1
|
Liu G, Liu J, Li S, Zhang Y, He R. Exosome-Mediated Chemoresistance in Cancers: Mechanisms, Therapeutic Implications, and Future Directions. Biomolecules 2025; 15:685. [PMID: 40427578 PMCID: PMC12108986 DOI: 10.3390/biom15050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Chemotherapy resistance represents a formidable obstacle in oncological therapeutics, substantially compromising the efficacy of adjuvant chemotherapy regimens and contributing to unfavorable clinical prognoses. Emerging evidence has elucidated the pivotal involvement of exosomes in the dissemination of chemoresistance phenotypes among tumor cells and within the tumor microenvironment. This review delineates two distinct intra-tumoral resistance mechanisms orchestrated by exosomes: (1) the exosome-mediated sequestration of chemotherapeutic agents coupled with enhanced drug efflux in neoplastic cells, and (2) the horizontal transfer of chemoresistance to drug-sensitive cells through the delivery of bioactive molecular cargo, thereby facilitating the propagation of resistance phenotypes across the tumor population. Furthermore, the review covers current in vivo experimental data focusing on targeted interventions against specific genetic elements and exosomal secretion pathways, demonstrating their potential in mitigating chemotherapy resistance. Additionally, the therapeutic potential of inhibiting exosome-mediated transporter transfer strategy is particularly examined as a promising strategy to overcome tumor resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | - Yumiao Zhang
- School of Chemical Engineering and Technology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (Ministry of Education) and State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300350, China; (G.L.); (J.L.); (S.L.)
| | - Ren He
- School of Chemical Engineering and Technology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (Ministry of Education) and State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300350, China; (G.L.); (J.L.); (S.L.)
| |
Collapse
|
2
|
Li X, Liu H, Xing P, Li T, Fang Y, Chen S, Dong S. Exosomal circRNAs: Deciphering the novel drug resistance roles in cancer therapy. J Pharm Anal 2025; 15:101067. [PMID: 39957900 PMCID: PMC11830318 DOI: 10.1016/j.jpha.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/13/2024] [Accepted: 08/03/2024] [Indexed: 02/18/2025] Open
Abstract
Exosomal circular RNA (circRNAs) are pivotal in cancer biology, and tumor pathophysiology. These stable, non-coding RNAs encapsulated in exosomes participated in cancer progression, tumor growth, metastasis, drug sensitivity and the tumor microenvironment (TME). Their presence in bodily fluids positions them as potential non-invasive biomarkers, revealing the molecular dynamics of cancers. Research in exosomal circRNAs is reshaping our understanding of neoplastic intercellular communication. Exploiting the natural properties of exosomes for targeted drug delivery and disrupting circRNA-mediated pro-tumorigenic signaling can develop new treatment modalities. Therefore, ongoing exploration of exosomal circRNAs in cancer research is poised to revolutionize clinical management of cancer. This emerging field offers hope for significant breakthroughs in cancer care. This review underscores the critical role of exosomal circRNAs in cancer biology and drug resistance, highlighting their potential as non-invasive biomarkers and therapeutic targets that could transform the clinical management of cancer.
Collapse
Affiliation(s)
- Xi Li
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hanzhe Liu
- Department of Critical Care Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Peiyu Xing
- Department of Ophthalmology, China Medical University the Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Fang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuang Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Siyuan Dong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
3
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Masoomabadi N, Gorji A, Ghadiri T, Ebrahimi S. Regulatory role of circular RNAs in the development of therapeutic resistance in the glioma: A double-edged sword. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:3-15. [PMID: 39877636 PMCID: PMC11771335 DOI: 10.22038/ijbms.2024.81644.17669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/07/2024] [Indexed: 01/31/2025]
Abstract
Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma stem cell (GSC)-regulation. circRNAs act as competing endogenous RNA, sponging target microRNA and consequently affecting the expression of genes related to glioma tumorigenesis and resistance. By doing so, circRNAs can modulate the critical cellular pathways and processes regulating glioma resistance, including DNA repair pathways, GSC, epithelial-mesenchymal transition, apoptosis, and autophagy. Considering the poor survival and increased resistance to currently approved treatments for glioma, it is crucial to increase the knowledge of the resistance regulatory effects of circRNAs and their underlying molecular mechanisms. Herein, we conducted a comprehensive search and discussed the existing knowledge regarding the important role eof circRNAs in the emergence of resistance to therapeutic interventions in glioma. This knowledge may serve as a basis for enhancing the effectiveness of glioma therapeutic strategies.
