1
|
Borea R, Reduzzi C. The growing field of liquid biopsy and its Snowball effect on reshaping cancer management. THE JOURNAL OF LIQUID BIOPSY 2025; 8:100293. [PMID: 40255897 PMCID: PMC12008596 DOI: 10.1016/j.jlb.2025.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Liquid biopsy (LB) has emerged as a transformative tool in oncology, providing a minimally invasive approach for tumor detection, molecular characterization, and real-time treatment monitoring. By analyzing circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and microRNA (miRNA), LB enables comprehensive tumor profiling without the need for traditional tissue biopsies. Over the past decade, research in this field has expanded exponentially, leading to the integration of LB into clinical practice for specific cancer types, including lung and breast cancer. In 2024, the Journal of Liquid Biopsy (JLB) published innovative studies exploring the latest advancements in LB technologies, biomarkers, and their applications for cancer detection, minimal residual disease (MRD) monitoring, and therapy response assessment. This review synthesizes recent findings on the role of LB in cancer treatment and monitoring across different biomarkers, with a particular focus on newly published studies and their context within translational research. Additionally, it highlights emerging techniques such as fragmentomics, artificial intelligence, and multiomics, paving the way for more precise, personalized treatment decisions. Despite these advancements, challenges remain in standardizing methodologies, optimizing clinical validation, and integrating LB into routine oncological workflows. This mini-review highlights the evolving landscape of LB research and its potential to revolutionize cancer diagnosis, treatment monitoring, and therapeutic decision-making, ushering in a new era of precision oncology.
Collapse
Affiliation(s)
- Roberto Borea
- Department of Public Health, University Federico II of Naples, Naples, Italy
- Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY, 10021, USA
| |
Collapse
|
2
|
van der Leest P, Rozendal P, Rifaela N, van der Wekken AJ, Kievit H, de Jager VD, Sidorenkov G, van Kempen LC, Hiltermann TJN, Schuuring E. Detection of actionable mutations in circulating tumor DNA for non-small cell lung cancer patients. COMMUNICATIONS MEDICINE 2025; 5:204. [PMID: 40437208 PMCID: PMC12120126 DOI: 10.1038/s43856-025-00921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/08/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Liquid biopsy approaches, especially the detection of circulating tumor DNA (ctDNA), are emerging as sensitive and reliable surrogates for tumor tissue-based routine diagnostic testing. Here, we retrospectively analyzed serially collected plasma samples of non-small cell lung cancer (NSCLC) patients obtained at first diagnosis to evaluate the added value of ctDNA analysis for detecting therapeutically relevant variants and determining the consequent clinical implications. METHODS One hundred eighty plasma samples from consecutively recruited NSCLC patients were included. Circulating cell-free DNA (ccfDNA) was extracted and analyzed with the UltraSEEK Lung Panel v2 on the MassARRAY System. Tumor tissue next-generation sequencing (NGS) data, performed as routine molecular testing in the clinical setting, were retrieved from the national pathology registry for 132 patients. RESULTS Here we show that in 82% of the patients, mutations are concordantly detected in tumor tissue and plasma. More mutations are reported with tumor tissue-based NGS in nineteen patients, while in four patients additional mutations are detected in plasma. Tissue-based molecular tumor profiling identifies 60 patients eligible for targeted treatment including fifteen (8%) harboring fusions currently not covered by UltraSEEK. Based on ctDNA analysis, 41 patients (23%) are identified as eligible for BRAFV600-, EGFR-, or KRASG12C-targeted therapies. In the absence of tumor tissue NGS data (n = 48), five therapeutically relevant mutations are detected. CONCLUSIONS Molecular tumor profiling of ctDNA identifies therapeutically relevant mutations at a comparable rate to tumor tissue-based NGS and might therefore serve as an alternative or complementary test for the detection of actionable variants in plasma.
