1
|
Liao Y, Zhong L, Zhao Y, Wan P, Zhang Y, Deng Y, Zhang H, Wang M, Liu B. OTUB1 promotes the progression of acute myeloid leukemia by regulating glycolysis via deubiquitinating c-Myc. Cell Signal 2025; 131:111735. [PMID: 40081551 DOI: 10.1016/j.cellsig.2025.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/14/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Acute myeloid leukemia (AML) is the most common type of adult leukemia and patients with AML often have poor prognosis, for which there remains an urgent need to identify novel selective targeted therapy. OTUB1, a deubiquitinating enzyme, is associated with the malignant progression of multiple cancers. However, the role of OTUB1 in AML is still unclear and warrants further investigations. Our study revealed that the expression of OTUB1 is significantly upregulated in AML. Next, we observed that knockdown of OTUB1 inhibits AML cell proliferation and promotes AML cell apoptosis and G0/G1 phase blockade using CCK-8 assay, western blotting, and flow cytometry. Mechanistically, OTUB1 drives the malignant development of AML through regulating cellular aerobic glycolysis by deubiquitinating c-Myc. Lastly, by investigating whether inhibition of OTUB1 enhances the sensitivity of chemotherapeutic agents commonly used in the clinical treatment of AML, we found that combining OTUB1 inhibition with daunorubicin treatment could achieve better therapeutic effects in AML. In brief, our results revealed a novel mechanism by which OTUB1 promotes glycolysis via deubiquitinating c-Myc in AML. Consequently, targeting OTUB1 may provide a promising strategy for enhancing the efficacy of AML treatment.
Collapse
Affiliation(s)
- Yang Liao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Ying Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Ying Deng
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Hongyan Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Meng Wang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Clinical Laboratory of the Affiliated Rehabilitation Hospital, Chongqing Medical University, Chongqing 400050, China.
| |
Collapse
|
2
|
Fan A, Zhang Y, Li Y, Meng W, Wu F, Pan W, Ma Z, Chen W. Primary Cilia Formation Mediated by Hsa_Circ_0005185/OTUB1/RAB8A Complex Inhibits Prostate Cancer Progression by Suppressing Hedgehog Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411675. [PMID: 39785769 PMCID: PMC11848605 DOI: 10.1002/advs.202411675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Prostate cancer (PCa) is one of the most common malignancies for male individuals globally. Androgen deprivation therapy (ADT) initially demonstrated significant efficacy in treating PCa; however, most cases of PCa eventually progress to castration-resistant prostate cancer (CRPC), which becomes increasingly challenging to manage. Notably, the loss or disruption of primary cilia in PCa cells may play a critical role in the progression of the disease, and there are no reports on the role of circular RNAs in ciliogenesis. Thus, this warrants further investigation.In this study, key circular RNAs linked to prostate cancer progression, and enzalutamide resistance is identified. Specifically, it is found that hsa_circ_0005185 interacts with OTUB1 and RAB8A, serving as a molecular scaffold. Hsa_circ_0005185 mediates the binding of the deubiquitinase OTUB1 to RAB8A, resulting in the deubiquitination of RAB8A. Consequently, the stable expression of RAB8A promotes the regeneration of primary cilia and enhances the production of GLI3R, an inhibitory factor in the Hedgehog signaling pathway, thereby suppressing AR activity and slowing the progression of CRPC.
Collapse
Affiliation(s)
- Aoyu Fan
- Department of UrologyZhongshan HospitalFudan UniversityShanghai200030China
| | - Yunyan Zhang
- Department of UrologyZhongshan HospitalFudan UniversityShanghai200030China
| | - Yunpeng Li
- Department of UrologyZhongshan HospitalFudan UniversityShanghai200030China
| | - Wei Meng
- Lab for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Fan Wu
- Lab for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Wei Pan
- Lab for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Zhongliang Ma
- Lab for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Wei Chen
- Department of UrologyZhongshan HospitalFudan UniversityShanghai200030China
| |
Collapse
|
3
|
Zhang X, Peng P, Bao LW, Zhang AQ, Yu B, Li T, Lei J, Zhang HH, Li SZ. Ubiquitin-Specific Protease 1 Promotes Bladder Cancer Progression by Stabilizing c-MYC. Cells 2024; 13:1798. [PMID: 39513905 PMCID: PMC11545376 DOI: 10.3390/cells13211798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Ubiquitination is an important post-transcriptional modification crucial for maintaining cell homeostasis. As a deubiquitination enzyme, ubiquitin-specific protease 1 (USP1) is associated with tumor progression; however, its role in bladder cancer is unknown. This study aimed to analyze USP1 expression and study its roles in bladder cancer. METHODS The web server GEPIA was used to analyze the USP1 expression. To explore USP1's function in bladder cancer, we constructed USP1-knockout cell lines in UMUC3 cells. A FLAG-USP1 (WT USP1) plasmid and a plasmid FLAG-USP1 C90S (catalytic-inactive mutant) were used to overexpress USP1 in T24 cells. CCK8, colony formation, and Transwell assays were used to assess cell viability, proliferation, and migration. RNA-sequencing (RNA-seq) and dual-luciferase reporter assays were performed to screen the pathway. Co-immunoprecipitation and immunofluorescence were used to explore the interaction between USP1 and c-MYC. A xenograft mouse model was used to study the role of USP1 in bladder cancer. RESULTS USP1 expression was upregulated in human bladder cancer cells and correlated with poor patient prognosis. USP1 overexpression promoted cell proliferation, clone formation, and migration, and this was attenuated by genetic ablation of USP1. Furthermore, we observed that USP1 deficiency inhibited tumor formation in vivo. Mechanistically, the c-MYC pathway was remarkably activated compared with the other pathways. Furthermore, USP1 could interact with c-MYC and increase c-MYC's stability depending on the catalytic activity of USP1. CONCLUSIONS Our results suggested that high expression of USP1 promotes bladder cancer progression by stabilizing c-MYC; hence, USP1 may serve as a novel therapeutic target for treating bladder cancer.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Peng Peng
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Li-Wei Bao
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - An-Qi Zhang
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Bo Yu
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Tao Li
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Jing Lei
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Hui-Hui Zhang
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Shang-Ze Li
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
- School of Medicine, Chongqing University, Chongqing 400030, China
| |
Collapse
|
4
|
Liao Y, Liang J, Wang Y, Li A, Liu W, Zhong B, Wang K, Zhou D, Guo T, Guo J, Yu X, Jiang N. Target deubiquitinase OTUB1 as a therapeatic strategy for BLCA via β-catenin/necroptosis signal pathway. Int J Biol Sci 2024; 20:3784-3801. [PMID: 39113709 PMCID: PMC11302878 DOI: 10.7150/ijbs.94013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/28/2024] [Indexed: 08/10/2024] Open
Abstract
Ubiquitination, a prevalent and highly dynamic reversible post-translational modification, is tightly regulated by the deubiquitinating enzymes (DUBs) superfamily. Among them, OTU Domain-Containing Ubiquitin Aldehyde-Binding Protein 1 (OTUB1) stands out as a critical member of the OTU deubiquitinating family, playing a pivotal role as a tumor regulator across various cancers. However, its specific involvement in BLCA (BLCA) and its clinical significance have remained ambiguous. This study aimed to elucidate the biofunctions of OTUB1 in BLCA and its implications for clinical prognosis. Our investigation revealed heightened OTUB1 expression in BLCA, correlating with unfavorable clinical outcomes. Through in vivo and in vitro experiments, we demonstrated that increased OTUB1 levels promote BLCA tumorigenesis and progression, along with conferring resistance to cisplatin treatment. Notably, we established a comprehensive network involving OTUB1, β-catenin, necroptosis, and BLCA, delineating their regulatory interplay. Mechanistically, we uncovered that OTUB1 exerts its influence by deubiquitinating and stabilizing β-catenin, leading to its nuclear translocation. Subsequently, nuclear β-catenin enhances the transcriptional activity of c-myc and cyclin D1 while suppressing the expression of RIPK3 and MLKL, thereby fostering BLCA progression and cisplatin resistance. Importantly, our clinical data suggest that the OTUB1/β-catenin/RIPK3/MLKL axis holds promise as a potential biomarker for BLCA.