Collapse
Affiliation(s)
- Negin Masoomabadi
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Epilepsy Research Center, Münster University, Münster, Germany
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safieh Ebrahimi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Mafi A, Hedayati N, Kahkesh S, Khoshayand S, Alimohammadi M, Farahani N, Hushmandi K. The landscape of circRNAs in gliomas temozolomide resistance: Insights into molecular pathways. Noncoding RNA Res 2024; 9:1178-1189. [PMID: 39022676 PMCID: PMC11250881 DOI: 10.1016/j.ncrna.2024.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024] Open
Abstract
As the deadliest type of primary brain tumor, gliomas represent a significant worldwide health concern. Circular RNA (circRNA), a unique non-coding RNA molecule, seems to be one of the most alluring target molecules involved in the pathophysiology of many kinds of cancers. CircRNAs have been identified as prospective targets and biomarkers for the diagnosis and treatment of numerous disorders, particularly malignancies. Recent research has established a clinical link between temozolomide (TMZ) resistance and certain circRNA dysregulations in glioma tumors. CircRNAs may play a therapeutic role in controlling or overcoming TMZ resistance in gliomas and may provide guidance for a novel kind of individualized glioma therapy. To address the biological characteristics of circRNAs and their potential to induce resistance to TMZ, this review has highlighted and summarized the possible roles that circRNAs may play in molecular pathways of drug resistance, including the Ras/Raf/ERK PI3K/Akt signaling pathway and metabolic processes in gliomas.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sara Khoshayand
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
7
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)The First Department of Thoracic SurgeryPeking University Cancer Hospital and InstitutePeking University School of OncologyBeijingChina
| | - Jin Zhang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Yuchen Yang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Zhuofeng Liu
- Department of Traditional Chinese MedicineThe Third Affiliated Hospital of Xi'an Medical UniversityXi'anChina
| | - Sijia Sun
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Rui Li
- Department of EpidemiologySchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Hui Zhu
- Department of AnatomyMedical College of Yan'an UniversityYan'anChina
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Tian Li
- School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jin Zheng
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Jie Li
- Department of EndocrineXijing 986 HospitalAir Force Medical UniversityXi'anChina
| | - Litian Ma
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
- Department of GastroenterologyTangdu HospitalAir Force Medical UniversityXi'anChina
- School of MedicineNorthwest UniversityXi'anChina
| |
Collapse
|
8
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
9
|
Li Q, Zhang Y, Jin P, Chen Y, Zhang C, Geng X, Mun KS, Phang KC. New insights into the potential of exosomal circular RNAs in mediating cancer chemotherapy resistance and their clinical applications. Biomed Pharmacother 2024; 177:117027. [PMID: 38925018 DOI: 10.1016/j.biopha.2024.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy resistance typically leads to tumour recurrence and is a major obstacle to cancer treatment. Increasing numbers of circular RNAs (circRNAs) have been confirmed to be abnormally expressed in various tumours, where they participate in the malignant progression of tumours, and play important roles in regulating the sensitivity of tumours to chemotherapy drugs. As exosomes mediate intercellular communication, they are rich in circRNAs and exhibit a specific RNA cargo sorting mechanism. By carrying and delivering circRNAs, exosomes can promote the efflux of chemotherapeutic drugs and reduce intracellular drug concentrations in recipient cells, thus affecting the cell cycle, apoptosis, autophagy, angiogenesis, invasion and migration. The mechanisms that affect the phenotype of tumour stem cells, epithelial-mesenchymal transformation and DNA damage repair also mediate chemotherapy resistance in many tumours. Exosomal circRNAs are diagnostic biomarkers and potential therapeutic targets for reversing chemotherapy resistance in tumours. Currently, the rise of new fields, such as machine learning and artificial intelligence, and new technologies such as biosensors, multimolecular diagnostic systems and platforms based on circRNAs, as well as the application of exosome-based vaccines, has provided novel ideas for precision cancer treatment. In this review, the recent progress in understanding how exosomal circRNAs mediate tumour chemotherapy resistance is reviewed, and the potential of exosomal circRNAs in tumour diagnosis, treatment and immune regulation is discussed, providing new ideas for inhibiting tumour chemotherapy resistance.
Collapse
Affiliation(s)
- Qiang Li
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China; Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yuhao Zhang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated to Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Peikan Jin
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Yepeng Chen
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Chuchu Zhang
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xiuchao Geng
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Kein Seong Mun
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kean Chang Phang
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
10
|
Guo Y, Pan JJ, Zhu W, Wang MZ, Liu TY, Wang XX, Wu QQ, Cheng YX, Qian YS, Zhou XG, Yang Y. Hsa_circ_0001359 in Serum Exosomes: A Promising Marker to Predict Bronchopulmonary Dysplasia in Premature Infants. J Inflamm Res 2024; 17:5025-5037. [PMID: 39081873 PMCID: PMC11287472 DOI: 10.2147/jir.s463330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This prospective study is to explore the role of specific circRNAs in predicting the development of bronchopulmonary dysplasia (BPD). Methods From July 1, 2021 to December 1, 2021, peripheral blood samples were collected from 62 premature infants with gestational age (GA) ≤32 weeks on the 7th, 14th, and 28th day after birth. Then, on the 28th day, the included infants were divided into the BPD group and the non-BPD group according to the definition of BPD. Serum exosomal circRNAs from peripheral blood were identified, sequenced, and compared between the BPD and non-BPD groups at different time points. Specific differentially expressed circRNAs were further verified from another 42 enrolled premature infants (GA ≤32 weeks). The classical lung biological markers in serum were also measured simultaneously. Results Hsa_circ_0001359 in serum exosomes showed continuous differential expression between the BPD group and the non-BPD group on the 7th, 14th, and 28th day. Compared with that, classical lung biological markers like IL-6, IL-33, KL-6, and ET-1 did not exhibit continuous differences. Moreover, the expression of hsa_circ_0001359 on day 7 had a higher predictive value in predicting BPD (area under curve:0.853, 95% CI:0.738-0.968; adjusted odds ratio:6.033, 95% CI:2.373-13.326). The calibration curve further showed the mean absolute error = 0.033, mean squared error = 0.00231, and quantile of absolute error = 0.058. Conclusion Hsa_circ_0001359 in serum exosomes is a promising marker for predicting BPD in preterm infants with gestational age ≤32 weeks.
Collapse
Affiliation(s)
- Yan Guo
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jing-Jing Pan
- Department of Neonatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wen Zhu
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mu-Zi Wang
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People’s Republic of China
| | - Tian-Yu Liu
- Department of Neonatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Xiao-Xin Wang
- Department of Pediatrics, Shandong Tumor Hospital, Jinan, People’s Republic of China
| | - Qian-Qian Wu
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yi-Xin Cheng
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yi-Sen Qian
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiao-Guang Zhou
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Yang
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
11
|
Wang M, Jin F, Tong X. From bench to bedside: The promising value of exosomes in precision medicine for CNS tumors. Heliyon 2024; 10:e32376. [PMID: 38961907 PMCID: PMC11219334 DOI: 10.1016/j.heliyon.2024.e32376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Exosomes are naturally present extracellular vesicles (EVs) released into the surrounding body fluids upon the fusion of polycystic and plasma membranes. They facilitate intercellular communication by transporting DNA, mRNA, microRNA, long non-coding RNA, circular RNA, proteins, lipids, and nucleic acids. They contribute to the onset and progression of Central Nervous System (CNS) tumors. In addition, they can be used as biomarkers of tumor proliferation, migration, and blood vessel formation, thereby affecting the Tumor Microenvironment (TME). This paper reviews the recent advancements in the diagnosis and treatment of exosomes in various CNS tumors, the promise and challenges of exosomes as natural carriers of CNS tumors, and the therapeutic prospects of exosomes in CNS tumors. Furthermore, we hope this research can contribute to the development of more targeted and effective treatments for central nervous system tumors.
