1
|
Alibrahim MN, Gloghini A, Carbone A. Classic Hodgkin lymphoma: Pathobiological features that impact emerging therapies. Blood Rev 2025; 71:101271. [PMID: 39904647 DOI: 10.1016/j.blre.2025.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Classic Hodgkin lymphoma (cHL) is defined by distinctive Hodgkin Reed-Sternberg (HRS) cells, which are CD30+/CD15+ multinucleated tumor cells lacking typical B-cell markers. These cells comprise <5 % of tumor mass but orchestrate an extensive immunosuppressive tumor microenvironment (TME). Classic HL was curable with radiation therapy and multi-agent chemotherapy. Despite high cure rates, treatment-related toxicities remain significant. The goals of multimodality therapy are to achieve a cure while minimizing treatment-associated toxicity. Advances in molecular insights into HRS cells have led to transformative therapies, including checkpoint inhibitors, antibody-drug conjugates like brentuximab vedotin, which have shown remarkable efficacy, especially in relapsed or refractory disease. However, challenges persist due to the heterogeneity of cHL, driven by the complex biology of HRS cells and their surrounding tumor microenvironment. Novel approaches such as single-cell RNA sequencing and circulating tumor DNA profiling provide promising strategies to address these challenges. This review examines the origin, morphology, phenotype, and genetic profiles of HRS cells, highlighting key pathobiological features, including biomarkers and Epstein-Barr Virus involvement. It also explores the biological mechanisms underlying HRS cell survival and evaluates standard and emerging therapies, offering insights into the rationale for novel treatment strategies.
Collapse
Affiliation(s)
| | - Annunziata Gloghini
- Department of Avanced Pathology, Fondazione IRCCS, Istituto Nazionale dei Tumori Milano, Italy.
| | - Antonino Carbone
- Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
2
|
Yuan L, Zhong L, Krummenacher C, Zhao Q, Zhang X. Epstein-Barr virus-mediated immune evasion in tumor promotion. Trends Immunol 2025:S1471-4906(25)00081-X. [PMID: 40240193 DOI: 10.1016/j.it.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Epstein-Barr virus (EBV) was the first DNA virus identified to be tightly associated with multiple human tumors. It promotes malignant progression of tumors - including related lymphomas, nasopharyngeal carcinoma, and gastric adenocarcinoma - in part by evading surveillance and attack by the host immune system. In this article we review the main molecular mechanisms by which EBV-encoded proteins and RNAs interact with key molecules of the host immune system to inhibit Toll-like receptor (TLR)-nuclear factor κB (NF-κB), retinoic acid-inducible gene I (RIG-I), and interferon (IFN) signaling pathways, affect antigen presentation, prevent the cytotoxic effects of CD8+ effector cells, regulate the tumor microenvironment (TME) and cell metastasis and invasion, and inhibit cell apoptosis. These interactions not only contribute to the persistence of the virus but also provide potential targets for developing new immunotherapy strategies.
Collapse
Affiliation(s)
- Lie Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Claude Krummenacher
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Cabrera-Serrano AJ, Sánchez-Maldonado JM, González-Olmedo C, Carretero-Fernández M, Díaz-Beltrán L, Gutiérrez-Bautista JF, García-Verdejo FJ, Gálvez-Montosa F, López-López JA, García-Martín P, Pérez EM, Sánchez-Rovira P, Reyes-Zurita FJ, Sainz J. Crosstalk Between Autophagy and Oxidative Stress in Hematological Malignancies: Mechanisms, Implications, and Therapeutic Potential. Antioxidants (Basel) 2025; 14:264. [PMID: 40227235 PMCID: PMC11939785 DOI: 10.3390/antiox14030264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Autophagy is a fundamental cellular process that maintains homeostasis by degrading damaged components and regulating stress responses. It plays a crucial role in cancer biology, including tumor progression, metastasis, and therapeutic resistance. Oxidative stress, similarly, is key to maintaining cellular balance by regulating oxidants and antioxidants, with its disruption leading to molecular damage. The interplay between autophagy and oxidative stress is particularly significant, as reactive oxygen species (ROS) act as both inducers and by-products of autophagy. While autophagy can function as a tumor suppressor in early cancer stages, it often shifts to a pro-tumorigenic role in advanced disease, aiding cancer cell survival under adverse conditions such as hypoxia and nutrient deprivation. This dual