Collapse
Affiliation(s)
- Yihao Liao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Urology, The First College of Clinical Medical Science, China Gorges University & Yichang Central People's Hospital, Yichang, Hubei, 443003, 100000, China
| | - Jiaming Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Youzhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - An Li
- Department of respiratory medicine, Chinese PLA general hospital, Beijing, China
| | - Wenbo Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Boqiang Zhong
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Keke Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tao Guo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jianing Guo
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xi Yu
- Department of Anesthesia, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
5
|
Yang J, Zhang N, He Z, Xiong J, Meng W, Xue C, Ying L, Li M, Liu M, Ouyang T. OTUB1 Promotes Glioblastoma Growth by Inhibiting the JAK2/STAT1 Signaling Pathway. J Cancer 2024; 15:4566-4576. [PMID: 39006090 PMCID: PMC11242346 DOI: 10.7150/jca.96360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/26/2024] [Indexed: 07/16/2024] Open
Abstract
Background: OTUB1, an essential deubiquitinating enzyme, is upregulated in various types of cancer. Previous studies have shown that OTUB1 may be an oncogene in glioblastoma multiforme (GBM), but its specific regulatory mechanism remains unclear. This study aimed to investigate the mechanism by which OTUB1 and the JAK2/STAT1 signaling pathway co-regulate the growth of GBM. Methods: Using bioinformatics, GBM tissues, and cells, we evaluated the expression and clinical significance of OTUB1 in GBM. Subsequently, we explored the regulatory mechanisms of OTUB1 on malignant behaviors in GBM in vitro and in vivo. In addition, we added the JAK2 inhibitor AZD1480 to explore the regulation of OTUB1 for JAK2/STAT1 pathway in GBM. Results: We found that OTUB1 expression was upregulated in GBM. Silencing OTUB1 promotes apoptosis and cell cycle arrest at G1 phase, inhibiting cell proliferation. Moreover, OTUB1 knockdown effectively inhibited the invasion and migration of GBM cells, and the opposite phenomenon occurred with overexpression. In vivo experiments revealed that OTUB1 knockdown inhibited tumor growth, further emphasizing its crucial role in GBM progression. Mechanistically, we found that OTUB1 was negatively correlated with the JAK2/STAT1 pathway in GBM. The addition of the JAK2 inhibitor AZD1480 significantly reversed the effects of silencing OTUB1 on GBM. Conclusion: Our study reveals a novel mechanism by which OTUB1 inhibits the JAK2/STAT1 signaling pathway. This contributes to a better understanding of OTUB1's role in GBM and provides a potential avenue for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Jun Yang
- Department of Neurosurgery, the 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai Street, Nanchang, Jiangxi province, 330006, China
| | - Na Zhang
- Department of Neurology, the 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai Street, Nanchang, Jiangxi province, 330006, China
| | - Zesong He
- Department of Neurosurgery, the 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai Street, Nanchang, Jiangxi province, 330006, China
| | - Junyi Xiong
- Department of Neurosurgery, the 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai Street, Nanchang, Jiangxi province, 330006, China
| | - Wei Meng
- Department of Neurosurgery, the 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai Street, Nanchang, Jiangxi province, 330006, China
| | - Chengcheng Xue
- Department of Neurosurgery, the 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai Street, Nanchang, Jiangxi province, 330006, China
| | - Li Ying
- Department of Neurosurgery, the 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai Street, Nanchang, Jiangxi province, 330006, China
| | - Meihua Li
- Department of Neurosurgery, the 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai Street, Nanchang, Jiangxi province, 330006, China
| | - Mei Liu
- Department of Neurosurgery, the 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai Street, Nanchang, Jiangxi province, 330006, China
| | - Taohui Ouyang
- Department of Neurosurgery, the 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai Street, Nanchang, Jiangxi province, 330006, China
| |
Collapse
|
6
|
Cao LZ, Yang FH, Zhang H, Jia AM, Li SP, Wen HL. Asperuloside inhibits the activation of pancreatic cancer-associated fibroblasts via activating transcription factor 6. Discov Oncol 2024; 15:234. [PMID: 38896161 PMCID: PMC11187058 DOI: 10.1007/s12672-024-01095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Pancreatic cancer-associated fibroblasts (CAFs) play a crucial role in tumor progression and immune evasion. Asperuloside (ASP) is an iridoid glycoside with potential anti-tumor properties. This study aimed to explore the molecular mechanisms of ASP on CAFs, particularly focusing on its effects on activating transcription factor 6 (ATF6), a key regulator of endoplasmic reticulum stress. METHOD CAFs were treated with different concentrations of ASP (0, 1, 3, and 5 mM), and the role of ATF6 was investigated by over-expressing it in CAFs. Subsequently, western blot was used to detect ATF6, α-smooth muscle actin (α-SMA), fibroblast activating protein (FAP), and vimentin protein levels in CAFs. The collagen gel contraction assay and Transwell assay were applied to evaluate the contraction and migration ability of CAFs. In addition, the interleukin (IL)-6, C-C motif chemokine ligand (CCL)-2, and C-X-C motif chemokine ligand (CXCL)-10 levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS CAFs had significantly higher expression levels of α-SMA, FAP, and vimentin compared to normal fibroblasts (NFs). ASP significantly inhibited the activation, contraction, and migration of CAFs in a concentration-dependent manner. ASP treatment also reduced the expression of cytokines (IL-6, CCL2, and CXCL10) and down-regulated ATF6 levels. Over-expression of ATF6 mitigated the inhibitory effects of ASP. CONCLUSION ASP exerts its anti-tumor effects by down-regulating ATF6, thereby inhibiting the activation and function of pancreatic CAFs. These findings suggest that ASP could be a promising therapeutic agent for pancreatic cancer by modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Ling-Zhi Cao
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - Fan-Hui Yang
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - Hao Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - Ai-Min Jia
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - Su-Ping Li
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.