Collapse
Affiliation(s)
- Mengjie Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Feng Jin
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital).266042, Qingdao, Shandong, China
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
12
|
Si J, Guo J, Zhang X, Li W, Zhang S, Shang S, Zhang Q. Hypoxia-induced activation of HIF-1alpha/IL-1beta axis in microglia promotes glioma progression via NF-κB-mediated upregulation of heparanase expression. Biol Direct 2024; 19:45. [PMID: 38863009 PMCID: PMC11165725 DOI: 10.1186/s13062-024-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Glioma is a common tumor that occurs in the brain and spinal cord. Hypoxia is a crucial feature of the tumor microenvironment. Tumor-associated macrophages/microglia play a crucial role in the advancement of glioma. This study aims to illuminate the detailed mechanisms by which hypoxia regulates microglia and, consequently, influences the progression of glioma. METHODS The glioma cell viability and proliferation were analyzed by cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine assay. Wound healing assay and transwell assay were implemented to detect glioma cell migration and invasion, respectively. Enzyme-linked immunosorbent assay was conducted to detect protein levels in cell culture medium. The protein levels in glioma cells and tumor tissues were evaluated using western blot analysis. The histological morphology of tumor tissue was determined by hematoxylin-eosin staining. The protein expression in tumor tissues was determined using immunohistochemistry. Human glioma xenograft in nude mice was employed to test the influence of hypoxic microglia-derived interleukin-1beta (IL-1β) and heparanase (HPSE) on glioma growth in vivo. RESULTS Hypoxic HMC3 cells promoted proliferation, migration, and invasion abilities of U251 and U87 cells by secreting IL-1β, which was upregulated by hypoxia-induced activation of hypoxia inducible factor-1alpha (HIF-1α). Besides, IL-1β from HMC3 cells promoted glioma progression and caused activation of nuclear factor-κB (NF-κB) and upregulation of HPSE in vivo. We also confirmed that IL-1β facilitated HPSE expression in U251 and U87 cells by activating NF-κB. Hypoxic HMC3 cells-secreted IL-1β facilitated the proliferation, migration, and invasion of U251 and U87 cells via NF-κB-mediated upregulation of HPSE expression. Finally, we revealed that silencing HPSE curbed the proliferation and metastasis of glioma in mice. CONCLUSION Hypoxia-induced activation of HIF-1α/IL-1β axis in microglia promoted glioma progression via NF-κB-mediated upregulation of HPSE expression.
Collapse
Affiliation(s)
- Jinchao Si
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Jingya Guo
- Department of Neuroelectrophysiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Xu Zhang
- Department of General Practice, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Wei Li
- Department of Physiology, School of Basic Medicine, Zhengzhou University, Zhengzhou, 450066, China
| | - Shen Zhang
- Department of Neuroelectrophysiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Shuyu Shang
- Department of Physiology, Medical College, HuangHe Science and Technology University, Zhengzhou, 450064, China
| | - Quanwu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan Province, 450007, China.
| |
Collapse
|
13
|
Luo M, Luan X, Jiang G, Yang L, Yan K, Li S, Xiang W, Zhou J. The Dual Effects of Exosomes on Glioma: A Comprehensive Review. J Cancer 2023; 14:2707-2719. [PMID: 37779868 PMCID: PMC10539397 DOI: 10.7150/jca.86996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Glioma is a frequently occurring type of cancer that affects the central nervous system. Despite the availability of standardized treatment options including surgical resection, concurrent radiotherapy, and adjuvant temozolomide (TMZ) therapy, the prognosis for glioma patients is often unfavorable. Exosomes act as vehicles for intercellular communication, contributing to tissue repair, immune modulation, and the transfer of metabolic cargo to recipient cells. However, the transmission of abnormal substances can also contribute to pathologic states such as cancer, metabolic diseases, and neurodegenerative disorders. The field of exosome research in oncology has seen significant advancements, with exosomes identified as dynamic modulators of tumor cell proliferation, migration, and invasion, as well as angiogenesis and drug resistance. Exosomes have negligible cytotoxicity, low immunogenicity, and small size, rendering them an ideal therapeutic candidate for glioma. This comprehensive review discusses the dual effects of exosomes in glioma, with an emphasis on their role in facilitating drug resistance. Furthermore, the clinical applications and current limitations of exosomes in glioma therapy are also discussed in detail.
Collapse
Affiliation(s)
- Maowen Luo
- Southwest Medical University, Luzhou 646000, China
| | - Xingzhao Luan
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Neurosurgery, the Affiliated Hospital of PanZhiHua University, PanZhiHua 617000, China
| | - Gen Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Luxia Yang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Kekun Yan
- Department of Neurosurgery, the Affiliated Hospital of PanZhiHua University, PanZhiHua 617000, China
| | - Shenjie Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Wei Xiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Jie Zhou
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
14
|
Rezaee A, Tehrany PM, Tirabadi FJ, Sanadgol N, Karimi AS, Ajdari A, Eydivandi S, Etemad S, Rajabi R, Rahmanian P, Khorrami R, Nabavi N, Aref AR, Fan X, Zou R, Rashidi M, Zandieh MA, Hushmandi K. Epigenetic regulation of temozolomide resistance in human cancers with an emphasis on brain tumors: Function of non-coding RNAs. Biomed Pharmacother 2023; 165:115187. [PMID: 37499452 DOI: 10.1016/j.biopha.2023.115187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Brain tumors, which are highly malignant, pose a significant threat to health and often result in substantial rates of mortality and morbidity worldwide. The brain cancer therapy has been challenging due to obstacles such as the BBB, which hinders effective delivery of therapeutic agents. Additionally, the emergence of drug resistance further complicates the management of brain tumors. TMZ is utilized in brain cancer removal, but resistance is a drawback. ncRNAs are implicated in various diseases, and their involvement in the cancer is particularly noteworthy. The focus of the current manuscript is to explore the involvement of ncRNAs in controlling drug resistance, specifically in the context of resistance to the chemotherapy drug TMZ. The review emphasizes the function of ncRNAs, particularly miRNAs, in modulating the growth and invasion of brain tumors, which significantly influences their response to TMZ treatment. Through their interactions with various molecular pathways, miRNAs are modulators of TMZ response. Similarly, lncRNAs also associate with molecular pathways and miRNAs, affecting the efficacy of TMZ chemotherapy. Given their functional properties, lncRNAs can either induce or suppress TMZ resistance in brain tumors. Furthermore, circRNAs, which are cancer controllers, regulate miRNAs by acting as sponges, thereby impacting the response to TMZ chemotherapy. The review explores the correlation between ncRNAs and TMZ chemotherapy, shedding light on the underlying molecular pathways involved in this process.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Farimah Jafari Tirabadi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Negin Sanadgol
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asal Sadat Karimi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Eydivandi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Etemad
- Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Semnan, Iran.
