1
|
Kiełbowski K, Szwedkowicz A, Plewa P, Bakinowska E, Becht R, Pawlik A. Anticancer properties of histone deacetylase inhibitors - what is their potential? Expert Rev Anticancer Ther 2025; 25:105-120. [PMID: 39791841 DOI: 10.1080/14737140.2025.2452338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Histone modifications are crucial epigenetic mechanisms for regulating gene expression. Histone acetyltransferases and deacetylases (HDACs) catalyze histone acetylation, a process that mediates transcription. Over recent decades, studies have demonstrated that targeting histone acetylation can be effective in cancer treatment, leading to the development and approval of several HDAC inhibitors. AREAS COVERED A comprehensive literature review was conducted using the PubMed database to identify studies evaluating the anticancer efficacy of approved and novel HDAC inhibitors. EXPERT OPINION Accumulating evidence highlights the promising benefits of combining HDAC inhibitors with other anticancer agents. Additionally, HDAC-targeting therapeutics could enhance the sensitivity of cancer cells to chemotherapeutics or targeted tyrosine kinase inhibitors, thereby improving overall treatment outcomes. Future clinical studies must focus on optimizing combination therapies to ensure efficacy while maintaining manageable safety profiles.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, Szczecin, Poland
| | - Agata Szwedkowicz
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Paulina Plewa
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
2
|
Stukey GJ, Breuer MR, Burchat N, Jog R, Schultz K, Han GS, Sachs MS, Sampath H, Marmorstein R, Carman GM. The antidepressant drug sertraline is a novel inhibitor of yeast Pah1 and human lipin 1 phosphatidic acid phosphatases. J Lipid Res 2025; 66:100711. [PMID: 39577771 PMCID: PMC11721541 DOI: 10.1016/j.jlr.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Phosphatidic acid phosphatase (PAP) is an evolutionarily conserved eukaryotic enzyme that catalyzes the Mg2+-dependent dephosphorylation of phosphatidic acid to produce diacylglycerol. The product and substrate of PAP are key intermediates in the synthesis of triacylglycerol and membrane phospholipids. PAP activity is associated with lipid-based cellular defects indicating the enzyme is an important target for regulation. We identified that the antidepressant sertraline is a novel inhibitor of PAP. Using Saccharomyces cerevisiae Pah1 as a model PAP, sertraline inhibited the activity by a noncompetitive mechanism. Sertraline also inhibited the PAP activity of human lipin 1 (α, β, and γ), an orthologue of Pah1. The inhibitor constants of sertraline for the S. cerevisiae and human PAP enzymes were 7-fold and ∼2-fold, respectively, lower than those of propranolol, a commonly used PAP inhibitor. Consistent with the inhibitory mechanism of sertraline and propranolol, molecular docking of the inhibitors predicts that they interact with non-catalytic residues in the haloacid dehalogenase-like catalytic domain of Pah1. The Pah1-CC (catalytic core) variant, which lacks regulatory sequences, was inhibited by both drugs in accordance with molecular docking data. That Pah1 is a physiological target of sertraline in S. cerevisiae is supported by the observations that the overexpression of PAH1 rescued the sertraline-mediated inhibition of pah1Δ mutant cell growth, the lethal effect of overexpressing Pah1-CC was rescued by sertraline supplementation, and that a sublethal dose of the drug resulted in a 2-fold decrease in TAG content.
Collapse
Affiliation(s)
- Geordan J Stukey
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Matthew R Breuer
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Natalie Burchat
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA; Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ruta Jog
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Graduate Group in Biochemistry & Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gil-Soo Han
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Harini Sampath
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA; Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George M Carman
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Hong Y, Liu Q, Xin C, Hu H, Zhuang Z, Ge H, Shen Y, Zhao Y, Zhou Y, Ye B, Wu D. Ferroptosis-Related Gene Signature for Prognosis Prediction in Acute Myeloid Leukemia and Potential Therapeutic Options. Int J Gen Med 2024; 17:3837-3853. [PMID: 39246807 PMCID: PMC11380859 DOI: 10.2147/ijgm.s460164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
Background Limited data were available to understand the significance of ferroptosis in leukemia prognosis, regardless of the genomic background. Methods RNA-seq data from 151 AML patients were analyzed from The Cancer Genome Atlas (TCGA) database, along with 70 healthy samples from the Genotype-Tissue Expression (GTEx) database. Ferroptosis-related genes (FRGs) features were constructed by multivariate COX regression analysis and risk scores were calculated for each sample and a novel prediction model was identified. The validation was carried out using data from 35 AML patients and 13 healthy controls in our cohort. Drug sensitivity analysis was conducted on various chemotherapeutic drugs. Results A signature of 10 FRGs was identified, as prognostic predictors for AML, and the risk scores were calculated to constructed the prognostic features of FRGs. Significantly lower overall survival was observed in the high-risk group. The predictive ability of these features for AML prognosis was confirmed using Cox regression analysis, ROC curves, and DCA. The prediction model performed well in our clinical practices, and had its potential superiority when comparing to classical NCCN risk stratification. Multiple chemotherapy drugs, including paclitaxel, dactinomycin, cisplatin, etc. had a lower IC50 in FRGs high-risk group than low-risk group. Conclusion The AML prognosis model based on FRGs accurately predicts AML prognosis and drug sensitivity, and the drugs identified worthy further investigation.
Collapse
Affiliation(s)
- Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chuanao Xin
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Huijin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhenchao Zhuang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Hangping Ge
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yingying Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yuechao Zhao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Imai H, Saijo K, Chikamatsu S, Kawamura Y, Ishioka C. LPIN1 downregulation enhances anticancer activity of the novel HDAC/PI3K dual inhibitor FK-A11. Cancer Sci 2021; 112:792-802. [PMID: 33274548 PMCID: PMC7894020 DOI: 10.1111/cas.14759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphatidylinositol-3 kinase (PI3K) inhibitor and histone deacetylase (HDAC) inhibitor have been developed as potential anticancer drugs. However, the cytotoxicity of PI3K inhibitor or HDAC inhibitor alone is relatively weak. We recently developed a novel HDAC/PI3K dual inhibitor FK-A11 and confirmed its enhanced cytotoxicity when compared to that of PI3K inhibitor or HDAC inhibitor alone on several cancer cell lines. However, the in vivo antitumor activity of FK-A11 was insufficient. We conducted high-throughput RNA interfering screening and identified gene LPIN1 which enhances the cytotoxicity of FK-A11. Downregulation of LPIN1 enhanced simultaneous inhibition of HDAC and PI3K by FK-A11 and enhanced the cytotoxicity of FK-A11. Propranolol, a beta-adrenoreceptor which is also a LPIN1 inhibitor, enhanced the in vitro and in vivo cytotoxicity and antitumor effect of FK-A11. These findings should help in the development of FK-A11 as a novel HDAC/PI3K dual inhibitor.
Collapse
Affiliation(s)
- Hiroo Imai
- Department of Clinical OncologyInstitute for Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Ken Saijo
- Department of Clinical OncologyInstitute for Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Sonoko Chikamatsu
- Department of Clinical OncologyInstitute for Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Yoshifumi Kawamura
- Department of Clinical OncologyInstitute for Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Chikashi Ishioka
- Department of Clinical OncologyInstitute for Development, Aging and CancerTohoku UniversitySendaiJapan
| |
Collapse
|