role is mediated by several signaling pathways, including PI3K/AKT/mTOR, AMPK, and HIF-1α, which coordinate the balance between autophagic activity and ROS production. In this review, we explore the mechanisms by which autophagy and oxidative stress interact across different hematological malignancies. We discuss how oxidative stress triggers autophagy, creating a feedback loop that promotes tumor survival, and how autophagic dysregulation leads to increased ROS accumulation, exacerbating tumorigenesis. We also examine the therapeutic implications of targeting the autophagy-oxidative stress axis in cancer. Current strategies involve modulating autophagy through specific inhibitors, enhancing ROS levels with pro-oxidant compounds, and combining these approaches with conventional therapies to overcome drug resistance. Understanding the complex relationship between autophagy and oxidative stress provides critical insights into novel therapeutic strategies aimed at improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Carmen González-Olmedo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - María Carretero-Fernández
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - Leticia Díaz-Beltrán
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Juan Francisco Gutiérrez-Bautista
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology and Immunology III, University of Granada, 18016 Granada, Spain
| | - Francisco José García-Verdejo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Gálvez-Montosa
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - José Antonio López-López
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Paloma García-Martín
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Eva María Pérez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Pedro Sánchez-Rovira
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Jesús Reyes-Zurita
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
4
|
程 永, 沈 亦, 王 学, 李 丹, 樊 春, 古丽巴哈·买买提, 严 媚. [Mechanism by which mycobacterial antigen 85B inhibits autophagy and promotes apoptosis in Hodgkin lymphoma cells]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:1218-1224. [PMID: 39587752 PMCID: PMC11601109 DOI: 10.7499/j.issn.1008-8830.2404153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/05/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVES To investigate the mechanism by which mycobacterial antigen 85B (Ag85B) inhibits autophagy and promotes apoptosis in Hodgkin lymphoma (HL) cells. METHODS The clinical data and pathological tissue slides were retrospectively collected from 80 HL children and 30 children with reactive lymphadenopathy (control group) treated at the First Affiliated Hospital of Xinjiang Medical University. Immunohistochemical analysis was performed to assess the expression of microtubule-associated protein 1 light chain 3 (LC3), sequestosome 1 (P62/SQSTM1), and Beclin-1 in the pathological tissues of HL and control groups. Human Hodgkin lymphoma cells (HDLM-2) were divided into the HDLM-2 group and the HDLM-2+Ag85B groups (with Ag85B concentrations of 0.5, 1, 2, and 4 μg/mL). The CCK8 method was used to measure HDLM-2 cell proliferation; qRT-PCR was employed to detect the expression of LC3, P62, Beclin-1, Akt, and mTOR mRNA in cells. An apoptosis kit was used to detect cell apoptosis. RESULTS The positive expression of LC3 and Beclin-1 in the HL group were higher than those in the control group (P<0.05), while the positive expression of P62 was lower than that in the control group (P<0.05). In stages III-IV compared to stages I-II, the positive expression of LC3 and Beclin-1 increased, while the positive expression of P62 decreased (P<0.05). Cell experiment results showed that the HDLM-2+Ag85B group had suppressed cell proliferation compared to the HDLM-2 group, with decreased mRNA expression of LC3 and Beclin-1, and increased mRNA expression of P62, PI3K, Akt, and mTOR, leading to increased cell apoptosis. Notably, when Ag85B was at a concentration of 2 μg/mL, it had the strongest effect on HDLM-2 cells after 24 hours (P<0.05). CONCLUSIONS Autophagy is enhanced in children with HL and increases with disease stage. Ag85B can inhibit the proliferation and autophagy of HL tumor cells and promote apoptosis, possibly related to the activation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
| | - 亦平 沈
- 哈佛大学医学院波士顿儿童医院,美国波士顿02115
| | | | | | | | | | | |
Collapse
|
5
|