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA.
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
15
|
Lin Z, Ji Y, Zhou J, Li G, Wu Y, Liu W, Li Z, Liu T. Exosomal circRNAs in cancer: Implications for therapy resistance and biomarkers. Cancer Lett 2023; 566:216245. [PMID: 37247772 DOI: 10.1016/j.canlet.2023.216245] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Despite the advances in cancer treatment in recent years, the development of resistance to cancer therapy remains the biggest hurdle towards curative cancer treatments. Therefore, investigating the molecular mechanisms underlying cancer therapy resistance is of paramount clinical importance. Circular RNAs (circRNAs), novel members of the noncoding RNA family, are endogenous biomolecules in eukaryotes characterized by a covalently closed loop structure with multiple biological functions. Significantly, circRNAs are abundant and stable in exosomes and can be packaged, secreted and transferred to targeted tumour cells, thereby modulating diverse hallmarks of cancer behaviours, such as proliferation, migration, and immune escape. Notably, a great number of exosomal circRNAs are abnormally expressed during cancer treatment and can mediate cancer therapy resistance through complex mechanisms; therefore, targeting exosomal circRNAs is a promising therapeutic method to reverse therapy resistance. This review aimed to elucidate the mechanisms underlying exosomal circRNAs controlling the resistance of cancer to common therapies, such as chemotherapy, targeted therapy, immunotherapy and radiotherapy, and we also discussed the therapeutic potential of exosomal circRNAs as clinical biomarkers and novel targets in cancer clinical management. We also discussed the prospects and challenges of targeting exosomal circRNAs as a novel therapeutic strategy for reversing cancer therapy resistance.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Yuqiao Ji
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yanlin Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, People's Republic of China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Dos Santos JS, Suzan AJ, Bonafé GA, Fernandes AMADP, Longato GB, Antônio MA, Carvalho PDO, Ortega MM. Kaempferol and Biomodified Kaempferol from Sophora japonica Extract as Potential Sources of Anti-Cancer Polyphenolics against High Grade Glioma Cell Lines. Int J Mol Sci 2023; 24:10716. [PMID: 37445894 DOI: 10.3390/ijms241310716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 07/15/2023] Open
Abstract
The enzymatic hydrolysis of the extract of Sophora japonica by two glycosyl hydrolases (hesperidinase and galactosidase) was performed in order to obtain kaempferol (KPF)-enriched extract with an enhanced anticancer activity. The current study examined the effectiveness of both Sophora japonica extracts (before (KPF-BBR) and after (KPF-ABR) bioconversion reactions) in reducing cell viability and inducing apoptosis in human high-degree gliomas in vitro. Cytotoxicity was determined using an MTT assay. The effects of both compounds on the proliferation of glioma cell lines were measured using trypan blue exclusion, flow cytometry for cell cycle, wound healing (WH), and neurosphere formation assays. Cellular apoptosis was detected by DNA fragmentation and phosphatidylserine exposure. qPCR and luciferase assays evaluated NF-kB pathway inhibition. The survival rate of NG-97 and U-251 cells significantly decreased in a time- and dose-dependent manner after the addition of KPF-BBR or KPF-ABR. Thus, a 50% reduction was observed in NG-97 cells at 800 µM (KPF-BBR) and 600 µM (KPF-ABR) after 72 h. Both compounds presented an IC50 of 1800 µM for U251 after 72 h. The above IC50 values were used in all of the following analyses. Neither of the KPF presented significant inhibitory effects on the non-tumoral cells (HDFa). However, after 24 h, both extracts (KPF-BBR and KPF-ABR) significantly inhibited the migration and proliferation of NG-97 and U-251 cells. In addition, MMP-9 was downregulated in glioma cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) plus KPF-BBR and TPA+KPF-ABR compared with the TPA-treated cells. Both KPF-BBR and KPF-ABR significantly inhibited the proliferation of glioma stem cells (neurospheres) after 24 h. DNA fragmentation assays demonstrated that the apoptotic ratio of KPF-ABR-treated cell lines was significantly higher than in the control groups, especially NG-97, which is not TMZ resistant. In fact, the flow cytometric analysis indicated that KPF-BBR and KPF-ABR induced significant apoptosis in both glioma cells. In addition, both KPF induced S and G2/M cell cycle arrest in the U251 cells. The qPCR and luciferase assays showed that both KPFs downregulated TRAF6, IRAK2, IL-1β, and TNF-α, indicating an inhibitory effect on the NF-kB pathway. Our findings suggest that both KPF-BBR and KPF-ABR can confer anti-tumoral effects on human cell glioma cells by inhibiting proliferation and inducing apoptosis, which is related to the NF-κB-mediated pathway. The KPF-enriched extract (KPF-ABR) showed an increased inhibitory effect on the cell migration and invasion, characterizing it as the best antitumor candidate.