Collapse
Affiliation(s)
- Paul van der Leest
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pim Rozendal
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Naomi Rifaela
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anthonie J van der Wekken
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hanneke Kievit
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vincent D de Jager
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Grigory Sidorenkov
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Léon C van Kempen
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - T Jeroen N Hiltermann
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ed Schuuring
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
3
|
Furukawa N, Hasegawa N, Kubota D, Nakamura Y, Tanaka H, Iwata S, Kawai A, Saito T, Takagi T, Kohsaka S, Ishijima M. Prognostic potential of fusion gene analysis using plasma cell-free RNA in malignant bone and soft tissue tumours. BMC Cancer 2025; 25:587. [PMID: 40170158 PMCID: PMC11963259 DOI: 10.1186/s12885-025-13950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Liquid biopsy, which facilitates minimally invasive analysis of body fluid samples, has considerable potential as a diagnostic and prognostic tool in various cancers. Analysis of circulating tumour cells, circulating tumour DNA, and exosomes in liquid biopsies has advantages and disadvantages. However, their utility in rare cancers, such as malignant bone and soft tissue tumours, remains unknown. In this study, we examined the levels of circulating cell-free tumour RNA (cfRNA) in the blood of patients with malignant bone and soft tissue tumours harbouring specific fusion genes, to explore the relationship between fusion gene expression in the blood and therapeutic response and disease status, and to validate the clinical utility of liquid biopsy. METHODS The study involved 3 cases (7 samples) of Ewing's sarcoma, 6 cases (12 samples) of myxoid liposarcoma, and 1 case (2 samples) of synovial sarcoma with specific fusion genes. Fusion gene analysis was performed using tumour tissue samples to identify breakpoints. Primers for liquid biopsy were designed based on the fusion genes identified. cfRNA was extracted from each patient's plasma and used for reverse transcription polymerase chain reaction (RT-PCR) with the designed primers. The RT-PCR product was subjected to Sanger sequencing. RESULTS Fusion gene breakpoints were identified in 10 samples from 6 cases. The fusion gene detection rate in the blood was 100% at both naïve status and symptom exacerbation in patients with Stage IV disease. In patients with Stage III disease progressing to Stage IV, the fusion gene was detected in the blood prior to imaging tests. CONCLUSIONS The detection of specific fusion genes from cfRNAs shows potential for monitoring the progression of fusion-related sarcomas in the context of chemotherapy.
Collapse
MESH Headings
- Humans
- Male
- Soft Tissue Neoplasms/genetics
- Soft Tissue Neoplasms/blood
- Soft Tissue Neoplasms/diagnosis
- Soft Tissue Neoplasms/pathology
- Female
- Prognosis
- Adult
- Cell-Free Nucleic Acids/blood
- Cell-Free Nucleic Acids/genetics
- Bone Neoplasms/genetics
- Bone Neoplasms/blood
- Bone Neoplasms/pathology
- Bone Neoplasms/diagnosis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/blood
- Middle Aged
- Liquid Biopsy
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/blood
- Young Adult
- Adolescent
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/blood
- Liposarcoma, Myxoid/genetics
- Liposarcoma, Myxoid/blood
- Aged
- Sarcoma, Synovial/genetics
- Sarcoma, Synovial/blood
- Child
Collapse
Affiliation(s)
- Naoki Furukawa
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiko Hasegawa
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
| | - Daisuke Kubota
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Hirokazu Tanaka
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuya Takagi
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Community Medicine and Research in Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Community Medicine and Research in Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Albitar M, Charifa A, Agersborg S, Pecora A, Ip A, Goy A. Expanding the clinical utility of liquid biopsy by using liquid transcriptome and artificial intelligence. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100270. [PMID: 40027317 PMCID: PMC11863701 DOI: 10.1016/j.jlb.2024.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 03/05/2025]
Abstract
Most of the current utilization of liquid biopsy (LBx) is based on analyzing cell-free DNA(cfDNA). There is limited data on using cell-free RNA (cfRNA) levels (liquid transcriptome) in LBx. The major hurdles for using liquid transcriptome is its low level in circulation and the dilutional effects of various tissues that may pour their RNA into circulation. We explored the potential of using artificial intelligence (AI) to normalize the cancer-specific cfRNA and to enable liquid transcriptome to predict diagnosis. cfRNA transcriptomic data from 1009 peripheral blood samples was generated by hybrid capture next generation sequencing (NGS). Using two-thirds of samples for training and one third for testing, we demonstrate that AI is able to distinguish between normal control (N = 368) and patients with solid tumors (N = 404) with AUC = 0.820 (95 % CI: 0.760-0.879), patients with myeloid neoplasms (N = 99) with AUC = 0.858 (95 % CI: 0.793-0.924) and patients with lymphoid neoplasms (N = 128) with AUC = 0.788 (95 % CI: 0.687-0.888). Specific diagnosis was also possible when patients with lung, breast, colorectal, and myelodysplastic subgroups were tested. This data suggests that liquid transcriptomics when used with AI has the potential of transforming "liquid biopsy" to "true" biopsy, replacing the need for tissue biopsy.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Ip
