 18 using a customized array comparative genomic hybridization approach designed to detect copy-number changes in chromosome 18. However, the copy number of the Apc region was not altered in Unidentified tumors. Finally, gene mutation analysis of the Apc region using next-generation sequencing suggested the existence of a small deletion (approximately 3.5 kbp) in an Unidentified tumor from a mouse in the irradiated group. Furthermore, nonsense and frameshift mutations in Apc were found in approximately 30% of the Unidentified tumors analyzed. These results suggest that radiation-induced Unidentified tumors arise mainly due to decreased Apc expression of an unknown regulatory mechanism that does not depend on promoter hypermethylation, and that some tumors may result from nonsense mutations which are as-yet undefined point mutations.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Atsuko Ishikawa
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tokuhisa Hirouchi
- Department of Radiobiology, Institute for Environmental Sciences, Rokkasho, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Yanagihara H, Morioka T, Yamazaki S, Yamada Y, Tachibana H, Daino K, Tsuruoka C, Amasaki Y, Kaminishi M, Imaoka T, Kakinuma S. Interstitial deletion of the Apc locus in β-catenin-overexpressing cells is a signature of radiation-induced intestinal tumors in C3B6F1 ApcMin/+ mice†. JOURNAL OF RADIATION RESEARCH 2023; 64:622-631. [PMID: 37117033 DOI: 10.1093/jrr/rrad021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/13/2023] [Indexed: 05/27/2023]
Abstract
Recent studies have identified interstitial deletions in the cancer genome as a radiation-related mutational signature, although most of them do not fall on cancer driver genes. Pioneering studies in the field have indicated the presence of loss of heterozygosity (LOH) spanning Apc in a subset of sporadic and radiation-induced intestinal tumors of ApcMin/+ mice, albeit with a substantial subset in which LOH was not detected; whether copy number losses accompany such LOH has also been unclear. Herein, we analyzed intestinal tumors of C3B6F1 ApcMin/+ mice that were either left untreated or irradiated with 2 Gy of γ-rays. We observed intratumor mosaicism with respect to the nuclear/cytoplasmic accumulation of immunohistochemically detectable β-catenin, which is a hallmark of Apc+ allele loss. An immunoguided laser microdissection approach enabled the detection of LOH involving the Apc+ allele in β-catenin-overexpressing cells; in contrast, the LOH was not observed in the non-overexpressing cells. With this improvement, LOH involving Apc+ was detected in all 22 tumors analyzed, in contrast to what has been reported previously. The use of a formalin-free fixative facilitated the LOH and microarray-based DNA copy number analyses, enabling the classification of the aberrations as nondisjunction/mitotic recombination type or interstitial deletion type. Of note, the latter was observed only in radiation-induced tumors (nonirradiated, 0 of 8; irradiated, 11 of 14). Thus, an analysis considering intratumor heterogeneity identifies interstitial deletion involving the Apc+ allele as a causative radiation-related event in intestinal tumors of ApcMin/+ mice, providing an accurate approach for attributing individual tumors to radiation exposure.
Collapse
Affiliation(s)
- Hiromi Yanagihara
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shunsuke Yamazaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hirotaka Tachibana
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mutsumi Kaminishi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
4
|
Nakayama T, Sunaoshi M, Shang Y, Takahashi M, Saito T, Blyth BJ, Amasaki Y, Daino K, Shimada Y, Tachibana A, Kakinuma S. Calorie restriction alters the mechanisms of radiation-induced mouse thymic lymphomagenesis. PLoS One 2023; 18:e0280560. [PMID: 36662808 PMCID: PMC9858762 DOI: 10.1371/journal.pone.0280560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Calorie restriction (CR) suppresses not only spontaneous but also chemical- and radiation-induced carcinogenesis. Our previous study revealed that the cancer-preventive effect of CR is tissue dependent and that CR does not effectively prevent the development of thymic lymphoma (TL). We investigated the association between CR and the genomic alterations of resulting TLs to clarify the underlying resistance mechanism. TLs were obtained from previous and new experiments, in which B6C3F1 mice were exposed to radiation at 1 week of age and fed with a CR or standard (non-CR) diet from 7 weeks throughout their lifetimes. All available TLs were used for analysis of genomic DNA. In contrast to the TLs of the non-CR group, those of the CR group displayed suppression of copy-neutral loss of heterozygosity (LOH) involving relevant tumor suppressor genes (Cdkn2a, Ikzf1, Trp53, Pten), an event regarded as cell division-associated. However, CR did not affect interstitial deletions of those genes, which were observed in both groups. In addition, CR affected the mechanism of Ikzf1 inactivation in TLs: the non-CR group exhibited copy-neutral LOH with duplicated inactive alleles, whereas the CR group showed expression of dominant-negative isoforms accompanying a point mutation or an intragenic deletion. These results suggest that, even though CR reduces cell division-related genomic rearrangements by suppressing cell proliferation, tumors arise via diverse carcinogenic pathways including inactivation of tumor suppressors via interstitial deletions and other mutations. These findings provide a molecular basis for improved prevention strategies that overcome the CR resistance of lymphomagenesis.