| | - Hu-Ling Wen
- Department of Nuclear Medicine, Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Huang XD, Du L, Cheng XC, Lu YX, Liu QW, Wang YW, Liao YJ, Lin DD, Xiao FJ. OTUB1/NDUFS2 axis promotes pancreatic tumorigenesis through protecting against mitochondrial cell death. Cell Death Discov 2024; 10:190. [PMID: 38653740 DOI: 10.1038/s41420-024-01948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Pancreatic cancer is one of the most fatal cancers in the world. A growing number of studies have begun to demonstrate that mitochondria play a key role in tumorigenesis. Our previous study reveals that NDUFS2 (NADH: ubiquinone oxidoreductase core subunit S2), a core subunit of the mitochondrial respiratory chain complex I, is upregulated in Pancreatic adenocarcinoma (PAAD). However, its role in the development of PAAD remains unknown. Here, we showed that NDUFS2 played a critical role in the survival, proliferation and migration of pancreatic cancer cells by inhibiting mitochondrial cell death. Additionally, protein mass spectrometry indicated that the NDUFS2 was interacted with a deubiquitinase, OTUB1. Overexpression of OTUB1 increased NDUFS2 expression at the protein level, while knockdown of OTUB1 restored the effects in vitro. Accordingly, overexpression and knockdown of OTUB1 phenocopied those of NDUFS2 in pancreatic cancer cells, respectively. Mechanically, NDUFS2 was deubiquitinated by OTUB1 via K48-linked polyubiquitin chains, resulted in an elevated protein stability of NDUFS2. Moreover, the growth of OTUB1-overexpressed pancreatic cancer xenograft tumor was promoted in vivo, while the OTUB1-silenced pancreatic cancer xenograft tumor was inhibited in vivo. In conclusion, we revealed that OTUB1 increased the stability of NDUFS2 in PAAD by deubiquitylation and this axis plays a pivotal role in pancreatic cancer tumorigenesis and development.
Collapse
Affiliation(s)
- Xiao-Dong Huang
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, PR China
| | - Li Du
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xiao-Chen Cheng
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yu-Xin Lu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Qiao-Wei Liu
- Department of Oncology, Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Yi-Wu Wang
- Department of Disease Control and Prevention, Chinese PLA The 96601 Military Hospital, Huangshan, 242700, Anhui, PR China
| | - Ya-Jin Liao
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 42100, Hunan, PR China.
| | - Dong-Dong Lin
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, PR China.
| | - Feng-Jun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
8
|
Shen J, Xue X, Yuan H, Song Y, Wang J, Cui R, Ke K. Deubiquitylating Enzyme OTUB1 Facilitates Neuronal Survival After Intracerebral Hemorrhage Via Inhibiting NF-κB-triggered Apoptotic Cascades. Mol Neurobiol 2024; 61:1726-1736. [PMID: 37775718 DOI: 10.1007/s12035-023-03676-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
The deubiquitylase OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) has been implicated in the pathogenesis of various human diseases. However, the molecular mechanism by which OTUB1 participates in the pathogenesis of intracerebral hemorrhage (ICH) remains elusive. In the present study, we established an autologous whole blood fusion-induced ICH model in C57BL/6 J mice. We showed that the upregulation of OTUB1 contributes to the attenuation of Nuclear factor kappa B (NF-κB) and its downstream apoptotic signaling after ICH. OTUB1 directly associates with NF-κB precursors p105 and p100 after ICH, leading to attenuated polyubiquitylation of p105 and p100. Moreover, we revealed that NF-κB signaling was modestly activated both in ICH tissues and hemin-exposed HT-22 neuronal cells, accompanied with the activation of NF-κB downstream pro-apoptotic signaling. Notably, overexpression of OTUB1 strongly inhibited hemin-induced NF-κB activation, whereas interference of OTUB1 led to the opposite effect. Finally, we revealed that lentiviral transduction of OTUB1 markedly ameliorated hemin-induced apoptotic signaling and HT-22 neuronal death. Collectively, these findings suggest that the upregulation of OTUB1 serves as a neuroprotective mechanism in antagonizing neuroinflammation-induced NF-κB signaling and neuronal death, shed new light on manipulating intracellular deubiquitylating pathways as novel interventive approaches against ICH-induced secondary neuronal damage and death.
Collapse
Affiliation(s)
- Jiabing Shen
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaoli Xue
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Qidong People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Huimin Yuan
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Qidong People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Yan Song
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Jinglei Wang
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Affiliated Hai'an Hospital of Nantong University and Hai'an People's Hospital, Hai'an, People's Republic of China
| | - Ronghui Cui
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
9
|
He J, Zhou Y, Sun L. Emerging mechanisms of the unfolded protein response in therapeutic resistance: from chemotherapy to Immunotherapy. Cell Commun Signal 2024; 22:89. [PMID: 38297380 PMCID: PMC10832166 DOI: 10.1186/s12964-023-01438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024] Open
Abstract
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR). As an adaptive cellular response to hostile microenvironments, such as hypoxia, nutrient deprivation, oxidative stress, and chemotherapeutic drugs, the UPR is activated in diverse cancer types and functions as a dynamic tumour promoter in cancer development; this role of the UPR indicates that regulation of the UPR can be utilized as a target for tumour treatment. T-cell exhaustion mainly refers to effector T cells losing their effector functions and expressing inhibitory receptors, leading to tumour immune evasion and the loss of tumour control. Emerging evidence suggests that the UPR plays a crucial role in T-cell exhaustion, immune evasion, and resistance to immunotherapy. In this review, we summarize the molecular basis of UPR activation, the effect of the UPR on immune evasion, the emerging mechanisms of the UPR in chemotherapy and immunotherapy resistance, and agents that target the UPR for tumour therapeutics. An understanding of the role of the UPR in immune evasion and therapeutic resistance will be helpful to identify new therapeutic modalities for cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Jiang He
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Huan, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China.
- Center for Molecular Imaging of Central, South University, Xiangya Hospital, Changsha, 410008, China.
| | - You Zhou
- Department of Pathology, Tongji Medical College Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Huan, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China.
- Center for Molecular Imaging of Central, South University, Xiangya Hospital, Changsha, 410008, China.
| |
Collapse
|
10
|
Wu M, Sun L, Song T. OTUB1-mediated inhibition of ubiquitination: a growing list of effectors, multiplex mechanisms, and versatile functions. Front Mol Biosci 2024; 10:1261273. [PMID: 38264570 PMCID: PMC10803509 DOI: 10.3389/fmolb.2023.1261273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Protein ubiquitination plays a pivotal role in protein homeostasis. Ubiquitination may regulate the stability, activity, protein-protein interaction, and localization of a protein. Ubiquitination is subject to regulation by two groups of counteracting enzymes, the E3 ubiquitin ligases and deubiquitinases. Consistently, deubiquitinases are involved in essentially all biological processes. OTUB1, an OTU-family deubiquitinase, is a critical regulator of development, cancer, DNA damage response, and immune response. OTUB1 antagonizes the ubiquitination of a wide-spectrum of proteins through at least two different mechanisms. Besides direct deubiquitination, OTUB1 can also inhibit ubiquitination by non-canonically blocking ubiquitin transfer from certain ubiquitin-conjugases (E2). In this review, we start with a general background of protein ubiquitination and deubiquitination. Next, we introduce the basic characteristics of OTUB1 and then elaborate on the updated biological functions of OTUB1. Afterwards, we discuss potential mechanisms underlying the versatility and specificity of OTUB1 functions. In the end, we discuss the perspective that OTUB1 can be a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Miaomiao Wu
- Deparment of Obstetrics and Gynecology, Shuyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Zhu X, Chen X, Shen X, Liu Y, Fu W, Wang B, Zhao L, Yang F, Mo N, Zhong G, Jiang S, Yang Z. PP4R1 accelerates the malignant progression of NSCLC via up-regulating HSPA6 expression and HSPA6-mediated ER stress. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119588. [PMID: 37739270 DOI: 10.1016/j.bbamcr.2023.119588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Protein phosphatase 4 (PP4) plays an indispensable regulatory part in the development and malignant progression of multifarious tumors. Nevertheless, the function of protein phosphatase 4 regulatory subunit 1 (PP4R1), a vital regulatory subunit of PP4, in tumors especially in lung cancer remains blurred. Therefore, this study aimed to investigate the function and mechanism of PP4R1 in the development of non-small cell lung cancer (NSCLC). We analyzed the clinical correlation of PP4R1 based on the TCGA database by UALCAN (https://ualcan.path.uab.edu/index.html) and found that hyper-expression of PP4R1 mRNA was related to the severe prognosis in NSCLC. The subsequent cellular experiments confirmed that the proliferation, colony growth, migration as well as invasion of H1299 and HCC827 were significantly enhanced after PP4R1 overexpression treatment in vitro. Results from animal experiments pointed out that tumors exhibited stronger growth and lung metastatic capacities due to the overexpression of PP4R1. The bioinformatics analysis, including RNA-seq, showed us that PP4R1 significantly promoted the expression of several HSP70 family member genes, with a particularly marked increase in HSPA6, and the enrichment analyses illustrated that the differentially expressed genes (DEGs) were enriched in those pathways related to protein folding. More importantly, the overexpression of HSPA6 resulted in the same malignant progression of NSCLC as PP4R1 overexpression, and both concomitant with the activation of endoplasmic reticulum (ER) stress. In aggregate, PP4R1 contributed to the malignant progression of NSCLC via up-regulating HSPA6 expression and then activating ER stress.