Collapse
Affiliation(s)
- Jéssica Silva Dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Amanda Janaína Suzan
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Anna Maria Alves de Piloto Fernandes
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Giovanna Barbarini Longato
- Laboratory of Molecular Pharmacology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Márcia Aparecida Antônio
- Integrated Unit of Pharmacology and Gastroenterology (UNIFAG), São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| |
Collapse
|
17
|
Meng X, Yang D, Zhang B, Zhao Y, Zheng Z, Zhang T. Regulatory mechanisms and clinical applications of tumor-driven exosomal circRNAs in cancers. Int J Med Sci 2023; 20:818-835. [PMID: 37213665 PMCID: PMC10198146 DOI: 10.7150/ijms.82419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/09/2023] [Indexed: 05/23/2023] Open
Abstract
Malignant tumors seriously affect people's survival and prognosis. Exosomes, as vesicle structures widely existing in human tissues and body fluids, are involved in cell-to-cell transmission. Tumor-derived exosomes were secreted from tumors and involved in the development of carcinogenesis. Circular RNA (circRNA), a novel member of endogenous noncoding RNAs, is widespread in human and play a vital role in many physiological or pathological processes. Tumor-driven exosomal circRNAs are often involved in tumorigenesis and development including the proliferation, invasion, migration and chemo-or-radiotherapy sensitivity of tumor cell by multiple regulatory mechanisms. In this review, we will elaborate the roles and functions of tumor-driven exosomal circRNAs in cancers which may be used as potential cancer biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Guo X, Gao C, Yang DH, Li S. Exosomal circular RNAs: A chief culprit in cancer chemotherapy resistance. Drug Resist Updat 2023; 67:100937. [PMID: 36753923 DOI: 10.1016/j.drup.2023.100937] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Chemotherapy is one of the primary treatments for malignant tumors. However, the acquired drug resistance hinders clinical efficacy and leads to treatment failure in most patients. Exosomes are cell-derived vesicles with a diameter of 30-150 nm carrying and delivering substances such as DNAs, RNAs, lipids, and proteins for cellular communication in tumor development. Circular RNAs (circRNAs) present covalently closed-loop RNA structures, which regulate tumor cell proliferation, apoptosis, and metastasis by controlling different genes and signaling pathways. CircRNAs are abundant and stably expressed in exosomes. Recent studies have shown that they play critical roles in chemotherapy resistance in various cancers. In this review, we summarized the origin of exosomes and discussed the regulation mechanism of exosomal circRNAs in cancer drug resistance.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology,Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Congying Gao
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, USA.
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology,Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang Liaoning Province 110042, China.
| |
Collapse
|
19
|
Wu X, Shi M, Lian Y, Zhang H. Exosomal circRNAs as promising liquid biopsy biomarkers for glioma. Front Immunol 2023; 14:1039084. [PMID: 37122733 PMCID: PMC10140329 DOI: 10.3389/fimmu.2023.1039084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Liquid biopsy strategies enable the noninvasive detection of changes in the levels of circulating biomarkers in body fluid samples, providing an opportunity to diagnose, dynamically monitor, and treat a range of diseases, including cancers. Glioma is among the most common forms of intracranial malignancy, and affected patients exhibit poor prognostic outcomes. As such, diagnosing and treating this disease in its early stages is critical for optimal patient outcomes. Exosomal circular RNAs (circRNAs) are involved in both the onset and progression of glioma. Both the roles of exosomes and methods for their detection have received much attention in recent years and the detection of exosomal circRNAs by liquid biopsy has significant potential for monitoring dynamic changes in glioma. The present review provides an overview of the circulating liquid biopsy biomarkers associated with this cancer type and the potential application of exosomal circRNAs as tools to guide the diagnosis, treatment, and prognostic evaluation of glioma patients during disease progression.
Collapse
Affiliation(s)
- Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Shi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Haifeng Zhang, ; Yajun Lian,
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Haifeng Zhang, ; Yajun Lian,
| |
Collapse
|
20
|
Katsushima K, Joshi K, Perera RJ. Diagnostic and therapeutic potential of circular RNA in brain tumors. Neurooncol Adv 2023; 5:vdad063. [PMID: 37334165 PMCID: PMC10276536 DOI: 10.1093/noajnl/vdad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of RNA with a stable cyclic structure. They are expressed in various tissues and cells with conserved, specific characteristics. CircRNAs have been found to play critical roles in a wide range of cellular processes by regulating gene expression at the epigenetic, transcriptional, and posttranscriptional levels. There is an accumulation of evidence on newly discovered circRNAs, their molecular interactions, and their roles in the development and progression of human brain tumors, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Here we summarize the current state of knowledge of the circRNAs that have been implicated in brain tumor pathogenesis, particularly in gliomas and medulloblastomas. In providing a comprehensive overview of circRNA studies, we highlight how different circRNAs have oncogenic or tumor-suppressive roles in brain tumors, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. This review article discusses circRNAs' functional roles and the prospect of using them as diagnostic biomarkers and therapeutic targets in patients with brain tumors.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, Florida, USA
| | - Kandarp Joshi
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, Florida, USA
| | - Ranjan J Perera
- Corresponding Author: Ranjan J. Perera, PhD, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA ()
| |
Collapse
|
21
|
Glycocalyx Acts as a Central Player in the Development of Tumor Microenvironment by Extracellular Vesicles for Angiogenesis and Metastasis. Cancers (Basel) 2022; 14:cancers14215415. [PMID: 36358833 PMCID: PMC9655334 DOI: 10.3390/cancers14215415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The glycocalyx is a fluffy sugar coat covering the surface of all mammalian cells. While glycocalyx at endothelial cells is a barrier to tumor cell adhesion and transmigration, glycocalyx at tumor cells promotes tumor metastasis. Angiogenesis at primary tumors and the growth of tumor cells at metastatic sites are all affected by the tumor microenvironment, including the blood vasculature, extracellular matrix (ECM), and fibroblasts. Extracellular vesicles (EVs) secreted by the tumor cells and tumor-associated endothelial cells are also considered to be the components of the tumor microenvironment. They can modify tumor vasculature, ECM, and fibroblasts. But how the EVs are generated, secreted, and up taken by the endothelial and tumor cells in the development of the tumor microenvironment are unclear, especially after anti-angiogenic therapy (AAT). The objective of this short review is to summarize the role of the glycocalyx in EV biogenesis, secretion, and uptake, as well as the modulation of the glycocalyx by the EVs. Abstract Angiogenesis in tumor growth and progression involves a series of complex changes in the tumor microenvironment. Extracellular vesicles (EVs) are important components of the tumor microenvironment, which can be classified as exosomes, apoptotic vesicles, and matrix vesicles according to their origins and properties. The EVs that share many common biological properties are important factors for the microenvironmental modification and play a vital role in tumor growth and progression. For example, vascular endothelial growth factor (VEGF) exosomes, which carry VEGF, participate in the tolerance of anti-angiogenic therapy (AAT). The glycocalyx is a mucopolysaccharide structure consisting of glycoproteins, proteoglycans, and glycosaminoglycans. Both endothelial and tumor cells have glycocalyx at their surfaces. Glycocalyx at both cells mediates the secretion and uptake of EVs. On the other hand, many components carried by EVs can modify the glycocalyx, which finally facilitates the development of the tumor microenvironment. In this short review, we first summarize the role of EVs in the development of the tumor microenvironment. Then we review how the glycocalyx is associated with the tumor microenvironment and how it is modulated by the EVs, and finally, we review the role of the glycocalyx in the synthesis, release, and uptake of EVs that affect tumor microenvironments. This review aims to provide a basis for the mechanistic study of AAT and new clues to address the challenges in AAT tolerance, tumor angiogenesis and metastasis.