Collapse
Affiliation(s)
- Takafumi Nakayama
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Masaaki Sunaoshi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mizuki Takahashi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Takato Saito
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Benjamin J. Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Akira Tachibana
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
5
|
Nakamura N. Radiation-induced increases in cancer mortality result from an earlier onset of the disease in mice and atomic bomb survivors. Int J Radiat Biol 2023:1-9. [PMID: 36525558 DOI: 10.1080/09553002.2023.2158246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE It has long been thought that the carcinogenic effect of radiation is due to the induction of oncogenic mutations, which means that a fraction of the irradiated individuals will be affected in a dose-dependent manner. This dogma was recently challenged because it was found that the model does not properly explain the life shortening effect of radiation which is seen as a parallel shift of mouse survival curves toward younger ages following an exposure to radiation. Specifically, according to the mutation induction theory, an irradiated mouse or human population evolves into two subpopulations with different mean lifespans, which would lead to a wider distribution of individual lifespans, and hence to a shallower slope in the survival curve, which is not what is observed. Instead, the parallel shift indicates that a large fraction of the irradiated mice are affected (but there are exceptions). Thus, it was thought important to pursue how the excess risk for cancer develops following an exposure to radiation. METHOD In the present study, cancer mortality data from mice and atomic-bomb survivors is presented to understand the increasing patterns of cancer risks. RESULTS In both species, it was found that cancer mortality starts to increase earlier in the exposed group. CONCLUSION The results are consistent with the notion that in many irradiated organs (but not all) radiation-induced tissue damage can lead to the development of an altered microenvironment (most probably inflammation), which is favorable to the growth of spontaneously arising tumor cells and can lead to an earlier onset of the diseases or to an apparently increased risk of cancer.
Collapse
Affiliation(s)
- Nori Nakamura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
6
|
Tachibana H, Daino K, Ishikawa A, Morioka T, Shang Y, Ogawa M, Matsuura A, Shimada Y, Kakinuma S. Genomic profile of radiation-induced early-onset mouse B-cell lymphoma recapitulates features of Philadelphia chromosome-like acute lymphoblastic leukemia in humans. Carcinogenesis 2022; 43:693-703. [PMID: 35395675 DOI: 10.1093/carcin/bgac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022] Open
Abstract
Epidemiological studies have revealed a radiation-related increase in the risk of developing acute lymphoblastic leukemia (ALL). Our recent study revealed early induction and increased risk of precursor B-cell (pB) lymphomas in mice after radiation exposure. However, the genomic landscape of radiation-induced B-cell lymphomas remains unclear. To identify the relevant genetic alterations in mice, whole-exome sequencing was performed on both early-onset and late-onset B-cell lymphomas that developed spontaneously or after gamma-irradiation. In addition to multiple driver mutations, the data revealed that interstitial deletion of chromosome 4, including Pax5, and missense mutations in Jak3 are unique genomic alterations in radiation-induced, early-onset B-cell lymphomas. RNA sequencing revealed a pB-cell-type gene-expression profile with no involvement of known fusion genes for human ALLs in the early-onset B-cell lymphomas. Activation of Jak3/Stat5 signaling in early-onset B-cell lymphomas was validated using western capillary electrophoresis. Those features were similar to those of Philadelphia chromosome-like ALL. Our data suggest a critical role for Pax5 loss-of-function mutations in initiating B-cell leukemogenesis coupled with activation of Jak3/Stat5 signaling as a basis for the rapid development of radiation-induced pB-ALL. These molecular signatures for radiation-induced cancers will inform both risk assessment and potential targeted therapies for pB-ALL.