Collapse
Affiliation(s)
- Xunxia Zhu
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Chen
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China
| | - Xiaoyong Shen
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China.
| | - Yang Liu
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China
| | - Wentao Fu
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China
| | - Liting Zhao
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China
| | - Fuzhi Yang
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China
| | - Nianping Mo
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China
| | - Gang Zhong
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China
| | - Shuai Jiang
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China
| | - Zhengyao Yang
- Department of Thoracic Surgery, Affiliated Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Wan S, Li KP, Wang CY, Yang JW, Chen SY, Wang HB, Li XR, Yang L. Immunologic Crosstalk of Endoplasmic Reticulum Stress Signaling in Bladder Cancer. Curr Cancer Drug Targets 2024; 24:701-719. [PMID: 38265406 DOI: 10.2174/0115680096272663231121100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 01/25/2024]
Abstract
Bladder cancer (BC) is a common malignant tumor of the urinary system. While current approaches involving adjuvant chemotherapy, radiotherapy, and immunotherapy have shown significant progress in BC treatment, challenges, such as recurrence and drug resistance, persist, especially in the case of muscle-invasive bladder cancer (MIBC). It is mainly due to the lack of pre-existing immune response cells in the tumor immune microenvironment. Micro-environmental changes (such as hypoxia and under-nutrition) can cause the aggregation of unfolded and misfolded proteins in the lumen, which induces endoplasmic reticulum (ER) stress. ER stress and its downstream signaling pathways are closely related to immunogenicity and tumor drug resistance. ER stress plays a pivotal role in a spectrum of processes within immune cells and the progression of BC cells, encompassing cell proliferation, autophagy, apoptosis, and resistance to therapies. Recent studies have increasingly recognized the potential of natural compounds to exhibit anti-BC properties through ER stress induction. Still, the efficacy of these natural compounds remains less than that of immune checkpoint inhibitors (ICIs). Currently, the ER stress-mediated immunogenic cell death (ICD) pathway is more encouraging, which can enhance ICI responses by mediating immune stemness. This article provides an overview of the recent developments in understanding how ER stress influences tumor immunity and its implications for BC. Targeting this pathway may soon emerge as a compelling therapeutic strategy for BC.
Collapse
Affiliation(s)
- Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Kun-Peng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Chen-Yang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou730000, PR China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Hua-Bin Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Xiao-Ran Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| |
Collapse
|
13
|
Zhao Y, Ruan J, Li Z, Su X, Chen K, Lin Y, Cai Y, Wang P, Liu B, Schlüter D, Liang G, Wang X. OTUB1 inhibits breast cancer by non-canonically stabilizing CCN6. Clin Transl Med 2023; 13:e1385. [PMID: 37608493 PMCID: PMC10444971 DOI: 10.1002/ctm2.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND CCN6 is a matricellular protein that critically regulates the tumourigenesis and progression of breast cancer. Although the tumour-suppressive function of CCN6 has been extensively studied, molecular mechanisms regulating protein levels of CCN6 remain largely unclear. This study aims to investigate the regulation of CCN6 by ubiquitination and deubiquitinating enzymes (DUBs) in breast cancer. METHODS A screening assay was performed to identify OTUB1 as the DUB for CCN6. Various biochemical methods were applied to elucidate the molecular mechanism of OTUB1 in the regulation of CCN6. The role of OTUB1-CCN6 interaction in breast cancer was studied with cell experiments and the allograft model. The correlation of OTUB1 and CCN6 in human breast cancer was determined by immunohistochemistry and Western blot. RESULTS We found that CCN6 protein levels were controlled by the ubiquitin-proteasome system. The K48 ubiquitination and degradation of CCN6 was inhibited by OTUB1, which directly interacted with CCN6 through its linker domain. Furthermore, OTUB1 inhibited the ubiquitination of CCN6 in a non-canonical manner. Deletion of OTUB1, concomitant with reduced CCN6 abundance, increased the migration, proliferation and viability of breast cancer cells. Supplementation of CCN6 abolished the effect of OTUB1 deletion on breast cancer. Importantly, OTUB1 expression was downregulated in human breast cancer and positively correlated with CCN6 levels. CONCLUSION This study identified OTUB1 as a novel regulator of CCN6 in breast cancer.
Collapse
Affiliation(s)
- Ying Zhao
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jing Ruan
- Department of PathologyThe First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Zhongding Li
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xian Su
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Kangmin Chen
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yimin Lin
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yuepiao Cai
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Peng Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Baohua Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Guang Liang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouChina
| | - Xu Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
14
|
Wang M, Zhang Z, Li Z, Zhu Y, Xu C. E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and implications for immunotherapies. Front Immunol 2023; 14:1226057. [PMID: 37497216 PMCID: PMC10366618 DOI: 10.3389/fimmu.2023.1226057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
With the rapidly increasing incidence of bladder cancer in China and worldwide, great efforts have been made to understand the detailed mechanism of bladder cancer tumorigenesis. Recently, the introduction of immune checkpoint inhibitor-based immunotherapy has changed the treatment strategy for bladder cancer, especially for advanced bladder cancer, and has improved the survival of patients. The ubiquitin-proteasome system, which affects many biological processes, plays an important role in bladder cancer. Several E3 ubiquitin ligases and deubiquitinases target immune checkpoints, either directly or indirectly. In this review, we summarize the recent progress in E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and further highlight the implications for bladder cancer immunotherapies.
Collapse
Affiliation(s)
- Maoyu Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhensheng Zhang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhizhou Li
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yasheng Zhu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Du XH, Ke SB, Liang XY, Gao J, Xie XX, Qi LZ, Liu XY, Xu GY, Zhang XD, Du RL, Li SZ. USP14 promotes colorectal cancer progression by targeting JNK for stabilization. Cell Death Dis 2023; 14:56. [PMID: 36693850 PMCID: PMC9873792 DOI: 10.1038/s41419-023-05579-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
MAPK/JNK signaling is pivotal in carcinogenesis. However, ubiquitin-mediated homeostasis of JNK remains to be verified. Here, with results from RNA sequencing (RNA-seq) and luciferase reporter pathway identification, we show that USP14 orchestrates MAPK/JNK signaling and identify USP14 as a deubiquitinase that interacts and stabilizes JNK. USP14 is elevated in colorectal cancer patients and is positively associated with JNK protein and downstream gene expression. USP14 ablation reduces cancer cell proliferation in vitro and colorectal tumorigenesis in vivo by downregulating MAPK/JNK pathway activation. Moreover, USP14 expression is induced by TNF-α, forming a feedback loop with JNK and leading to tumor amplification. Our study suggests that elevated expression of USP14 promotes MAPK/JNK signaling by stabilizing JNK, which in turn augments colorectal carcinogenesis, indicating a potential therapeutic target for colorectal cancer patients with increased USP14 expression.
