1
|
Febres-Aldana CA, Fanaroff R, Offin M, Zauderer MG, Sauter JL, Yang SR, Ladanyi M. Diffuse Pleural Mesothelioma: Advances in Molecular Pathogenesis, Diagnosis, and Treatment. ANNUAL REVIEW OF PATHOLOGY 2024; 19:11-42. [PMID: 37722697 DOI: 10.1146/annurev-pathol-042420-092719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Diffuse pleural mesothelioma (DPM) is a highly aggressive malignant neoplasm arising from the mesothelial cells lining the pleural surfaces. While DPM is a well-recognized disease linked to asbestos exposure, recent advances have expanded our understanding of molecular pathogenesis and transformed our clinical practice. This comprehensive review explores the current concepts and emerging trends in DPM, including risk factors, pathobiology, histologic subtyping, and therapeutic management, with an emphasis on a multidisciplinary approach to this complex disease.
Collapse
Affiliation(s)
- Christopher A Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Rachel Fanaroff
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| |
Collapse
|
2
|
Ito F, Kato K, Yanatori I, Maeda Y, Murohara T, Toyokuni S. Matrigel-based organoid culture of malignant mesothelioma reproduces cisplatin sensitivity through CTR1. BMC Cancer 2023; 23:487. [PMID: 37254056 DOI: 10.1186/s12885-023-10966-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Organoids are a three-dimensional (3D) culture system that simulate actual organs. Therefore, tumor organoids are expected to predict precise response to chemotherapy in patients. However, to date, few studies have studied the drug responses in organoids of malignant mesothelioma (MM). The poor prognosis of MM emphasizes the importance of establishing a protocol for generating MM-organoid for research and clinical use. Here, we established murine MM organoids from p53+/- or wild-type C57BL/6 strain by intraperitoneal injection either with crocidolite or carbon nanotube. Established MM-organoids proliferated in Matrigel as spheroids. Subcutaneous injection assays revealed that the MM-organoids mimicked actual tissue architecture and maintained the original histological features of the primary MM. RNA sequencing and pathway analyses revealed that the significant expressional differences between the 2D- and 3D-culture systems were observed in receptor tyrosine kinases, including IGF1R and EGFR, glycosylation and cholesterol/steroid metabolism. MM-organoids exhibited a more sensitive response to cisplatin through stable plasma membrane localization of a major cisplatin transporter, copper transporter 1/Slc31A1 (Ctr1) in comparison to 2D-cultures, presumably through glycosylation and lipidation. The Matrigel culture system facilitated the localization of CTR1 on the plasma membrane, which simulated the original MMs and the subcutaneous xenografts. These results suggest that the newly developed protocol for MM-organoids is useful to study strategies to overcome chemotherapy resistance to cisplatin.
Collapse
Affiliation(s)
- Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Izumi Yanatori
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
3
|
Moro J, Sobrero S, Cartia CF, Ceraolo S, Rapanà R, Vaisitti F, Ganio S, Mellone F, Rudella S, Scopis F, La Paglia D, Cacciatore CC, Ruffini E, Leo F. Diagnostic and Therapeutic Challenges of Malignant Pleural Mesothelioma. Diagnostics (Basel) 2022; 12:3009. [PMID: 36553016 PMCID: PMC9776695 DOI: 10.3390/diagnostics12123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Malignant pleural mesothelioma is a rare cancer characterized by a very poor prognosis. Exposure to asbestos is the leading cause of malignant pleural mesothelioma. The preinvasive lesions, the mesothelial hyperplasia and its possible evolution are the focus of the majority of the studies aiming to identify the treatable phase of the disease. The role of BAP-1 and MTAP in the diagnosis of mesothelioma in situ and in the prognosis of malignant pleural mesothelioma is the main topic of recent studies. The management of preinvasive lesions in mesothelioma is still unclear and many aspects are the subject of debate. The diagnosis, the disease staging and the accurate, comprehensive assessment of patients are three key instants for an appropriate management of patients/the disease.