Collapse
|
22
|
Pasqualetti F, Rizzo M, Franceschi S, Lessi F, Paiar F, Buffa FM. New perspectives in liquid biopsy for glioma patients. Curr Opin Oncol 2022; 34:705-712. [PMID: 36093876 DOI: 10.1097/cco.0000000000000902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Gliomas are the most common primary tumors of the central nervous system. They are characterized by a disappointing prognosis and ineffective therapy that has shown no substantial improvements in the past 20 years. The lack of progress in treating gliomas is linked with the inadequacy of suitable tumor samples to plan translational studies and support laboratory developments. To overcome the use of tumor tissue, this commentary review aims to highlight the potential for the clinical application of liquid biopsy (intended as the study of circulating biomarkers in the blood), focusing on circulating tumor cells, circulating DNA and circulating noncoding RNA. RECENT FINDINGS Thanks to the increasing sensitivity of sequencing techniques, it is now possible to analyze circulating nucleic acids and tumor cells (liquid biopsy). SUMMARY Although studies on the use of liquid biopsy are still at an early stage, the potential clinical applications of liquid biopsy in the study of primary brain cancer are many and have the potential to revolutionize the approach to neuro-oncology, and importantly, they offer the possibility of gathering information on the disease at any time during its history.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Department of Oncology, University of Oxford, Oxford, UK
- Radiation Oncology Unit, Pisa University Hospital
| | - Milena Rizzo
- Noncoding RNA group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa
| | | | | | | | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Computing Sciences, Bocconi University, Milan, Italy
| |
Collapse
|
23
|
Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, Zhang SJ. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer 2022; 21:207. [PMID: 36320056 PMCID: PMC9623991 DOI: 10.1186/s12943-022-01671-0] [Citation(s) in RCA: 308] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Exosomes are well-known key mediators of intercellular communication and contribute to various physiological and pathological processes. Their biogenesis involves four key steps, including cargo sorting, MVB formation and maturation, transport of MVBs, and MVB fusion with the plasma membrane. Each process is modulated through the competition or coordination of multiple mechanisms, whereby diverse repertoires of molecular cargos are sorted into distinct subpopulations of exosomes, resulting in the high heterogeneity of exosomes. Intriguingly, cancer cells exploit various strategies, such as aberrant gene expression, posttranslational modifications, and altered signaling pathways, to regulate the biogenesis, composition, and eventually functions of exosomes to promote cancer progression. Therefore, exosome biogenesis-targeted therapy is being actively explored. In this review, we systematically summarize recent progress in understanding the machinery of exosome biogenesis and how it is regulated in the context of cancer. In particular, we highlight pharmacological targeting of exosome biogenesis as a promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Qing-Fang Han
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wen-Jia Li
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Kai-Shun Hu
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Jie Gao
- grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China
| | - Wen-Long Zhai
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing-Hua Yang
- grid.412633.10000 0004 1799 0733Clinical Systems Biology Key Laboratories of Henan, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shui-Jun Zhang
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China ,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, 450052 Henan China
| |
Collapse
|
24
|
Ginsenosides Rg1 and CK Control Temozolomide Resistance in Glioblastoma Cells by Modulating Cholesterol Efflux and Lipid Raft Distribution. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1897508. [PMID: 36276866 PMCID: PMC9583863 DOI: 10.1155/2022/1897508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/07/2022]
Abstract
Background Cholesterol efflux and lipid raft redistribution contribute to attenuating temozolomide resistance of glioblastoma. Ginsenosides are demonstrated to modify cholesterol metabolism and lipid raft distribution, and the brain distribution and central nervous effects of whose isoforms Rb1, Rg1, Rg3, and CK have been identified. This study aimed to reveal the role of Rb1, Rg1, Rg3, and CK in the drug resistance of glioblastoma. Methods The effects of ginsenosides on cholesterol metabolism in temozolomide-resistant U251 glioblastoma cells were evaluated by cholesterol content and efflux assay, confocal laser, qRT-PCR, and Western blot. The roles of cholesterol and ginsenosides in temozolomide resistance were studied by CCK-8, flow cytometry, and Western blot, and the mechanism of ginsenosides attenuating resistance was confirmed by inhibitors. Results Cholesterol protected the survival of resistant U251 cells from temozolomide stress and upregulated multidrug resistance protein (MDR)1, which localizes in lipid rafts. Resistant cells tended to store cholesterol intracellularly, with limited cholesterol efflux and LXRα expression to maintain the distribution of lipid rafts. Ginsenosides Rb1, Rg1, Rg3, and CK reduced intracellular cholesterol and promoted cholesterol efflux in resistant cells, causing lipid rafts to accumulate in specific regions of the membrane. Rg1 and CK also upregulated LXRα expression and increased the cytotoxicity of temozolomide in the presence of cholesterol. We further found that cholesterol efflux induction, lipid raft redistribution, and temozolomide sensitization by Rg1 and CK were induced by stimulating LXRα. Conclusions Ginsenosides Rg1 and CK controlled temozolomide resistance in glioblastoma cells by regulating cholesterol metabolism, which are potential synergists for temozolomide therapy.