Collapse
Affiliation(s)
- Xue-Hua Du
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shao-Bo Ke
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin-Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jie Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Xiao Xie
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Lin-Zhi Qi
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xue-Yi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Guo-Yuan Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, China.
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
16
|
Chen J, Bolhuis DL, Laggner C, Kong D, Yu L, Wang X, Emanuele MJ, Brown NG, Liu P. AtomNet-Aided OTUD7B Inhibitor Discovery and Validation. Cancers (Basel) 2023; 15:517. [PMID: 36672466 PMCID: PMC9856706 DOI: 10.3390/cancers15020517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Protein deubiquitinases play critical pathophysiological roles in cancer. Among all deubiquitinases, an oncogenic function for OTUD7B has been established in genetic NSCLC murine models. However, few deubiquitinase inhibitors have been developed due to technical challenges. Here, we report a putative small molecule OTUD7B inhibitor obtained from an AI-aided screen of a 4 million compound library. We validated the effects of the OTUD7B inhibitor (7Bi) in reducing Akt-pS473 signals in multiple NSCLC and HEK293 cells by blocking OTUD7B-governed GβL deubiquitination in cells, as well as inhibiting OTUD7B-mediated cleavage of K11-linked di-ub in an in vitro enzyme assay. Furthermore, we report in leukemia cells, either genetic depletion or 7Bi-mediated pharmacological inhibition of OTUD7B reduces Akt-pS473 via inhibiting the OTUD7B/GβL signaling axis. Together, our study identifies the first putative OTUD7B inhibitor showing activities both in cells and in vitro, with promising applications as a therapeutic agent in treating cancer with OTUD7B overexpression.
Collapse
Affiliation(s)
- Jianfeng Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Derek L. Bolhuis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Deyu Kong
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaodong Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J. Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas G. Brown
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Lin Y, Li T, Li Z, Shen C, Wu Z, Zhang Z, Li Z, Yang S, Wang Z, Li P, Fu C, Guo J, Hu H. Comprehensive characterization of endoplasmic reticulum stress in bladder cancer revealing the association with tumor immune microenvironment and prognosis. Front Genet 2023; 14:1097179. [PMID: 37091788 PMCID: PMC10119429 DOI: 10.3389/fgene.2023.1097179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Background: This study constructs a molecular subtype and prognostic model of bladder cancer (BLCA) through endoplasmic reticulum stress (ERS) related genes, thus helping to clinically guide accurate treatment and prognostic assessment. Methods: The Bladder Cancer (BLCA) gene expression data was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We clustered by ERS-related genes which obtained through GeneCards database, results in the establishment of a new molecular typing of bladder cancer. Further, we explored the characteristics of each typology in terms of immune microenvironment, mutations, and drug screening. By analyzing the ERS-related genes with univariate Cox, LASSO and multivariate Cox analyses, we also developed the four-gene signature, while validating the prognostic effect of the model in GSE32894 and GSE13507 cohorts. Finally, we evaluated the prognostic value of the clinical data in the high and low ERS score groups and constructed a prognostic score line graph by Nomogram. Results: We constructed four molecular subtypes (C1- C4) of bladder cancer, in which patients with C2 had a poor prognosis and those with C3 had a better prognosis. The C2 had a high degree of TP53 mutation, significant immune cell infiltration and high immune score. In contrast, C3 had a high degree of FGFR3 mutation, insignificant immune cell infiltration, and reduced immune checkpoint expression. After that, we built ERS-related risk signature to calculate ERS score, including ATP2A3, STIM2, VWF and P4HB. In the GSE32894 and GSE13507, the signature also had good predictive value for prognosis. In addition, ERS scores were shown to correlate well with various clinical features. Finally, we correlated the ERS clusters and ERS score. Patients with high ERS score were more likely to have the C2 phenotype, while patients with low ERS score were C3. Conclusion: In summary, we identified four novel molecular subtypes of BLCA by ERS-related genes which could provide some new insights into precision medicine. Prognostic models constructed from ERS-related genes can be used to predict clinical outcomes. Our study contributes to the study of personalized treatment and mechanisms of BLCA.
Collapse
Affiliation(s)
- Yuda Lin
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tengfei Li
- Tianjin Children’s Hospital, Tianjin, China
| | - Zhuolun Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhi Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zejin Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peng Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Fu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Guo
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Hu,
| |
Collapse
|
18
|
Wang X, Yang J, Bian H, Yang H. Development of A novel ferroptosis-related prognostic signature with multiple significance in paediatric neuroblastoma. Front Pediatr 2023; 11:1067187. [PMID: 36911020 PMCID: PMC9992189 DOI: 10.3389/fped.2023.1067187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Background Ferroptosis is an iron-dependent regulated cell death pathway that plays an essential role in the occurrence and development of tumours. Nonetheless, little is known about the impact of ferroptosis-related genes (FRGs) on neuroblastoma. Methods Transcriptional profiles and clinicopathological data of neuroblastoma were downloaded from the TARGET and GEO datasets. These were used as the training set and the validation set, respectively. Non-negative matrix factorisation was employed to divide patients with neuroblastoma into distinct ferroptosis clusters. The Cox regression model with LASSO was performed based on the FRGs to construct a multigene signature, which was subsequently evaluated in the testing set. Finally, we analysed the differences in the tumour immune microenvironment (TIME) and immunotherapeutic response among the different risk groups. Results The two distinct ferroptosis subtypes were determined and correlated with different clinical outcomes and tumour-infiltrating immune cells (TIICs). A risk model was developed to explore the risk scores of the individual patients. Patients in the low-risk group survived significantly longer than those in the high-risk group and showed a good predictive performance in the testing set. The risk score was significantly linked to clinicopathological traits, and it was confirmed as an independent prognostic indicator for assessing the overall survival. We also found that patients with low-risk scores had a higher infiltration of TIICs and a better immunotherapeutic response. Conclusions This study showed the potential role of FRGs in contributing to the clinical features, prognosis, TIME, and immunotherapy of neuroblastoma cases. Our findings offer a valuable basis for future research in targeting ferroptosis and its TIME and provide novel measures for the prevention and treatment of neuroblastoma.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqiang Bian
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Yang
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Yu X, Wang T, Li Y, Li Y, Bai B, Fang J, Han J, Li S, Xiu Z, Liu Z, Yang X, Li Y, Zhu G, Jin N, Shang C, Li X, Zhu Y. Apoptin causes apoptosis in HepG-2 cells via Ca 2+ imbalance and activation of the mitochondrial apoptotic pathway. Cancer Med 2022; 12:8306-8318. [PMID: 36515089 PMCID: PMC10134343 DOI: 10.1002/cam4.5528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Apoptin is derived from the chicken anemia virus and exhibits specific cytotoxic effects against tumor cells. Herein, we found that Apoptin induced a strong and lasting endoplasmic reticulum (ER) stress response, Ca2+ imbalance, and triggered the mitochondrial apoptotic pathway. The aim of this study was to explore the mechanisms by which Apoptin exhibited anti-tumor effects in HepG-2 cells. METHODS The intracellular levels of calcium (Ca2+ ) were induced by ER stress and determined by electron microscopy, flow cytometry, and fluorescence staining. The mitochondrial injury was determined by mitochondrial membrane potential and electron microscopy. Western blotting was used to investigate the levels of key proteins in ER stress and the apoptotic pathway in mitochondria. The relationship between Ca2+ levels and apoptosis in Apoptin-treated cells was analyzed using a Ca2+ chelator (BAPTA-AM), flow cytometry, and fluorescence staining. We also investigated the in vivo effects of Ca2+ imbalance on the mitochondrial apoptotic pathway using tumor tissues xenografted on nude mice. RESULTS This study showed that Apoptin induced a strong and long- lasting ER stress and injury, which subsequently led to an imbalance of cellular Ca2+ levels, a reduction in the mitochondrial membrane potential, a significant extent image in the mitochondrial structure, and an increase in the expression levels of Smac/Diablo and Cyto-C. CONCLUSIONS In summary, Apoptin induced apoptosis in HepG-2 cells via Ca2+ imbalance and activation of the mitochondrial apoptotic pathway. This study provided a new direction for antitumor research in Apoptin.