Wahyudianingsih R, Sanjaya A, Jonathan T, Pranggono EH, Achmad D, Hernowo BS. Chemotherapy's effects on autophagy in the treatment of Hodgkin's lymphoma: a scoping review. Discov Oncol 2024; 15:269. [PMID: 38976168 PMCID: PMC11231119 DOI: 10.1007/s12672-024-01142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Classical Hodgkin Lymphomas (HL) are a unique malignant growth with an excellent initial prognosis. However, 10-30% of patients will still relapse after remission. One primary cellular function that has been the focus of tumor progression is autophagy. This process can preserve cellular homeostasis under stressful conditions. Several studies have shown that autophagy may play a role in developing HL. Therefore, this review aimed to explore chemotherapy's effect on autophagy in HL, and the effects of autophagy on HL. METHODS A scoping review in line with the published PRISMA extension for scoping reviews (PRISMA-ScR) was conducted. A literature search was conducted on the MEDLINE database and the Cochrane Central Register of Controlled Trials (CENTRAL). All results were retrieved and screened, and the resulting articles were synthesized narratively. RESULTS The results showed that some cancer chemotherapy also induces autophagic flux. Although the data on HL is limited, since the mechanisms of action of these drugs are similar, we can infer a similar relationship. However, this increased autophagy activity may reflect a mechanism for increasing tumor growth or a cellular compensation to inhibit its growth. Although evidence supports both views, we argued that autophagy allowed cancer cells to resist cell death, mainly due to DNA damage caused by cytotoxic drugs. CONCLUSION Autophagy reflects the cell's adaptation to survive and explains why chemotherapy generally induces autophagy functions. However, further research on autophagy inhibition is needed as it presents a viable treatment strategy, especially against drug-resistant populations that may arise from HL chemotherapy regimens.
Collapse
Affiliation(s)
- Roro Wahyudianingsih
- Postgraduate Program of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Ardo Sanjaya
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia.
| | - Timothy Jonathan
- Undergraduate Program in Medicine, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Emmy Hermiyanti Pranggono
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Dimyati Achmad
- Department of Oncological Surgery, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Bethy Suryawathy Hernowo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| |
Collapse
|
6
|
Huang X, Zhang M, Zhang Z. The Role of LMP1 in Epstein-Barr Virus-associated Gastric Cancer. Curr Cancer Drug Targets 2024; 24:127-141. [PMID: 37183458 DOI: 10.2174/1568009623666230512153741] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
EBV promotes many cancers such as lymphoma, nasopharyngeal carcinoma, and gastric; Latent Membrane Protein 1 (LMP1) is considered to be a major oncogenic protein encoded by Epstein- Barr virus (EBV). LMP1 functions as a carcinogen in lymphoma and nasopharyngeal carcinoma, and LMP1 may also promote gastric cancer. The expression level of LMP1 in host cells is a key determinant in tumorigenesis and maintenance of virus specificity. By promoting cell immortalization and cell transformation, promoting cell proliferation, affecting immunity, and regulating cell apoptosis, LMP1 plays a crucial tumorigenic role in epithelial cancers. However, very little is currently known about LMP1 in Epstein-Barr virus-associated gastric cancer (EBVaGC); the main reason is that the expression level of LMP1 in EBVaGC is comparatively lower than other EBV-encoded proteins, such as The Latent Membrane Protein 2A (LMP2A), Epstein-Barr nuclear antigen 1 (EBNA1) and BamHI-A rightward frame 1 (BARF1), to date, there are few studies related to LMP1 in EBVaGC. Recent studies have demonstrated that LMP1 promotes EBVaGC by affecting The phosphatidylinositol 3-kinase- Akt (PI3K-Akt), Nuclear factor-kappa B (NF-κB), and other signaling pathways to regulate many downstream targets such as Forkhead box class O (FOXO), C-X-C-motif chemokine receptor (CXCR), COX-2 (Cyclooxygenase-2); moreover, the gene methylation induced by LMP1 in EBVaGC has become one of the characteristics that distinguish this gastric cancer (GC) from other types of gastric cancer and LMP1 also promotes the formation of the tumor microenvironment (TME) of EBVaGC in several ways. This review synthesizes previous relevant literature, aiming to highlight the latest findings on the mechanism of action of LMP1 in EBVaGC, summarize the function of LMP1 in EBVaGC, lay the theoretical foundation for subsequent new research on LMP1 in EBVaGC, and contribute to the development of novel LMP1-targeted drugs.
