1
|
Sanoguera-Miralles L, Llinares-Burguet I, Bueno-Martínez E, Ramadane-Morchadi L, Stuani C, Valenzuela-Palomo A, García-Álvarez A, Pérez-Segura P, Buratti E, de la Hoya M, Velasco-Sampedro EA. Comprehensive splicing analysis of the alternatively spliced CHEK2 exons 8 and 10 reveals three enhancer/silencer-rich regions and 38 spliceogenic variants. J Pathol 2024; 262:395-409. [PMID: 38332730 DOI: 10.1002/path.6243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Lobna Ramadane-Morchadi
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Cristiana Stuani
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
2
|
Peña-López J, Jiménez-Bou D, Ruíz-Gutiérrez I, Martín-Montalvo G, Alameda-Guijarro M, Rueda-Lara A, Ruíz-Giménez L, Higuera-Gómez O, Gallego A, Pertejo-Fernández A, Sánchez-Cabrero D, Feliu J, Rodríguez-Salas N. Prevalence and Distribution of MUTYH Pathogenic Variants, Is There a Relation with an Increased Risk of Breast Cancer? Cancers (Basel) 2024; 16:315. [PMID: 38254803 PMCID: PMC10813893 DOI: 10.3390/cancers16020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND MUTYH has been implicated in hereditary colonic polyposis and colorectal carcinoma. However, there are conflicting data refgarding its relationship to hereditary breast cancer. Therefore, we aimed to assess if MUTYH mutations contribute to breast cancer susceptibility. METHODS We retrospectively reviewed 3598 patients evaluated from June 2018 to June 2023 at the Hereditary Cancer Unit of La Paz University Hospital, focusing on those with detected MUTYH variants. RESULTS Variants of MUTYH were detected in 56 patients (1.6%, 95%CI: 1.2-2.0). Of the 766 patients with breast cancer, 14 patients were carriers of MUTYH mutations (1.8%, 95%CI: 0.5-3.0). The prevalence of MUTYH mutation was significantly higher in the subpopulation with colonic polyposis (11.3% vs. 1.1%, p < 0.00001, OR = 11.2, 95%CI: 6.2-22.3). However, there was no significant difference in the prevalence within the subpopulation with breast cancer (1.8% vs. 1.5%, p = 0.49, OR = 1.2, 95%CI: 0.7-2.3). CONCLUSION In our population, we could not establish a relationship between MUTYH and breast cancer. These findings highlight the necessity for a careful interpretation when assessing the role of MUTYH mutations in breast cancer risk.
Collapse
Affiliation(s)
- Jesús Peña-López
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Diego Jiménez-Bou
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Icíar Ruíz-Gutiérrez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Gema Martín-Montalvo
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | | - Antonio Rueda-Lara
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Leticia Ruíz-Giménez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Oliver Higuera-Gómez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Alejandro Gallego
- Department of Medical Oncology, Clínica Universidad de Navarra, 28027 Madrid, Spain
| | | | | | - Jaime Feliu
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | |
Collapse
|
3
|
Sanoguera-Miralles L, Valenzuela-Palomo A, Bueno-Martínez E, Esteban-Sánchez A, Lorca V, Llinares-Burguet I, García-Álvarez A, Pérez-Segura P, Infante M, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco-Sampedro EA. Systematic Minigene-Based Splicing Analysis and Tentative Clinical Classification of 52 CHEK2 Splice-Site Variants. Clin Chem 2024; 70:319-338. [PMID: 37725924 DOI: 10.1093/clinchem/hvad125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/07/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Disrupted pre-mRNA splicing is a frequent deleterious mechanism in hereditary cancer. We aimed to functionally analyze candidate spliceogenic variants of the breast cancer susceptibility gene CHEK2 by splicing reporter minigenes. METHODS A total of 128 CHEK2 splice-site variants identified in the Breast Cancer After Diagnostic Gene Sequencing (BRIDGES) project (https://cordis.europa.eu/project/id/634935) were analyzed with MaxEntScan and subsetted to 52 variants predicted to impact splicing. Three CHEK2 minigenes, which span all 15 exons, were constructed and validated. The 52 selected variants were then genetically engineered into the minigenes and assayed in MCF-7 (human breast adenocarcinoma) cells. RESULTS Of 52 variants, 46 (88.5%) impaired splicing. Some of them led to complex splicing patterns with up to 11 different transcripts. Thirty-four variants induced splicing anomalies without any trace or negligible amounts of the full-length transcript. A total of 89 different transcripts were annotated, which derived from different events: single- or multi-exon skipping, alternative site-usage, mutually exclusive exon inclusion, intron retention