Collapse
Affiliation(s)
- Xiaoyang Yu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Tongxing Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yue Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yiquan Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Bing Bai
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jinbo Fang
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jicheng Han
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Shanzhi Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zhiru Xiu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xia Yang
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yaru Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Guangze Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Ningyi Jin
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiao Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yilong Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
20
|
Han X, Ren C, Lu C, Qiao P, Yang T, Yu Z. Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Death Differ 2022; 29:1864-1873. [PMID: 35296795 PMCID: PMC9433372 DOI: 10.1038/s41418-022-00971-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
MYC as a transcriptional factor plays a crucial role in breast cancer progression. However, the mechanisms underlying MYC deubiquitination in breast cancer are not well defined. Here, we report that OTUB1 is responsible for MYC deubiquitination. OTUB1 could directly deubiquitinate MYC at K323 site, which blocks MYC protein degradation. Moreover, OTUB1 mediated MYC protein stability is also confirmed in OTUB1-knockout mice. Stabilized MYC by OTUB1 promotes its transcriptional activity and induces HK2 expression, which leads to enhance aerobic glycolysis. Therefore, OTUB1 promotes breast tumorigenesis in vivo and in vitro via blocking MYC protein degradation. Taken together, our data identify OTUB1 as a new deubiquitination enzyme for MYC protein degradation, which provides a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
21
|
Zhang Y, Song Y, Dai J, Wang Z, Zeng Y, Chen F, Zhang P. Endoplasmic Reticulum Stress-Related Signature Predicts Prognosis and Drug Response in Clear Cell Renal Cell Carcinoma. Front Pharmacol 2022; 13:909123. [PMID: 35959432 PMCID: PMC9360548 DOI: 10.3389/fphar.2022.909123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer. The maximum number of deaths associated with kidney cancer can be attributed to ccRCC. Disruption of cellular proteostasis results in endoplasmic reticulum (ER) stress, which is associated with various aspects of cancer. It is noteworthy that the role of ER stress in the progression of ccRCC remains unclear. We classified 526 ccRCC samples identified from the TCGA database into the C1 and C2 subtypes by consensus clustering of the 295 ER stress-related genes. The ccRCC samples belonging to subtype C2 were in their advanced tumor stage and grade. These samples were characterized by poor prognosis and malignancy immune microenvironment. The upregulation of the inhibitory immune checkpoint gene expression and unique drug sensitivity were also observed. The differentially expressed genes between the two clusters were explored. An 11-gene ER stress-related prognostic risk model was constructed following the LASSO regression and Cox regression analyses. In addition, a nomogram was constructed by integrating the clinical parameters and risk scores. The calibration curves, ROC curves, and DCA curves helped validate the accuracy of the prediction when both the TCGA dataset and the external E-MTAB-1980 dataset were considered. Moreover, we analyzed the differentially expressed genes common to the E-MTAB-1980 and TCGA datasets to screen out new therapeutic compounds. In summary, our study can potentially help in the comprehensive understanding of ER stress in ccRCC and serve as a reference for future studies on novel prognostic biomarkers and treatments.
Collapse
Affiliation(s)
- Yuke Zhang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Yancheng Song
- The Second Department of General Surgery, Xuanhan Second People’s Hospital, Dazhou, China
| | - Jiangwen Dai
- Department of Oncology, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Zhaoxiang Wang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuhao Zeng
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Chen
- Department of Integrated Care Management Center, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Feng Chen, ; Peng Zhang,
| | - Peng Zhang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Feng Chen, ; Peng Zhang,
| |
Collapse
|
22
|
Isali I, McClellan P, Calaway A, Prunty M, Abbosh P, Mishra K, Ponsky L, Markt S, Psutka SP, Bukavina L. Gene network profiling in muscle-invasive bladder cancer: A systematic review and meta-analysis. Urol Oncol 2022; 40:197.e11-197.e23. [PMID: 35039218 PMCID: PMC10123538 DOI: 10.1016/j.urolonc.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/17/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Determining meta-analysis of transcriptional profiling of muscle-invasive bladder cancer (MIBC) through Gene Expression Omnibus (GEO) datasets has not been investigated. This study aims to define gene expression profiles in MIBC and to identify potential candidate genes and pathways. OBJECTIVES To review and evaluate gene expression studies in MIBC through publicly available RNA sequencing (RNA-Seq) and microarray data in order to identify potential prognostic and therapeutic targets for MIBC. METHODS A systematic literature search of the Ovid MEDLINE, PubMed, and Wiley Cochrane Central Register of Controlled Trials databases was performed using the terms "gene," "gene expression," and "bladder cancer" January 1, 1990 through March 2021 focused on populations with MIBC. RESULTS In the final analysis, GEO datasets were included. Fixed effect model was employed in the meta-analysis. Gene networking connections and gene-set functional analyses of the identified genes as differentially expressed in MIBC were performed using ImaGEO and GeneMANIA software. A heatmap for the upregulated and downregulated genes was generated along with the correlated pathways. CONCLUSION A total of 9 genes were reported in this analysis. Six genes were reported as upregulated (ProTα, SPINT1, UBE2E1, RAB25, KPNB1, HDAC1) and 3 genes as downregulated (NUP188, IPO13, NUP124). Genes were found to be involved in "ubiquitin mediated proteolysis," "protein processing in endoplasmic reticulum," "transcriptional misregulation in cancer," and "RNA transport" pathways.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Phillip McClellan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - Adam Calaway
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH; Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH
| | - Megan Prunty
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Phillip Abbosh
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA
| | - Kirtishri Mishra
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA
| | - Lee Ponsky
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH; Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH
| | - Sarah Markt
- Department of Population and Quantitative Health Science, Case Western Reserve School of Medicine, Cleveland, OH
| | - Sarah P Psutka
- Department of Urology, University of Washington School of Medicine, Seattle, WA
| | - Laura Bukavina
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH; Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH.