Collapse
Affiliation(s)
- Xinqi Huang
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
7
|
Sausen DG, Basith A, Muqeemuddin S. EBV and Lymphomagenesis. Cancers (Basel) 2023; 15:cancers15072133. [PMID: 37046794 PMCID: PMC10093459 DOI: 10.3390/cancers15072133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The clinical significance of Epstein–Barr virus (EBV) cannot be understated. Not only does it infect approximately 90% of the world’s population, but it is also associated with numerous pathologies. Diseases linked to this virus include hematologic malignancies such as diffuse large B-cell lymphoma, Hodgkin lymphoma, Burkitt lymphoma, primary CNS lymphoma, and NK/T-cell lymphoma, epithelial malignancies such as nasopharyngeal carcinoma and gastric cancer, autoimmune diseases such as multiple sclerosis, Graves’ disease, and lupus. While treatment for these disease states is ever evolving, much work remains to more fully elucidate the relationship between EBV, its associated disease states, and their treatments. This paper begins with an overview of EBV latency and latency-associated proteins. It will then review EBV’s contributions to select hematologic malignancies with a focus on the contribution of latent proteins as well as their associated management.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ayeman Basith
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | |
Collapse
|
8
|
Lu YS, Chiang PM, Huang YC, Yang SJ, Hung LY, Medeiros LJ, Chen YP, Chen TY, Chang MS, Chang KC. Overexpression of interleukin-20 correlates with favourable prognosis in diffuse large B-cell lymphoma. Pathology 2023; 55:94-103. [PMID: 36175183 DOI: 10.1016/j.pathol.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma worldwide, accounting for about 40% of cases. The role of cytokines in the pathogenesis of lymphomas has been rarely addressed, although cytokines have a close immunological relationship with lymphocytes. We observed overexpression of interleukin (IL)-20 in reactive germinal centres (GCs) leading us to hypothesise that IL-20 may play a role in lymphomagenesis. In this study, we surveyed for IL-20 expression in various types of lymphoma and found that IL-20 was expressed most frequently in follicular lymphoma (94%), but also in Burkitt lymphoma (81%), mantle cell lymphoma (57%), nodal marginal zone lymphoma (56%), Hodgkin lymphomas (50%), small lymphocytic lymphoma (50%) and diffuse large B-cell lymphoma (DLBCL, 48%). IL-20 was not expressed in extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma), lymphoplasmacytic lymphoma, and plasmacytoma. T-cell lymphomas were largely negative for IL-20 expression, except for anaplastic large cell lymphoma (ALCL, 61%), which frequently expressed IL-20, especially in cutaneous ALCL, and showed an inverse association with ALK expression (p=0.024). We further tested IL-20 expression in another large cohort of DLBCL and found IL-20 expression more frequently in germinal centre B-cell (GCB) than in non-GCB subtype [16/26 (62%) versus 24/64 (38%), p=0.038]. In this cohort, IL-20 was associated with a lower rate of extranodal involvement (p=0.009), bone marrow involvement (p=0.040), and better overall survival (p=0.020). Mechanistically, IL-20 overexpression promoted G1 cell cycle arrest and subsequent apoptosis of DLBCL cells and vice versa in vitro. We conclude that IL-20 may be involved in lymphomagenesis and may be useful as a prognostic marker in patients with DLBCL. In addition, IL-20 plays an inhibitory role in DLBCL growth, probably through cell cycle regulation.