Collapse
Affiliation(s)
- Hirotaka Tachibana
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan.,Department of Biology, Graduate School of Science, Chiba University; Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Atsuko Ishikawa
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Mari Ogawa
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University; Chiba, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan.,Chief director, Institute for Environmental Sciences; Aomori, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| |
Collapse
|
7
|
Gilani A, Lee JC, Kleinschmidt-DeMasters BK. Innumerable Meningiomas Arising in a Patient With Tuberous Sclerosis Complex Decades After Radiation Therapy. Pediatr Dev Pathol 2021; 24:471-477. [PMID: 33826429 DOI: 10.1177/10935266211006078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Meningioma is the most common radiation-induced brain neoplasm, usually occurring after a latency of 20 - 35 years, with multiplicity in 10% of cases. Radiation-induced meningiomas (RIMs) have not previously been reported in patients with tuberous sclerosis complex (TSC), unlike their well-known occurrence in other familial tumor predisposition syndrome patients. We report a TSC patient who developed numerous intracranial meningiomas twenty five year after radiation therapy for subependymal giant cell astrocytoma (SEGA). Autopsy examination showed innumerable, coalescent, benign, meningothelial meningiomas, WHO grade 1, ranging in size from 0.2 cm to 3.3 cm. Autopsy also showed small residual SEGA, radiation-induced cerebral vasculopathy, and classic TSC features including several small subependymal nodules ("candle gutterings"), white matter radial heterotopia, facial angiofibromas, dental enamel pitting, one ash leaf spot, and multiple hepatic and renal angiomyolipomas. Next-generation sequencing analysis utilizing a 500+ gene cancer panel demonstrated chromosomal loss involving the majority of chromosome 22, including the NF2 gene locus, as well as a truncating nonsense mutation in TSC1 p. R509*. While TSC patients rarely require radiation therapy, this striking case suggests that patients with TSC should be monitored closely if cranial therapeutic radiation is administered.
Collapse
Affiliation(s)
- Ahmed Gilani
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Pathology, Children's Hospital Colorado, Aurora, Colorado
| | - Julieann C Lee
- Department of Pathology, University of California, San Francisco, California
| | - B K Kleinschmidt-DeMasters
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
8
|
Tsuruoka C, Kaminishi M, Shinagawa M, Shang Y, Amasaki Y, Shimada Y, Kakinuma S. High Relative Biological Effectiveness of 2 MeV Fast Neutrons for Induction of Medulloblastoma in Ptch1+/- Mice with Radiation-specific Deletion on Chromosome 13. Radiat Res 2021; 196:225-234. [PMID: 34046685 DOI: 10.1667/rade-20-00025.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/06/2021] [Indexed: 11/03/2022]
Abstract
Neutron radiation, a high-linear energy transfer radiation, has a high relative biological effectiveness (RBE) for various end points. The age at exposure is an important modifier of the effects of radiation, including carcinogenesis, with infants being generally more radiosensitive. Ptch1+/- mice offer a unique experimental system for assessing radiation carcinogenesis. Spontaneous development of medulloblastoma tumors occurs in nonirradiated animals that lose their Ptch1+ allele, most frequently by a loss of heterozygosity (LOH) of chromosome 13 via recombination or non-disjunction (referred to as S-type tumors). In contrast, tumors occur in irradiated Ptch1+/- mice as a result of chromosome 13 LOH with an interstitial deletion (R-type), making spontaneous and radiation-induced tumors discernible. To elucidate the influence of age on the effect of fast neutrons, we irradiated Ptch1+/- mice with neutrons (mean energy, ∼2 MeV) or γ rays on embryonic day (E)14 and E17 and on postnatal day (P)1, 4 or 10 and classified the resulting medulloblastomas based on chromosome 13 aberrations. Instead of LOH, some tumors harbored mutations in their Ptch1+ gene via a nonirradiation-associated mechanism such as duplication, insertion, base substitution or deletion with microhomology-mediated end joining; thus, these tumors were classified as S-type. The RBE regarding the induction of R-type tumors was 12.9 (8.6, 17.2), 9.6 (6.9, 12.3), 21.5 (17.2, 25.8), and 7.1 (4.7, 9.5) (mean and 95% confidence interval) for mice irradiated on E14, E17, P1 and P4, respectively, with the highest value seen during the most active development of the tissue and P10 being completely resistant. These results indicate that the developmental stage at exposure of the tissue influences the RBE of neutrons.
Collapse
Affiliation(s)
- Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mutsumi Kaminishi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshiya Shimada
- Institute for Environmental Science, Kamikita-gun, Aomori, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
9
|
Applegate KE, Rühm W, Wojcik A, Bourguignon M, Brenner A, Hamasaki K, Imai T, Imaizumi M, Imaoka T, Kakinuma S, Kamada T, Nishimura N, Okonogi N, Ozasa K, Rübe CE, Sadakane A, Sakata R, Shimada Y, Yoshida K, Bouffler S. Individual response of humans to ionising radiation: governing factors and importance for radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:185-209. [PMID: 32146555 DOI: 10.1007/s00411-020-00837-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
Tissue reactions and stochastic effects after exposure to ionising radiation are variable between individuals but the factors and mechanisms governing individual responses are not well understood. Individual responses can be measured at different levels of biological organization and using different endpoints following varying doses of radiation, including: cancers, non-cancer diseases and mortality in the whole organism; normal tissue reactions after exposures; and, cellular endpoints such as chromosomal damage and molecular alterations. There is no doubt that many factors influence the responses of people to radiation to different degrees. In addition to the obvious general factors of radiation quality, dose, dose rate and the tissue (sub)volume irradiated, recognized and potential determining factors include age, sex, life style (e.g., smoking, diet, possibly body mass index), environmental factors, genetics and epigenetics, stochastic distribution of cellular events, and systemic comorbidities such as diabetes or viral infections. Genetic factors are commonly thought to be a substantial contributor to individual response to radiation. Apart from a small number of rare monogenic diseases such as ataxia telangiectasia, the inheritance of an abnormally responsive phenotype among a population of healthy individuals does not follow a classical Mendelian inheritance pattern. Rather it is considered to be a multi-factorial, complex trait.