Collapse
|
25
|
Słomka A, Kornek M, Cho WC. Small Extracellular Vesicles and Their Involvement in Cancer Resistance: An Up-to-Date Review. Cells 2022; 11:2913. [PMID: 36139487 PMCID: PMC9496799 DOI: 10.3390/cells11182913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, tremendous progress has been made in understanding the roles of extracellular vesicles (EVs) in cancer. Thanks to advancements in molecular biology, it has been found that the fraction of EVs called exosomes or small EVs (sEVs) modulates the sensitivity of cancer cells to chemotherapeutic agents by delivering molecularly active non-coding RNAs (ncRNAs). An in-depth analysis shows that two main molecular mechanisms are involved in exosomal modified chemoresistance: (1) translational repression of anti-oncogenes by exosomal microRNAs (miRs) and (2) lack of translational repression of oncogenes by sponging of miRs through long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). At the cellular level, these processes increase the proliferation and survival of cancer cells and improve their ability to metastasize and resist apoptosis. In addition, studies in animal models have shown enhancing tumor size under the influence of exosomal ncRNAs. Ultimately, exosomal ncRNAs are responsible for clinically significant chemotherapy failures in patients with different types of cancer. Preliminary data have also revealed that exosomal ncRNAs can overcome chemotherapeutic agent resistance, but the results are thoroughly fragmented. This review presents how exosomes modulate the response of cancer cells to chemotherapeutic agents. Understanding how exosomes interfere with chemoresistance may become a milestone in developing new therapeutic options, but more data are still required.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
26
|
Guo X, Sui R, Piao H. Tumor-derived small extracellular vesicles: potential roles and mechanism in glioma. J Nanobiotechnology 2022; 20:383. [PMID: 35999601 PMCID: PMC9400220 DOI: 10.1186/s12951-022-01584-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Small extracellular vesicles (SEVs) are extracellular vesicles containing DNA, RNA, and proteins and are involved in intercellular communication and function, playing an essential role in the growth and metastasis of tumors. SEVs are present in various body fluids and can be isolated and extracted from blood, urine, and cerebrospinal fluid. Under both physiological and pathological conditions, SEVs can be released by some cells, such as immune, stem, and tumor cells, in a cytosolic manner. SEVs secreted by tumor cells are called tumor-derived exosomes (TEXs) because of their origin in the corresponding parent cells. Glioma is the most common intracranial tumor, accounting for approximately half of the primary intracranial tumors, and is characterized by insidious onset, high morbidity, and high mortality rate. Complete removal of tumor tissues by surgery is difficult. Chemotherapy can improve the survival quality of patients to a certain extent; however, gliomas are prone to chemoresistance, which seriously affects the prognosis of patients. In recent years, TEXs have played a vital role in the occurrence, development, associated immune response, chemotherapy resistance, radiation therapy resistance, and metastasis of glioma. This article reviews the role of TEXs in glioma progression, drug resistance, and clinical diagnosis.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Rui Sui
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
27
|
Zeng Z, Chen Y, Geng X, Zhang Y, Wen X, Yan Q, Wang T, Ling C, Xu Y, Duan J, Zheng K, Sun Z. NcRNAs: Multi‑angle participation in the regulation of glioma chemotherapy resistance (Review). Int J Oncol 2022; 60:76. [PMID: 35506469 PMCID: PMC9083885 DOI: 10.3892/ijo.2022.5366] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
As the most common primary tumour of the central nervous system, gliomas have a high recurrence rate after surgical resection and are resistant to chemotherapy, particularly high‑grade gliomas dominated by glioblastoma multiforme (GBM). The prognosis of GBM remains poor despite improvements in treatment modalities, posing a serious threat to human health. At present, although drugs such as temozolomide, cisplatin and bevacizumab, are effective in improving the overall survival of patients with GBM, most patients eventually develop drug resistance, leading to poor clinical prognosis. The development of multidrug resistance has therefore become a major obstacle to improving the effectiveness of chemotherapy for GBM. The ability to fully understand the underlying mechanisms of chemotherapy resistance and to develop novel therapeutic targets to overcome resistance is critical to improving the prognosis of patients with GBM. Of note, growing evidence indicates that a large number of abnormally expressed noncoding RNAs (ncRNAs) have a central role in glioma chemoresistance and may target various mechanisms to modulate chemosensitivity. In the present review, the roles and molecular mechanisms of ncRNAs in glioma drug resistance were systematically summarized, the potential of ncRNAs as drug resistance markers and novel therapeutic targets of glioma were discussed and prospects for glioma treatment were outlined. ncRNAs are a research direction for tumor drug resistance mechanisms and targeted therapies, which not only provides novel perspectives for reversing glioma drug resistance but may also promote the development of precision medicine for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zhaomu Zeng
- Department of Surgery, School of Clinical Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Xiuchao Geng
- Department of Nursing, School of Medicine, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Yuhao Zhang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated to Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Qingyu Yan
- Office of Academic Research, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Tingting Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chen Ling
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yan Xu
- Clinical Laboratory, Affiliated Hospital of Jinggangshan University, Ji'an, Jiangxi 343100, P.R. China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Zhiwei Sun
- Department of Surgery, School of Clinical Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
28
|
Zhou F, Ding W, Mao Q, Jiang X, Chen J, Zhao X, Xu W, Huang J, Zhong L, Sun X. The regulation of hsacirc_004413 promotes proliferation and drug resistance of gastric cancer cells by acting as a competing endogenous RNA for miR-145-5p. PeerJ 2022; 10:e12629. [PMID: 35415017 PMCID: PMC8995023 DOI: 10.7717/peerj.12629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Background Whether circRAN, which acts as a microRNA sponge, plays a role in 5-fluorouracil (5-Fu) resistant gastric cancer has not been reported. In this study, a 5-Fu resistant cell line with an IC50 of 16.59 µM was constructed. Methods Using comparative analysis of circRNA in the transcriptomics of resistant and sensitive strains, 31 differentially expressed circRNAs were detected, and the microRNA interacting with them was predicted. Results Hsacirc_004413 was selected for verification in drug resistant and sensitive cells. By interfering with hsacirc_004413 using antisense RNA, the sensitivity of drug resistant cells to 5-Fu was significantly promoted, and the apoptosis and necrosis of the cells were significantly increased. In sensitive cells, inhibition by inhibitors enhanced the resistance of cells to 5-Fu. We hypothesize that hsacirc_004413 makes gastric cancer cells resistant to 5-Fu mainly through adsorption of miR-145-5p.