- John Theurer Cancer Center, Hackensack, NJ, USA
| | - Andre Goy
- John Theurer Cancer Center, Hackensack, NJ, USA
| |
Collapse
|
5
|
Wang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, et alWang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, Li W, Fu J, Wu L, Lan S, Ou J, Shi L, Zhai Z, Wang Y, Li B, Zhang Z, Wang K, Ma X, Li Z, Liu Z, Yang N, Wu L, Wang H, Jin G, Wang G, Wang J, Shi H, Fang M, Fang Y, Li Y, Wang X, Chen J, Zhang Y, Zhu X, Shen Y, Ma S, Wang B, Song Y, Song Z, Fang W, Lu Y, Si L. Expert consensus on the diagnosis and treatment of solid tumors with BRAF mutations. Innovation (N Y) 2024; 5:100661. [PMID: 39529955 PMCID: PMC11551471 DOI: 10.1016/j.xinn.2024.100661] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth, differentiation, and survival. When the BRAF gene mutates, it can lead to abnormal activation of the signaling pathway, which promotes cell proliferation, inhibits cell apoptosis, and ultimately contributes to the occurrence and development of cancer. BRAF mutations are widely present in various cancers, including malignant melanoma, thyroid cancer, colorectal cancer, non-small cell lung cancer, and hairy cell leukemia, among others. BRAF is an important target for the treatment of various solid tumors, and targeted combination therapies, represented by BRAF inhibitors, have become one of the main treatment modalities for a variety of BRAF-mutation-positive solid tumors. Dabrafenib plus trametinib, as the first tumor-agnostic therapy, has been approved by the US Food and Drug Administration for the treatment of adult and pediatric patients aged 6 years and older harboring a BRAF V600E mutation with unresectable or metastatic solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options. This is also the first time a BRAF/MEK inhibitor combination has been approved for use in pediatric patients. As research into the diagnosis and treatment of BRAF mutations advances, standardizing the detection of BRAF mutations and the clinical application of BRAF inhibitors becomes increasingly important. Therefore, we have established a universal and systematic strategy for diagnosing and treating solid tumors with BRAF mutations. In this expert consensus, we (1) summarize the epidemiology and clinical characteristics of BRAF mutations in different solid tumors, (2) provide recommendations for the selection of genetic testing methods and platforms, and (3) establish a universal strategy for the diagnosis and treatment of patients with solid tumors harboring BRAF mutations.
Collapse
Affiliation(s)
- Wenxian Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Nan Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 200030, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 200030, China
| | - Aijun Liu
- Senior Department of Pathology, the 7 Medical Center of PLA General Hospital, Beijing 100700, P.R. China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingjing Liu
- Department of Thoracic Cancer, Jilin Cancer Hospital, Jilin, Changchun 130012, P.R. China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, West Lake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. ChinaP.R. China
| | - Anwen Liu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lingfeng Min
- Department of Respiratory Medicine, Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Wang
- Department of Internal Medicine, Cancer Center of PLA, Qinhuai Medical Area, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhansheng Jiang
- Derpartment of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Gen Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Long Huang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Rongbo Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing 100035, P.R. China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Dongqing Lv
- Department of Pulmonary Medicine, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900 Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital), Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100700, P.R. China
| | - Chuanhao Tang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510300, P.R. China
| | - Junping Zhang
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P.R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P.R. China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Rui Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan 610041, P.R. China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fan Xia
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P.R. China
| | - Xiaofeng Chen
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Rui Ge
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 13003, P.R. China
| | - Yu Han
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 1550081, P.R. China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Fei Pang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Xin Huang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Meizhen Hu
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Qing Hao
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Kai Wang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Fan Wu
- Department of Medical, Menarini Silicon Biosystems Spa, Shanghai 400000, P.R. China
| | - Binbin Song
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Bingwei Xu
- Department of Biotherapy, Cancer Institute, First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Liping Wang
- Department of Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia 014000, P.R. China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Li Lin