or combinations of the abovementioned events. Fifty-nine transcripts were predicted to introduce premature termination codons, 7 kept the original open-reading frame, 5 removed the translation start codon, 6 affected the 5'UTR (Untranslated Region), and 2 included missense variations. Analysis of variant c.684-2A > G revealed the activation of a non-canonical TG-acceptor site and exon 6 sequences critical for its recognition. CONCLUSIONS Incorporation of minigene read-outs into an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme allowed us to classify 32 CHEK2 variants (27 pathogenic/likely pathogenic and 5 likely benign). However, 20 variants (38%) remained of uncertain significance, reflecting in part the complex splicing patterns of this gene.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Ada Esteban-Sánchez
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Mar Infante
- Cancer Genetics, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, Cambridge, United Kingdom
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
4
|
Jeyaprakash K, Thirumalairaj K, Kim U, Muthukkaruppan V, Vanniarajan A. RB1 transcript analysis detects novel splicing aberration in retinoblastoma. Pediatr Blood Cancer 2023; 70:e30290. [PMID: 36916769 DOI: 10.1002/pbc.30290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 03/16/2023]
Affiliation(s)
- Kumar Jeyaprakash
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India.,Department of Molecular Biology, Aravind Medical Research Foundation, Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | - Kannan Thirumalairaj
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Oncology, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Veerappan Muthukkaruppan
- Department of Stem Cell Biology and Immunology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India.,Department of Molecular Biology, Aravind Medical Research Foundation, Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
5
|
Valenzuela‐Palomo A, Bueno‐Martínez E, Sanoguera‐Miralles L, Lorca V, Fraile‐Bethencourt E, Esteban‐Sánchez A, Gómez‐Barrero S, Carvalho S, Allen J, García‐Álvarez A, Pérez‐Segura P, Dorling L, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. Splicing predictions, minigene analyses, and ACMG-AMP clinical classification of 42 germline PALB2 splice-site variants. J Pathol 2022; 256:321-334. [PMID: 34846068 PMCID: PMC9306493 DOI: 10.1002/path.5839] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
PALB2 loss-of-function variants confer high risk of developing breast cancer. Here we present a systematic functional analysis of PALB2 splice-site variants detected in approximately 113,000 women in the large-scale sequencing project Breast Cancer After Diagnostic Gene Sequencing (BRIDGES; https://bridges-research.eu/). Eighty-two PALB2 variants at the intron-exon boundaries were analyzed with MaxEntScan. Forty-two variants were selected for the subsequent splicing functional assays. For this purpose, three splicing reporter minigenes comprising exons 1-12 were constructed. The 42 potential spliceogenic variants were introduced into the minigenes by site-directed mutagenesis and assayed in MCF-7/MDA-MB-231 cells. Splicing anomalies were observed in 35 variants, 23 of which showed no traces or minimal amounts of the expected full-length transcripts of each minigene. More than 30 different variant-induced transcripts were characterized, 23 of which were predicted to truncate the PALB2 protein. The pathogenicity of all variants was interpreted according to an in-house adaptation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) variant classification scheme. Up to 23 variants were classified as pathogenic/likely pathogenic. Remarkably, three ±1,2 variants (c.49-2A>T, c.108+2T>C, and c.211+1G>A) were classified as variants of unknown significance, as they produced significant amounts of either in-frame transcripts of unknown impact on the PALB2 protein function or the minigene full-length transcripts. In conclusion, we have significantly contributed to the ongoing effort of identifying spliceogenic variants in the clinically relevant PALB2 cancer susceptibility gene. Moreover, we suggest some approaches to classify the findings in accordance with the ACMG-AMP rationale. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alberto Valenzuela‐Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Elena Bueno‐Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Lara Sanoguera‐Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Víctor Lorca
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eugenia Fraile‐Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
- Knight Cancer Research BuildingPortlandORUSA