Collapse
Affiliation(s)
- Yi-Sian Lu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Huang
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shiang-Jie Yang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ya-Ping Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsai-Yun Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shi Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Jahangiri B, Saei AK, Obi PO, Asghari N, Lorzadeh S, Hekmatirad S, Rahmati M, Velayatipour F, Asghari MH, Saleem A, Moosavi MA. Exosomes, autophagy and ER stress pathways in human diseases: Cross-regulation and therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166484. [PMID: 35811032 DOI: 10.1016/j.bbadis.2022.166484] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 02/08/2023]
Abstract
Exosomal release pathway and autophagy together maintain homeostasis and survival of cells under stressful conditions. Autophagy is a catabolic process through which cell entities, such as malformed biomacromolecules and damaged organelles, are degraded and recycled via the lysosomal-dependent pathway. Exosomes, a sub-type of extracellular vesicles (EVs) formed by the inward budding of multivesicular bodies (MVBs), are mostly involved in mediating communication between cells. The unfolded protein response (UPR) is an adaptive response that is activated to sustain survival in the cells faced with the endoplasmic reticulum (ER) stress through a complex network that involves protein synthesis, exosomes secretion and autophagy. Disruption of the critical crosstalk between EVs, UPR and autophagy may be implicated in various human diseases, including cancers and neurodegenerative diseases, yet the molecular mechanism(s) behind the coordination of these communication pathways remains obscure. Here, we review the available information on the mechanisms that control autophagy, ER stress and EV pathways, with the view that a better understanding of their crosstalk and balance may improve our knowledge on the pathogenesis and treatment of human diseases, where these pathways are dysregulated.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Patience O Obi
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Velayatipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Mohammad Hosseni Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
10
|
Cai F, Gao H, Yu Z, Zhu K, Gu W, Guo X, Xu X, Shen H, Shu Q. High percentages of peripheral blood T-cell activation in childhood Hodgkin's lymphoma are associated with inferior outcome. Front Med (Lausanne) 2022; 9:955373. [PMID: 36035394 PMCID: PMC9399494 DOI: 10.3389/fmed.2022.955373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The aims of this study were to investigate the activation of T lymphocytes in peripheral blood from children with Hodgkin's lymphoma (HL) and explore their roles for prognosis in HL. A cohort of 52 newly diagnosed children with HL during the past 10 years was enrolled for analysis in this study. Peripheral blood samples of the patients were acquired before treatment in our hospital, and T-cell subsets were detected by a four-color flow cytometer. CD4+ T cells and CD4+/CD8+ T-cell ratio decreased significantly in patients with HL vs. healthy controls. CD8+ T cells, CD3+CD4+HLA-DR+ T cells, and CD3+CD8+HLA-DR+ T cells increased markedly in patients with HL vs. healthy controls. Receiver-operating characteristic (ROC) curve analysis showed that CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells each distinguished the high-risk group from the low- and intermediate-risk group. The area under the ROC curve for predicting high-risk patients was 0.795 for CD3+CD4+HLA-DR+ T cell and 0.784 for CD3+CD8+HLA-DR+ T cell. A comparison of peripheral blood T-cell subsets that responded differently to therapy showed significantly higher percentages of CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells in patients who achieved complete remission compared to those who did not achieve complete remission. In addition, high percentages of both CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells were associated with inferior event-free survival. Peripheral immune status may be related to disease severity in HL. CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells may be a novel indicator for risk stratification of HL and may be an independent risk factor for inferior outcome in childhood HL.
Collapse
Affiliation(s)
- Fengqing Cai
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Gao
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongsheng Yu
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Guo
- Department of Hematology-Oncology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Hematology-Oncology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Shen
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hongqiang Shen
| | - Qiang Shu
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Qiang Shu
| |
Collapse
|
11
|
Autophagy and cellular senescence in classical Hodgkin lymphoma. Pathol Res Pract 2022; 236:153964. [DOI: 10.1016/j.prp.2022.153964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
|
12
|
Xia D, Sayed S, Moloo Z, Gakinya SM, Mutuiri A, Wawire J, Okiro P, Courville EL, Hasserjian RP, Sohani AR. Geographic Variability of Nodular Lymphocyte-Predominant Hodgkin Lymphoma. Am J Clin Pathol 2022; 157:231-243. [PMID: 34542569 DOI: 10.1093/ajcp/aqab113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) differs from classic Hodgkin lymphoma (CHL) in terms of clinicopathologic features, including Epstein-Barr virus (EBV) association. CHL geographic variability is well known, with higher frequencies of mixed-cellularity subtype and EBV positivity in low/middle-income countries (LMICs), but there are few well-characterized series of NLPHL from LMICs. METHODS We detail clinicopathologic findings of 21 NLPHL cases received in consultation from Kenya and summarize reports of NLPHL with EBV testing published since 2000. RESULTS Median age of consultation cases was 36 years, and male/female ratio was 3.2. All cases involved peripheral lymph nodes and showed at least some B-cell-rich nodular immunoarchitecture, with prominent extranodular lymphocyte-predominant (LP) cells and T-cell-rich variant patterns most commonly seen. LP cells expressed pan-B-cell markers, including strong OCT2; lacked CD30 and CD15 expression in most cases; and were in a background of expanded/disrupted follicular dendritic cell meshworks and increased T-follicular helper cells. LP cells were EBV negative in 18 cases. Historical cases showed a low rate of EBV positivity with no significant difference between LMICs and high-income countries. CONCLUSIONS Unlike CHL, NLPHL shows few geographic differences in terms of clinicopathologic features and EBV association. These findings have implications for diagnosis, prognostication, and treatment of patients with NLPHL in LMICs.