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Yanru Xie
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Xinqing Lin
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Cai
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Xu
- Department of Interventional Pulmonary Diseases, Anhui Chest Hospital, Hefei, Anhui 230011, P.R. China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinnan, Shangdong 250012, P.R. China
| | - Xiaodong Jiao
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200070, P.R. China
| | - Kainan Li
- Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, P.R. China
| | - Jia Wei
- Department of the Comprehensive Cancer Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Lin Wang
- Department of Pathology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, P.R. China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yue Feng
- Department of Gynecologic Radiation Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yinbin Zhang
- Department of Oncology, the Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Pingli Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hong Wang
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Hao
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Zhen Wang
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Bin Wan
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Donglai Lv
- Department of Clinical Oncology, The 901 Hospital of Joint Logistics Support Force of People Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Shengjie Yang
- Department of Thoracic Surgery, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, Yunnan 675000, P.R. China
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Lizhi Wu
- Department of Microsurgery, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Shijie Lan
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Lin Shi
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhanqiang Zhai
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Bihui Li
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210000, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Zhefeng Liu
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Huijuan Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Gu Jin
- Department of Bone and Soft-tissue Surgery, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jiandong Wang
- Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hubing Shi
- Frontier Science Center for Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meiyu Fang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaojia Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiping Zhang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Xixu Zhu
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhengbo Song
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| |
Collapse
|
6
|
Tokura M, Ando MM, Kojima Y, Kitadai R, Yazaki S, Atutubo CMN, Li RK, Perez MZ, Gorospe AE, Madrid MA, Ordinario MVC, Imasa MSB, Sudo K, Shimoi T, Suto A, Kohsaka S, Machida R, Sadachi R, Yoshida M, Yatabe Y, Hata T, Nakamura K, Yonemori K, Shiino S. Multicenter Prospective Study in HER2-Positive Early Breast Cancer for Detecting Minimal Residual Disease by Circulating Tumor DNA Analysis With Neoadjuvant Chemotherapy: HARMONY Study. Breast Cancer (Auckl) 2024; 18:11782234241288671. [PMID: 39493594 PMCID: PMC11528640 DOI: 10.1177/11782234241288671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/05/2024] [Indexed: 11/05/2024] Open
Abstract
Background Biomarkers to predict the recurrence risk are required to optimize perioperative treatment. Adjuvant chemotherapy for patients with human epidermal growth factor 2-positive (HER2-positive) early breast cancer is decided by pathological responses of neoadjuvant chemotherapy (NAC). However, whether pathological responses are appropriate biomarkers is unclear. Currently, there are several studies using minimal residual disease (MRD) as a predictor of prognosis in solid tumors. However, there is no standard method for detecting MRD. Objectives This study aimed at prospectively evaluating the relationship between MRD detection and recurrence in Asian patients with HER2-positive early breast cancer. Design Prospective, observational, single-group, and exploratory. This study will include 60 patients from 2 institutions in Japan and the Philippines. The invasive disease-free survival (IDFS) rates of the MRD-positive and MRD-negative groups are compared in patients with HER2-positive early breast cancer who undergo surgery after receiving NAC. Methods and analysis Circulating tumor DNA (ctDNA) levels of patients will be evaluated 6 times: before NAC, after NAC, after surgery, and annually after surgery for 3 years. We will analyze the genetic profile of blood and tissue samples using the Todai OncoPanel (TOP) and the methylation level of DNA. The primary endpoint is IDFS. Secondary endpoints include overall survival (OS) and disease-free survival (DFS). Patient enrollment began in June 2022, and new participants are still being recruited. Ethics This study has been approved by the National Cancer Center Hospital Certified Review Board in March 2022 and has been approved by the Research Ethics Board of the participating center. Discussion Our findings will contribute to determining whether MRD detection using TOP is useful for predicting the recurrence of HER2-positive early breast cancer. If this is proven, MRD detected by TOP could be used in the future as a biomarker to assist in the de-/escalation of treatment strategies in the next interventional trial, thereby avoiding overtreatment in patients at low risk, and in the addition of intensive treatment modalities for those in patients at high risk.