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | | | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Alicia García‐Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Pedro Pérez‐Segura
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Peter Devilee
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike PG Vreeswijk
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| |
Collapse
|
6
|
Hong X, Ying Y, Zhang J, Chen S, Xu X, He J, Zhu F. Six splice site variations, three of them novel, in the ABO gene occurring in nine individuals with ABO subtypes. J Transl Med 2021; 19:470. [PMID: 34809663 PMCID: PMC8607603 DOI: 10.1186/s12967-021-03141-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Background Nucleotide mutations in the ABO gene may reduce the activity of glycosyltransferase, resulting in lower levels of A or B antigen expression in red blood cells. Six known splice sites have been identified according to the database of red cell immunogenetics and the blood group terminology of the International Society of Blood Transfusion. Here, we describe six distinct splice site variants in individuals with ABO subtypes. Methods The ABO phenotype was examined using a conventional serological method. A polymerase chain reaction sequence-based typing method was used to examine the whole coding sequence of the ABO gene. The ABO gene haplotypes were studied using allele-specific primer amplification or cloning technology. In silico analytic tools were used to assess the functional effect of splice site variations. Results Six distinct variants in the ABO gene splice sites were identified in nine individuals with ABO subtypes, including c.28 + 1_2delGT, c.28 + 5G > A, c.28 + 5G > C, c.155 + 5G > A, c.204-1G > A and c.374 + 5G > A. c.28 + 1_2delGT was detected in an Aw individual, while c.28 + 5G > A, c.28 + 5G > C, and c.204-1G > A were detected in Bel individuals. c.155 + 5G > A was detected in one B3 and two AB3 individuals, whereas c.374 + 5G > A was identified in two Ael individuals. Three novel splice site variants (c.28 + 1_2delGT, c.28 + 5G > A and c.28 + 5G > C) in the ABO gene were discovered, all of which resulted in low antigen expression. In silico analysis revealed that all variants had the potential to alter splice transcripts. Conclusions Three novel splice site variations in the ABO gene were identified in Chinese individuals, resulting in decreased A or B antigen expression and the formation of ABO subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03141-5.
Collapse
Affiliation(s)
- Xiaozhen Hong
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Yanling Ying
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Jingjing Zhang
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Shu Chen
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Xianguo Xu
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Ji He
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China. .,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China.
| |
Collapse
|
7
|
Vaidyanathan A, Kaklamani V. Understanding the Clinical Implications of Low Penetrant Genes and Breast Cancer Risk. Curr Treat Options Oncol 2021; 22:85. [PMID: 34424438 DOI: 10.1007/s11864-021-00887-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 10/20/2022]
Abstract
OPINION STATEMENT Since the 2013 Supreme Court declaration, panel testing for hereditary cancer syndromes has evolved into the gold standard for oncology germline genetic testing. With the advent of next-generation sequencing, competitive pricing, and developing therapeutic options, panel testing is now well integrated into breast cancer management and surveillance. Although many established syndromes have well-defined cancer risks and management strategies, several breast cancer genes are currently classified as limited-evidence genes by the National Comprehensive Cancer Network (NCCN). Follow-up for individuals with mutations in these genes is a point of contention due to conflicting information in the literature. The most recent NCCN guidelines have stratified management based on gene-specific cancer risks indicating that expanding data will allow for better recommendations as research progresses. The evolving management for these genes emphasizes the clinicians' need for evidence-based understanding of low penetrance breast cancer genes and their implications for patient care. This article reviews current literature for limited evidence genes, detailing cancer risks, association with triple-negative breast cancer, and recommendations for surveillance. A brief review of the challenges and future directions is outlined to discuss the evolving nature of cancer genetics and the exciting opportunities that can impact management.