| |
Collapse
|
23
|
Xiao W, Cao RC, Yang WJ, Tan JH, Liu RQ, Kan HP, Zhou L, Zhang N, Chen ZY, Chen XM, Xu J, Zhang GW, Shen P. Roles and Clinical Significances of ATF6, EMC6, and APAF1 in Prognosis of Pancreatic Cancer. Front Genet 2022; 12:730847. [PMID: 35222510 PMCID: PMC8873166 DOI: 10.3389/fgene.2021.730847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Pancreatic cancer (PC) is prevalent among malignant tumors with poor prognosis and lacks efficient therapeutic strategies. Endoplasmic reticulum (ER) stress and apoptosis are associated with chronic inflammation and cancer progression. However, the prognostic value of ER stress-related, and apoptosis-related genes in PC remains to be further elucidated. Our study aimed at confirming the prognostic values of the ER stress-related genes, ATF6, EMC6, XBP1, and CHOP, and the apoptosis-related gene, APAF1, in PC patients. Methods: Gene Expression Profiling Interactive Analysis 2 (GEPIA2) was used to evaluate prognosis value of ATF6, EMC6, XBP1, CHOP, and APAF1 in PC. Clinical data from 69 PC patients were retrospectively analyzed. Immunohistochemistry, Western blotting, and qRT-PCR were used for the assessment of gene or protein expression. The cell counting kit-8 (CCK-8) and the Transwell invasion assays were, respectively, used for the assessment of the proliferative and invasive abilities of PC cells. The prognostic values of ATF6, XBP1, CHOP, EMC6, and APAF1 in PC patients were evaluated using Kaplan–Meier and Cox regression analyses. Results: XBP1 and CHOP expressions were not associated with PC recurrence-free survival (RFS), overall survival (OS) and disease-specific survival (DSS). ATF6 upregulation and EMC6 and APAF1 downregulations significantly correlated with the poor RFS, OS, and DSS of PC patients. ATF6 promoted PC cell proliferation and invasion, while EMC6 and APAF1 inhibited these events. Conclusion: ATF6 upregulation and EMC6 and APAF1 downregulations may be valid indicators of poor prognosis of PC patients. Moreover, ATF6, EMC6, and APAF1 may constitute potential therapeutic targets in PC patients.
Collapse
Affiliation(s)
- Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-Chang Cao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-Hui Tan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo-Qi Liu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - He-Ping Kan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Department of Hepoctobiliary Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Na Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Ye Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Mei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Guo-Wei Zhang, ; Peng Shen,
| | - Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Guo-Wei Zhang, ; Peng Shen,
| |
Collapse
|
24
|
Liao Y, Yang M, Wang K, Wang Y, Zhong B, Jiang N. Deubiquitinating enzyme OTUB1 in immunity and cancer: Good player or bad actor? Cancer Lett 2022; 526:248-258. [PMID: 34875341 DOI: 10.1016/j.canlet.2021.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
Abstract
OTU domain-containing ubiquitin aldehyde-binding proteins 1 (OTUB1) is the most important element of the deubiquitinase OTU superfamily, which has been identified as an essential regulator of diverse physiological processes, such as DNA damage repair and cytokines secretion. Recently, we found that the pro-carcinogenesis role of OTUB1 and the relationship between OTUB1 and immune response have gradually become the research hot-spot. OTUB1 regulates NK/CD8 T cell activation, autoimmune diseases, PD-L1 mediated immune evasion, viral or bacterial infection related immune response and the occurrence and progression of various cancers via deubiquitinating and stabilizing related proteins. This review provides a comprehensive description about the role and regulatory axis of OTUB1. We can explore the balance between immune response and defense via regulating the level of OTUB1, and targeting OTUB1 might restrain the progression of cancers. This review highlights the experimental evidence that OTUB1 is a feasible and potential therapeutic target against various cancers progression and immune diseases or disorder.
Collapse
Affiliation(s)
- Yihao Liao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Mengyue Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150000, China
| | - Keke Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Youzhi Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boqiang Zhong
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ning Jiang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
25
|
Zhang F, Feng D, Wang X, Gu Y, Shen Z, Yang Y, Wang J, Zhong Q, Li D, Hu H, Han P. An Unfolded Protein Response Related Signature Could Robustly Predict Survival Outcomes and Closely Correlate With Response to Immunotherapy and Chemotherapy in Bladder Cancer. Front Mol Biosci 2022; 8:780329. [PMID: 35004850 PMCID: PMC8732996 DOI: 10.3389/fmolb.2021.780329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The unfolded protein response (UPR) plays a significant role in maintaining protein hemostasis in tumor cells, which are crucial for tumor growth, invasion, and resistance to therapy. This study aimed to develop a UPR-related signature and explore its correlation with immunotherapy and chemotherapy in bladder cancer. Methods: The differentially expressed UPR-related genes were put into Lasso regression to screen out prognostic genes, which constituted the UPR signature, and were incorporated into multivariate Cox regression to generate risk scores. Subsequently, the predictive performance of this signature was estimated by receiver operating characteristic (ROC) curves. The CIBERSORTx, the maftool, and Gene set enrichment analysis (GSEA) were applied to explore infiltrated immune cells, tumor mutational burden (TMB), and enriched signaling pathways in both risk groups, respectively. Moreover, The Cancer Immunome Atlas (TCIA) and Genomics of Drug Sensitivity in Cancer (GDSC) databases were used to predict responses to chemotherapy and immunotherapy. Results: Twelve genes constituted the UPR-related signature. Patients with higher risk scores had worse overall survival (OS) in training and three validation sets. The UPR-related signature was closely correlated with clinicopathologic parameters and could serve as an independent prognostic factor. M0 macrophages showed a significantly infiltrated difference in both risk groups. TMB analysis showed that the risk score in the wild type and mutation type of FGFR3 was significantly different. GSEA indicated that the immune-, extracellular matrix-, replication and repair associated pathways belonged to the high risk group and metabolism-related signal pathways were enriched in the low risk group. Prediction of immunotherapy and chemotherapy revealed that patients in the high risk group might benefit from chemotherapy, but had a worse response to immunotherapy. Finally, we constructed a predictive model with age, stage, and UPR-related risk score, which had a robustly predictive performance and was validated in GEO datasets. Conclusion: We successfully constructed and validated a novel UPR-related signature in bladder cancer, which could robustly predict survival outcomes and closely correlate with the response to immunotherapy and chemotherapy in bladder cancer.