Collapse
Affiliation(s)
| | - W Rühm
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Medicine, Neuherberg, Germany
| | - A Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden
| | - M Bourguignon
- Department of Biophysics and Nuclear Medicine, University of Paris Saclay (UVSQ), Verseilles, France
| | - A Brenner
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - T Imai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - M Imaizumi
- Department of Nagasaki Clinical Studies, Radiation Effects Research Foundation, Nagasaki, Japan
| | - T Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - S Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - T Kamada
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Okonogi
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - K Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - C E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - A Sadakane
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - R Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Y Shimada
- National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
- Institute for Environmental Sciences, Aomori, Japan
| | - K Yoshida
- Immunology Laboratory, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - S Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilto, Didcot, UK
| |
Collapse
|
10
|
Inoue T, Kokubo T, Daino K, Yanagihara H, Watanabe F, Tsuruoka C, Amasaki Y, Morioka T, Homma‐Takeda S, Kobayashi T, Hino O, Shimada Y, Kakinuma S. Interstitial chromosomal deletion of the tuberous sclerosis complex 2 locus is a signature for radiation-associated renal tumors in Eker rats. Cancer Sci 2020; 111:840-848. [PMID: 31925975 PMCID: PMC7060461 DOI: 10.1111/cas.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 01/01/2023] Open
Abstract
Ionizing radiation can damage DNA and, therefore, is a risk factor for cancer. Eker rats, which carry a heterozygous germline mutation in the tumor-suppressor gene tuberous sclerosis complex 2 (Tsc2), are susceptible to radiation-induced renal carcinogenesis. However, the molecular mechanisms involved in Tsc2 inactivation are unclear. We subjected Fischer 344 × Eker (Long Evans Tsc2+/- ) F1 hybrid rats to gamma-irradiation (2 Gy) at gestational day 19 (GD19) or postnatal day 5 (PND5) and investigated the patterns of genomic alterations in the Tsc2 allele of renal tumors that developed at 1 year after irradiation (N = 24 tumors for GD19, N = 10 for PND5), in comparison with spontaneously developed tumors (N = 8 tumors). Gamma-irradiation significantly increased the multiplicity of renal tumors. The frequency of LOH at the chromosome 10q12 region, including the Tsc2 locus, was 38%, 29% and 60% in renal carcinomas developed from the nonirradiated, GD19 and PND5 groups, respectively. Array comparative genomic hybridization analysis revealed that the LOH patterns on chromosome 10 in renal carcinomas were classified into chromosomal missegregation, mitotic recombination and chromosomal deletion types. LOH of the interstitial chromosomal deletion type was observed only in radiation-associated carcinomas. Sequence analysis for the wild-type Tsc2 allele in the LOH-negative carcinomas identified deletions (nonirradiated: 26%; GD19: 21%) and base-substitution mutations (GD19: 4%). Reduced expression of Tsc2 was also observed in the majority of the LOH-negative carcinomas. Our results suggest that interstitial chromosomal deletion is a characteristic mutagenic event caused by ionizing radiation, and it may contribute to the assessment of radiation-induced cancer risk.
Collapse
Affiliation(s)
- Tatsuya Inoue
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
- Department of RadiologyJuntendo University Urayasu HospitalChibaJapan
| | - Toshiaki Kokubo
- Laboratory Animal and Genome Sciences SectionNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Kazuhiro Daino
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Hiromi Yanagihara
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Fumiko Watanabe
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Chizuru Tsuruoka
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yoshiko Amasaki
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Takamitsu Morioka
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Shino Homma‐Takeda
- Department of Basic Medical Sciences for Radiation DamagesNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Toshiyuki Kobayashi
- Department of Pathology and OncologyFaculty of MedicineJuntendo UniversityTokyoJapan
| | - Okio Hino
- Department of Pathology and OncologyFaculty of MedicineJuntendo UniversityTokyoJapan
| | - Yoshiya Shimada
- National Institutes for Quantum and Radiological Science and TechnologyChibaJapan
- Present address:
Institute for Environmental SciencesAomoriJapan
| | - Shizuko Kakinuma
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| |
Collapse
|