Collapse
Affiliation(s)
- Anusha Vaidyanathan
- UT Health Science Center San Antonio, 7979 Wurzbach Road, San Antonio, TX, 79229, USA.
| | - Virginia Kaklamani
- UT Health Science Center San Antonio, 7979 Wurzbach Road, San Antonio, TX, 79229, USA
| |
Collapse
|
8
|
Agiannitopoulos K, Pepe G, Papadopoulou E, Tsaousis GN, Kampouri S, Maravelaki S, Fassas A, Christodoulou C, Iosifidou R, Karageorgopoulou S, Markopoulos C, Natsiopoulos I, Papazisis K, Vasilaki-Antonatou M, Venizelos V, Ozmen V, Tansan S, Kaban K, Eniu DT, Chiorean A, Nasioulas G. Clinical Utility of Functional RNA Analysis for the Reclassification of Splicing Gene Variants in Hereditary Cancer. Cancer Genomics Proteomics 2021; 18:285-294. [PMID: 33893081 DOI: 10.21873/cgp.20259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Classification of splicing variants (SVs) in genes associated with hereditary cancer is often challenging. The aim of this study was to investigate the occurrence of SVs in hereditary cancer genes and the clinical utility of RNA analysis. MATERIAL AND METHODS 1518 individuals were tested for cancer predisposition, using a Next Generation Sequencing (NGS) panel of 36 genes. Splicing variant analysis was performed using RT-PCR and Sanger Sequencing. RESULTS In total, 34 different SVs were identified, 53% of which were classified as pathogenic or likely pathogenic. The remaining 16 variants were initially classified as Variant of Uncertain Significance (VUS). RNA analysis was performed for 3 novel variants. CONCLUSION The RNA analysis assisted in the reclassification of 20% of splicing variants from VUS to pathogenic. RNA analysis is essential in the case of uncharacterized splicing variants, for proper classification and personalized management of these patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Vahit Ozmen
- Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | | | - Dan Tudor Eniu
- Institutul Oncologic Prof. Dr. I. Chiricuta, Cluj, Romania
| | | | | |
Collapse
|
9
|
Ryu JS, Lee HY, Cho EH, Yoon KA, Kim MK, Joo J, Lee ES, Kang HS, Lee S, Lee DO, Lim MC, Kong SY. Exon splicing analysis of intronic variants in multigene cancer panel testing for hereditary breast/ovarian cancer. Cancer Sci 2020; 111:3912-3925. [PMID: 32761968 PMCID: PMC7540976 DOI: 10.1111/cas.14600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
The use of multigene panel testing for patients with a predisposition to breast/ovarian cancer is increasing as the identification of variants is useful for diagnosis and disease management. We identified pathogenic and likely pathogenic (P/LP) variants of high-and moderate-risk genes using a 23-gene germline cancer panel in 518 patients with hereditary breast and ovarian cancers (HBOC). The frequency of P/LP variants was 12.4% (64/518) for high- and moderate-penetrant genes, namely, BRCA2 (5.6%), BRCA1 (3.3%), CHEK2 (1.2%), MUTYH (0.8%), PALB2 (0.8%), MLH1 (0.4%), ATM (0.4%), BRIP1 (0.4%), TP53 (0.2%), and PMS2 (0.2%). Five patients possessed two P/LP variants in BRCA1/2 and other genes. We also compared the results from in silico splicing predictive tools and exon splicing patterns from patient samples by analyzing RT-PCR product sequences in six P/LP intronic variants and two intronic variants of unknown significance (VUS). Altered transcriptional fragments were detected for P/LP intronic variants in BRCA1, BRIP1, CHEK2, PARB2, and PMS2. Notably, we identified an in-frame deletion of the BRCA1 C-terminal (BRCT) domain by exon skipping in BRCA1 c.5152+6T>C-as known VUS-indicating a risk for HBOC. Thus, exon splicing analysis can improve the identification of veiled intronic variants that would aid decision making and determination of hereditary cancer risk.
Collapse
Affiliation(s)
- Jin-Sun Ryu
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
| | - Hye-Young Lee
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea
| | - Eun Hae Cho
- Genomic research center, Green Cross Genome, Yongin, Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Min-Kyeong Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
| | - Jungnam Joo
- Division of Cancer Epidemiology and Management, Research Institute, National Cancer Center, Goyang, Korea
| | - Eun-Sook Lee
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Han-Sung Kang
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Seeyoun Lee
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Dong Ock Lee
- Center for Gynecologic Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, Hospital, National Cancer Center, Goyang, Korea.,Division of Tumor Immunology and Center for Clinical Trial, Research Institute, National Cancer Center, Goyang, Korea
| | - Sun-Young Kong
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea.,Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| |
Collapse
|