Collapse
Affiliation(s)
- Facai Zhang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China.,Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Dechao Feng
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaoming Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Yiwei Gu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Zhiyong Shen
- Department of Urology, the Affiliated Cancer Hospital of Guizhou Medical University, Guizhou, China
| | - Yubo Yang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Jiahao Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Quliang Zhong
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Dengxiong Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Huan Hu
- School of Clinical Medicine, Guizhou Medical University, Guizhou, China
| | - Ping Han
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China.,Department of Urology, the Second People's Hospital of Yibin, Sichuan, China
| |
Collapse
|
26
|
Zhu K, Xiaoqiang L, Deng W, Wang G, Fu B. Identification of a novel signature based on unfolded protein response-related gene for predicting prognosis in bladder cancer. Hum Genomics 2021; 15:73. [PMID: 34930465 PMCID: PMC8686253 DOI: 10.1186/s40246-021-00372-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The unfolded protein response (UPR) served as a vital role in the progression of tumors, but the molecule mechanisms of UPR in bladder cancer (BLCA) have been not fully investigated. METHODS We identified differentially expressed unfolded protein response-related genes (UPRRGs) between BLCA samples and normal bladder samples in the Cancer Genome Atlas (TCGA) database. Univariate Cox analysis and the least absolute shrinkage and selection operator penalized Cox regression analysis were used to construct a prognostic signature in the TCGA set. We implemented the validation of the prognostic signature in GSE13507 from the Gene Expression Omnibus database. The ESTIMATE, CIBERSORT, and ssGSEA algorithms were used to explore the correlation between the prognostic signature and immune cells infiltration as well as key immune checkpoints (PD-1, PD-L1, CTLA-4, and HAVCR2). GDSC database analyses were conducted to investigate the chemotherapy sensitivity among different groups. GSEA analysis was used to explore the potential mechanisms of UPR-based signature. RESULTS A prognostic signature comprising of seven genes (CALR, CRYAB, DNAJB4, KDELR3, CREB3L3, HSPB6, and FBXO6) was constructed to predict the outcome of BLCA. Based on the UPRRGs signature, the patients with BLCA could be classified into low-risk groups and high-risk groups. Patients with BLCA in the low-risk groups showed the more favorable outcomes than those in the high-risk groups, which was verified in GSE13507 set. This signature could serve as an autocephalous prognostic factor in BLCA. A nomogram based on risk score and clinical characteristics was established to predict the over survival of BLCA patients. Furthermore, the signature was closely related to immune checkpoints (PD-L1, CTLA-4, and HAVCR2) and immune cells infiltration including CD8+ T cells, follicular helper T cells, activated dendritic cells, and M2 macrophages. GSEA analysis indicated that immune and carcinogenic pathways were enriched in high-risk group. CONCLUSIONS We identified a novel unfolded protein response-related gene signature which could predict the over survival, immune microenvironment, and chemotherapy response of patients with bladder cancer.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liu Xiaoqiang
- Department of Urology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China. .,Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China. .,Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
27
|
Xie P, Chao Q, Mao J, Liu Y, Fang J, Xie J, Zhen J, Ding Y, Fu B, Ke Y, Huang D. The deubiquitinase OTUB1 fosters papillary thyroid carcinoma growth through EYA1 stabilization. J Cell Mol Med 2021; 25:10980-10989. [PMID: 34773364 PMCID: PMC8642681 DOI: 10.1111/jcmm.17020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022] Open
Abstract
Deubiquitinating enzyme OTU domain‐containing ubiquitin aldehyde‐binding proteins 1 (OTUB1) has been shown to have an essential role in multiple carcinomas. However, the function of OTUB1 in papillary thyroid cancer (PTC) and the underlying mechanisms regulating PTC cells proliferation remain poorly understood. In this study, OTUB1 was significantly upregulated in papillary thyroid carcinoma tissues and cells. Through in vitro and in vivo experiments, knockdown of OTUB1 suppressed PTC cells growth whereas OTUB1 overexpression enhanced the proliferation ability of PTC cells. Moreover, the eyes absent homologue 1 (EYA1) was recognized as a potential target of OTUB1 through mass spectrometry analysis, and we further verified that EYA1 protein level was positively correlated with OTUB1 expression in PTC cells and clinical samples. Mechanistically, OTUB1 could interact with EYA1 directly and deubiquitinate EYA1 to stabilize it. At last, EYA1 was found to play an essential role in OTUB1‐derived PTC cells growth. Overall, our investigation reveals that OTUB1 is a previously unrecognized oncogenic factor in PTC cells proliferation and suggests that OTUB1 might be a novel therapeutic target in PTC.
Collapse
Affiliation(s)
- Peiyi Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Chao
- Second College of Clinical Medicine, Zunyi Medical University, Zhuhai, China
| | - Jiuang Mao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Liu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jiayu Fang
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jing Xie
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jing Zhen
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yongqi Ding
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Bidong Fu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yun Ke
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Nie Z, Chen M, Wen X, Gao Y, Huang D, Cao H, Peng Y, Guo N, Ni J, Zhang S. Endoplasmic Reticulum Stress and Tumor Microenvironment in Bladder Cancer: The Missing Link. Front Cell Dev Biol 2021; 9:683940. [PMID: 34136492 PMCID: PMC8201605 DOI: 10.3389/fcell.2021.683940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is a common malignant tumor of the urinary system. Despite recent advances in treatments such as local or systemic immunotherapy, chemotherapy, and radiotherapy, the high metastasis and recurrence rates, especially in muscle-invasive bladder cancer (MIBC), have led to the evaluation of more targeted and personalized approaches. A fundamental understanding of the tumorigenesis of bladder cancer along with the development of therapeutics to target processes and pathways implicated in bladder cancer has provided new avenues for the management of this disease. Accumulating evidence supports that the tumor microenvironment (TME) can be shaped by and reciprocally act on tumor cells, which reprograms and regulates tumor development, metastasis, and therapeutic responses. A hostile TME, caused by intrinsic tumor attributes (e.g., hypoxia, oxidative stress, and nutrient deprivation) or external stressors (e.g., chemotherapy and radiation), disrupts the normal synthesis and folding process of proteins in the endoplasmic reticulum (ER), culminating in a harmful situation called ER stress (ERS). ERS is a series of adaptive changes mediated by unfolded protein response (UPR), which is interwoven into a network that can ultimately mediate cell proliferation, apoptosis, and autophagy, thereby endowing tumor cells with more aggressive behaviors. Moreover, recent studies revealed that ERS could also impede the efficacy of anti-cancer treatment including immunotherapy by manipulating the TME. In this review, we discuss the relationship among bladder cancer, ERS, and TME; summarize the current research progress and challenges in overcoming therapeutic resistance; and explore the concept of targeting ERS to improve bladder cancer treatment outcomes.
Collapse
Affiliation(s)
- Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yanling Peng
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Na Guo
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Jie Ni
- Cancer Care Center, St. George Hospital, Sydney, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
29
|
Zhang HH, Li C, Ren JW, Liu L, Du XH, Gao J, Liu T, Li SZ. OTUB1 facilitates bladder cancer progression by stabilizing ATF6 in response to endoplasmic reticulum stress. Cancer Sci 2021; 112:2199-2209. [PMID: 33686769 PMCID: PMC8177800 DOI: 10.1111/cas.14876] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR) plays an important role in carcinogenesis, but the functional role and mechanism of UPR‐associated bladder carcinogenesis remain to be characterized. Upon UPR activation, ATF6α is activated to upregulate the transcription of UPR target genes. Although the mechanism of ATF6 activation has been studied extensively, the negative regulation of ATF6 stabilization is not well understood. Here, we report that the deubiquitinase otubain 1 (OTUB1) facilitates bladder cancer progression by stabilizing ATF6 in response to endoplasmic reticulum stress. OTUB1 expression is raised in bladder cancer patients. Genetic ablation of OTUB1 markedly inhibited bladder cancer cell proliferation, viability, and migration both in vitro and in vivo. Mechanistically, luciferase pathway screening showed that ATF6 signaling was clearly activated compared with other pathways. OTUB1 was found to activate ATF6 signaling by inhibiting its ubiquitylation, thereby remodeling the stressed cells through transcriptional regulation. Our results show that high OTUB1 expression promotes bladder cancer progression by stabilizing ATF6 and that OTUB1 is a potential therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Department of Laboratory Medicine, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Chao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | | | - Lian Liu
- Department of Laboratory Medicine, Hunan Normal University School of Medicine, Changsha, China
| | - Xue-Hua Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shang-Ze Li
- Department of Laboratory Medicine, Hunan Normal University School of Medicine, Changsha, China.,Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|