Collapse
Affiliation(s)
- Fusheng Zhou
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Weiqun Ding
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiqi Mao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xiaoyun Jiang
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jiajie Chen
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xianguang Zhao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Weijia Xu
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jiaxin Huang
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Liang Zhong
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xu Sun
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Zhou H, Zhu L, Song J, Wang G, Li P, Li W, Luo P, Sun X, Wu J, Liu Y, Zhu S, Zhang Y. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol Cancer 2022; 21:86. [PMID: 35337361 PMCID: PMC8951719 DOI: 10.1186/s12943-022-01556-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and a leading cause of carcinogenic death. To date, surgical resection is regarded as the gold standard by the operator for clinical decisions. Because conventional tissue biopsy is invasive and only a small sample can sometimes be obtained, it is unable to represent the heterogeneity of tumor or dynamically monitor tumor progression. Therefore, there is an urgent need to find a new minimally invasive or noninvasive diagnostic strategy to detect CRC at an early stage and monitor CRC recurrence. Over the past years, a new diagnostic concept called “liquid biopsy” has gained much attention. Liquid biopsy is noninvasive, allowing repeated analysis and real-time monitoring of tumor recurrence, metastasis or therapeutic responses. With the advanced development of new molecular techniques in CRC, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, and tumor-educated platelet (TEP) detection have achieved interesting and inspiring results as the most prominent liquid biopsy markers. In this review, we focused on some clinical applications of CTCs, ctDNA, exosomes and TEPs and discuss promising future applications to solve unmet clinical needs in CRC patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Liyong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jun Song
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Guohui Wang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Pengzhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ping Luo
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xulong Sun
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jin Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Yunze Liu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
30
|
Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC. Non-viral vectors for RNA delivery. J Control Release 2022; 342:241-279. [PMID: 35016918 PMCID: PMC8743282 DOI: 10.1016/j.jconrel.2022.01.008] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
RNA-based therapy is a promising and potential strategy for disease treatment by introducing exogenous nucleic acids such as messenger RNA (mRNA), small interfering RNA (siRNA), microRNA (miRNA) or antisense oligonucleotides (ASO) to modulate gene expression in specific cells. It is exciting that mRNA encoding the spike protein of COVID-19 (coronavirus disease 2019) delivered by lipid nanoparticles (LNPs) exhibits the efficient protection of lungs infection against the virus. In this review, we introduce the biological barriers to RNA delivery in vivo and discuss recent advances in non-viral delivery systems, such as lipid-based nanoparticles, polymeric nanoparticles, N-acetylgalactosamine (GalNAc)-siRNA conjugate, and biomimetic nanovectors, which can protect RNAs against degradation by ribonucleases, accumulate in specific tissue, facilitate cell internalization, and allow for the controlled release of the encapsulated therapeutics.
Collapse
Affiliation(s)
- Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiao-Yu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiang-Yu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lin-Xia Jiang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China..
| |
Collapse
|
31
|
Liu XY, Zhang Q, Guo J, Zhang P, Liu H, Tian ZB, Zhang CP, Li XY. The Role of Circular RNAs in the Drug Resistance of Cancers. Front Oncol 2022; 11:790589. [PMID: 35070998 PMCID: PMC8766647 DOI: 10.3389/fonc.2021.790589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a major threat to human health and longevity. Chemotherapy is an effective approach to inhibit cancer cell proliferation, but a growing number of cancer patients are prone to develop resistance to various chemotherapeutics, including platinum, paclitaxel, adriamycin, and 5-fluorouracil, among others. Significant progress has been made in the research and development of chemotherapeutic drugs over the last few decades, including targeted therapy drugs and immune checkpoint inhibitors; however, drug resistance still severely limits the application and efficacy of these drugs in cancer treatment. Recently, emerging studies have emphasized the role of circular RNAs (circRNAs) in the proliferation, migration, invasion, and especially chemoresistance of cancer cells by regulating the expression of related miRNAs and targeted genes. In this review, we comprehensively summarized the potential roles and mechanisms of circRNAs in cancer drug resistance including the efflux of drugs, apoptosis, intervention with the TME (tumor microenvironment), autophagy, and dysfunction of DNA damage repair, among others. Furthermore, we highlighted the potential value of circRNAs as new therapeutic targets and prognostic biomarkers for cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao-Yu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Chen M, Yan C, Zhao X. Research Progress on Circular RNA in Glioma. Front Oncol 2021; 11:705059. [PMID: 34745938 PMCID: PMC8568300 DOI: 10.3389/fonc.2021.705059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
The discovery of circular RNA (circRNA) greatly complements the traditional gene expression theory. CircRNA is a class of non-coding RNA with a stable cyclic structure. They are highly expressed, spatiotemporal-specific and conservative across species. Importantly, circRNA participates in the occurrence of many kinds of tumors and regulates the tumor development. Glioma is featured by limited therapy and grim prognosis. Cancer-associated circRNA compromises original function or creates new effects in glioma, thus contributing to oncogenesis. Therefore, this article reviews the biogenesis, metabolism, functions and properties of circRNA as a novel potential biomarker for gliomas. We elaborate the expression characteristics, interaction between circRNA and other molecules, aiming to identify new targets for early diagnosis and treatment of gliomas.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunyan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xihe Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Si J, Li W, Li X, Cao L, Chen Z, Jiang Z. Heparanase confers temozolomide resistance by regulation of exosome secretion and circular RNA composition in glioma. Cancer Sci 2021; 112:3491-3506. [PMID: 34036683 PMCID: PMC8409313 DOI: 10.1111/cas.14984] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Temozolomide (TMZ) resistance is the main challenge in the management of glioma patients. Heparanase can mediate the secretion and function of exosomes, which are considered to be a promising molecular delivery system for cancer therapy. Therefore, this study aimed to investigate whether heparanase‐mediated delivery of exosomes was related to TMZ resistance of glioma. Heparanase was upregulated in TMZ‐resistant glioma cells, and overexpression of heparanase led to increased resistance of U87 cells to TMZ. Knockdown of heparanase led to increased sensitivity of TMZ‐resistant U251 cells (U251R) cells to TMZ. Heparanase promoted the secretion of exosomes from glioma cells, and coculture with exosomes derived from heparanase knockdown U251R cells partly restored the sensitivity of U251 cells to TMZ compared with exosomes derived from si‐control transfected U251R cells. It was identified by circular RNA microarrays that hsa_circ_0042003 was upregulated in exosomes derived from U251R, which could be positively regulated by heparanase. U251R cell‐derived exosomal hsa_circ_0042003 conferred the resistance of U251 cells to TMZ. In vivo studies also showed that U251R cell‐derived exosomes induced resistance of U251 cells to TMZ, and the combination of tail‐injected exosomal si‐heparanase or exosomal si‐hsa_circ_0042003 and intraperitoneal TMZ applied to nude mice abolished TMZ resistance. Heparanase mediated the transfer of exosomal hsa_circ_0042003 from TMZ‐resistant glioma cells to drug‐sensitive cells, which contributed to the chemoresistance of glioma to TMZ.
Collapse
Affiliation(s)
- Jinchao Si
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixing Cao
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi Jiang
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|