Collapse
Affiliation(s)
- Daniel Xia
- Division of Hematopathology and Transfusion Medicine, University Health Network, Toronto, Canada
| | | | - Zahir Moloo
- Aga Khan University Hospital, Nairobi, Kenya
| | | | | | | | | | | | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aliyah R Sohani
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Activation of MEK1/2/Nrf-2 Signaling Pathway by Epstein-Barr Virus-Latent Membrane Protein 1 Enhances Autophagy and Cisplatin Resistance in T-Cell Lymphoma. ACTA ACUST UNITED AC 2021; 2021:6668947. [PMID: 34239803 PMCID: PMC8235988 DOI: 10.1155/2021/6668947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Epstein-Barr virus-latent membrane protein 1 (EBV-LMP1) was associated with lymphoma, but its specific mechanism is still controversial. The study is aimed at studying the regulation of lymphoma resistance by EBV-LMP1 through the MEK1/2/Nrf-2 signaling pathway. First, LMP1 was knocked down in EBV-positive SNK-6 cells and overexpressed in EBV-negative KHYG-1 cells. First, we found that overexpression of LMP1 significantly promoted the resistance of KHYG-1 cells to cisplatin (DDP), which was related to increased autophagy in the cells. In contrast, knockdown of LMP1 expression in SNK-6 cells promoted cellular sensitivity to DDP and reduced the autophagy of cells after DDP treatment. Moreover, specific inhibition of autophagy in KHYG-1 cells significantly attenuated the resistance to DDP caused by overexpression of LMP1, but treatment with rapamycin in SNK-6 cells significantly promoted the autophagy in the cells. Subsequently, overexpression of LMP1 promoted the activation of the MEK1/2-Nrf2 pathway in KYHG-1 cells, whereas knockdown of LMP1 in SNK-6 cells inhibited the activation of the MEK1/2-Nrf2 pathway. Inhibition of MEK1/2/Nrf-2 blocked the promoting effects of LMP1 on lymphoma cell resistance. In conclusion, EBV-LMP1 promotes cell autophagy after DDP treatment by activating the MEK1/2/Nrf-2 signaling pathway in lymphoma cells, thus, enhancing the resistance of lymphoma cells to DDP.
Collapse
|
14
|
Lin HC, Chang Y, Chen RY, Hung LY, Chen PCH, Chen YP, Medeiros LJ, Chiang PM, Chang KC. Epstein-Barr virus latent membrane protein-1 upregulates autophagy and promotes viability in Hodgkin lymphoma: Implications for targeted therapy. Cancer Sci 2021; 112:1589-1602. [PMID: 33525055 PMCID: PMC8019199 DOI: 10.1111/cas.14833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Hodgkin lymphoma (HL) is composed of neoplastic Hodgkin and Reed‐Sternberg cells in an inflammatory background. The neoplastic cells are derived from germinal center B cells that, in most cases, are infected by Epstein‐Barr virus (EBV), which may play a role in tumorigenesis. Given that EBV‐latent membrane protein 1 (LMP1) regulates autophagy in B cells, we explored the role of autophagy mediated by EBV or LMP1 in HL. We found that EBV‐LMP1 transfection in HL cells induced a modest increase in autophagy signals, attenuated starvation‐induced autophagic stress, and alleviated autophagy inhibition‐ or doxorubicin‐induced cell death. LMP1 knockdown leads to decreased autophagy LC3 signals. A xenograft mouse model further showed that EBV infection significantly increased expression of the autophagy marker LC3 in HL cells. Clinically, LC3 was expressed in 15% (19/127) of HL samples, but was absent in all cases of nodular lymphocyte‐predominant and lymphocyte‐rich classic HL cases. Although expression of LC3 was not correlated with EBV status or clinical outcome, autophagic blockade effectively eradicated LMP1‐positive HL xenografts with better efficacy than LMP1‐negative HL xenografts. Collectively, these results suggest that EBV‐LMP1 enhances autophagy and promotes the viability of HL cells. Autophagic inhibition may be a potential therapeutic strategy for treating patients with HL, especially EBV‐positive cases.
Collapse
Affiliation(s)
- Hui-Chen Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Ruo-Yu Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | - Ya-Ping Chen
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Po-Min Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chao Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|