Collapse
Affiliation(s)
- Jacopo Moro
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Simona Sobrero
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | | | - Simona Ceraolo
- Nursing Degree Program, Department of Clinical and Biological Sciences, University of Turin, 10124 Torino, Italy
| | - Roberta Rapanà
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Federico Vaisitti
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Stefano Ganio
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Federica Mellone
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Stefano Rudella
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Federico Scopis
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Danilo La Paglia
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Carola Crystel Cacciatore
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Enrico Ruffini
- Division of Thoracic Surgery, Department of Surgical Sciences, Città della Salute Hospital Turin, University of Turin, 10126 Torino, Italy
| | - Francesco Leo
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
4
|
Toyokuni S, Kong Y, Zheng H, Maeda Y, Motooka Y, Akatsuka S. Iron as spirit of life to share under monopoly. J Clin Biochem Nutr 2022; 71:78-88. [PMID: 36213789 PMCID: PMC9519419 DOI: 10.3164/jcbn.22-43] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
Any independent life requires iron to survive. Whereas iron deficiency causes oxygen insufficiency, excess iron is a risk for cancer, generating a double-edged sword. Iron metabolism is strictly regulated via specific systems, including iron-responsive element (IRE)/iron regulatory proteins (IRPs) and the corresponding ubiquitin ligase FBXL5. Here we briefly reflect the history of bioiron research and describe major recent advancements. Ferroptosis, a newly coined Fe(II)-dependent regulated necrosis, is providing huge impact on science. Carcinogenesis is a process to acquire ferroptosis-resistance and ferroptosis is preferred in cancer therapy due to immunogenicity. Poly(rC)-binding proteins 1/2 (PCBP1/2) were identified as major cytosolic Fe(II) chaperone proteins. The mechanism how cells retrieve stored iron in ferritin cores was unraveled as ferritinophagy, a form of autophagy. Of note, ferroptosis may exploit ferritinophagy during the progression. Recently, we discovered that cellular ferritin secretion is through extracellular vesicles (EVs) escorted by CD63 under the regulation of IRE/IRP system. Furthermore, this process was abused in asbestos-induced mesothelial carcinogenesis. In summary, cellular iron metabolism is tightly regulated by multi-system organizations as surplus iron is shared through ferritin in EVs among neighbor and distant cells in need. However, various noxious stimuli dramatically promote cellular iron uptake/storage, which may result in ferroptosis.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| |
Collapse
|
5
|
Okazaki Y. Asbestos‐induced mesothelial injury and carcinogenesis: Involvement of iron and reactive oxygen species. Pathol Int 2021; 72:83-95. [DOI: 10.1111/pin.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/11/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses Nagoya University Graduate School of Medicine Showa‐Ku Nagoya Japan
| |
Collapse
|
6
|
Gualtieri AF. Bridging the gap between toxicity and carcinogenicity of mineral fibres by connecting the fibre crystal-chemical and physical parameters to the key characteristics of cancer. Curr Res Toxicol 2021; 2:42-52. [PMID: 34345849 PMCID: PMC8320635 DOI: 10.1016/j.crtox.2021.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Airborne fibres and particularly asbestos represent hazards of great concern for human health because exposure to these peculiar particulates may cause malignancies such as lung cancer and mesothelioma. Currently, many researchers worldwide are focussed on fully understanding the patho-biological mechanisms leading to carcinogenesis prompted by pathogenic fibres. Along this line, the present work introduces a novel approach to correlate how and to what extent the physical/crystal-chemical and morphological parameters (including length, chemistry, biodurability, and surface properties) of mineral fibres cause major adverse effects with an emphasis on asbestos. The model described below conceptually attempts to bridge the gap between toxicity and carcinogenicity of mineral fibres and has several implications: 1) it provides a tool to measure the toxicity and pathogenic potential of asbestos minerals, allowing a quantitative rank of the different types (e.g. chrysotile vs. crocidolite); 2) it can predict the toxicity and pathogenicity of "unregulated" or unclassified fibres; 3) it reveals the parameters of a mineral fibre that are active in stimulating key characteristics of cancer, thus offering a strategy for developing specific cancer prevention strategies and therapies. Chrysotile, crocidolite and fibrous glaucophane are described here as mineral fibres of interest.
Collapse
Affiliation(s)
- Alessandro F. Gualtieri
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Okazaki Y, Misawa N, Akatsuka S, Kohyama N, Sekido Y, Takahashi T, Toyokuni S. Frequent homozygous deletion of Cdkn2a/2b in tremolite-induced malignant mesothelioma in rats. Cancer Sci 2020; 111:1180-1192. [PMID: 32080953 PMCID: PMC7156836 DOI: 10.1111/cas.14358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022] Open
Abstract
The onset of malignant mesothelioma (MM) is linked to exposure to asbestos fibers. Asbestos fibers are classified as serpentine (chrysotile) or amphibole, which includes the crocidolite, amosite, anthophyllite, tremolite, and actinolite types. Although few studies have been undertaken, anthophyllite has been shown to be associated with mesothelioma, and tremolite, a contaminant in talc and chrysotile, is a risk factor for carcinogenicity. Here, after characterizing the length and width of these fibers by scanning electron microscopy, we explored the cytotoxicity induced by tremolite and anthophyllite in cells from an immortalized human mesothelial cell line (MeT5A), murine macrophages (RAW264.7), and in a rat model. Tremolite and short anthophyllite fibers were phagocytosed and localized to vacuoles, whereas the long anthophyllite fibers were caught on the pseudopod of the MeT5A and Raw 264.7 cells, according to transmission electron microscopy. The results from a 2-day time-lapse study revealed that tremolite was engulfed and damaged the MeT5A and RAW264.7 cells, but anthophyllite was not cytotoxic to these cells. Intraperitoneal injection of tremolite in rats induced diffuse serosal thickening, whereas anthophyllite formed focal fibrosis and granulomas on peritoneal serosal surfaces. Furthermore, the loss of Cdkn2a/2b, which are the most frequently lost foci in human MM, were observed in 8 cases of rat MM (homozygous deletion [5/8] and loss of heterozygosity [3/8]) by array-based comparative genomic hybridization techniques. These results indicate that tremolite initiates mesothelial injury and persistently frustrates phagocytes, causing subsequent peritoneal fibrosis and MM. The possible mechanisms of carcinogenicity based on fiber diameter/length are discussed.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| | - Nobuaki Misawa
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinya Akatsuka
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| | - Norihiko Kohyama
- Faculty of EconomicsToyo University Graduate School of EconomicsTokyoJapan
- National Institute of Occupational Safety and HealthKawasakiJapan
| | - Yoshitaka Sekido
- Division of Cancer BiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Takashi Takahashi
- Division of Molecular CarcinogenesisNagoya University Graduate School of MedicineNagoyaJapan
- Aichi Cancer Center Research InstituteNagoyaJapan
| | - Shinya Toyokuni
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|