Collapse
Affiliation(s)
- Momoko Tokura
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Mark Malalay Ando
- Department of Medical Oncology, Cebu South Medical Center, Talisay, Philippines
| | - Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
| | - Rui Kitadai
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shu Yazaki
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
| | | | - Rubi K. Li
- Section of Medical Oncology, St. Luke’s Medical Center, Quezon, Philippines
| | - Minda Z. Perez
- Institution of Surgery, St. Luke’s Medical Center, Quezon, Philippines
| | - Agnes E Gorospe
- Section of Medical Oncology, St. Luke’s Medical Center, Quezon, Philippines
| | | | | | | | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Suto
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryunosuke Machida
- Biostatistics Section, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Ryo Sadachi
- Biostatistics Section, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomomi Hata
- International Trial Management Section, Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Kenichi Nakamura
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Sho Shiino
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Tivey A, Lee RJ, Clipson A, Hill SM, Lorigan P, Rothwell DG, Dive C, Mouliere F. Mining nucleic acid "omics" to boost liquid biopsy in cancer. Cell Rep Med 2024; 5:101736. [PMID: 39293399 PMCID: PMC11525024 DOI: 10.1016/j.xcrm.2024.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Treatments for cancer patients are becoming increasingly complex, and there is a growing desire from clinicians and patients for biomarkers that can account for this complexity to support informed decisions about clinical care. To achieve precision medicine, the new generation of biomarkers must reflect the spatial and temporal heterogeneity of cancer biology both between patients and within an individual patient. Mining the different layers of 'omics in a multi-modal way from a minimally invasive, easily repeatable, liquid biopsy has increasing potential in a range of clinical applications, and for improving our understanding of treatment response and resistance. Here, we detail the recent developments and methods allowing exploration of genomic, epigenomic, transcriptomic, and fragmentomic layers of 'omics from liquid biopsy, and their integration in a range of applications. We also consider the specific challenges that are posed by the clinical implementation of multi-omic liquid biopsies.
Collapse
Affiliation(s)
- Ann Tivey
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rebecca J Lee
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Alexandra Clipson
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Steven M Hill
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Paul Lorigan
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Dominic G Rothwell
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Florent Mouliere
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Ma Y, Wang Y, He L, Du J, Li L, Bie Z, Li Y, Xu X, Zhou W, Wu X, Yang L, Di J, Li C, Li X, Liu D, Wang Z. Preservation of cfRNA in cytological supernatants for cfDNA & cfRNA double detection in non-small cell lung cancer patients. Cancer Med 2024; 13:e70197. [PMID: 39233657 PMCID: PMC11375324 DOI: 10.1002/cam4.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUD Supernatants from various cytological samples, including body cavity effusion, sputum, bronchoalveolar lavage fluid (BALF), and needle aspiration, have been validated for detecting genetic alterations using cell-free DNA (cfDNA) in patients with non-small cell lung cancer (NSCLC). However, the sensitivity of fusion variations detection remains challenging. The protection of cell-free RNA (cfRNA) is critical for resolving the issue. METHODS A protective solution (PS) was applied for preserving cfRNA in cytological supernatant (CS), and the quality of protected cfRNA was assessed by cycle threshold (CT) values from reverse transcription quantitative polymerase chain reaction (RT-qPCR). Furthermore, we collected an additional set of malignant cytological and matched tumor samples from 84 NSCLC patients, cfDNA & cfRNA extraction and double detection for driver gene mutations was validated using the multi-gene mutations detection by RT-qPCR. RESULTS Under the optimal protection system, 91.0% (101/111) of cfRNA were protected effectively. Among the 84 NSCLC patient samples, seven cytological samples failed the tests. In comparison with tumor samples, the overall sensitivity and specificity of detecting driver genes of supernatant cfDNA and cfRNA were 93.8% (74/77) and 100% (77/77), respectively. Notably, when focusing exclusively on patients with fusion gene changes, both sensitivity and specificity reached 100% (11/11) for EML4-ALK, ROS1, RET fusions, and MET ex14 skipping. CONCLUSION These findings suggest that cfDNA & cfRNA extraction and double detection strategy recommended in this study improve the accuracy of driver genes mutations test, especially for RNA-based assay.
Collapse
Affiliation(s)
- Yidan Ma
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yifei Wang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lei He
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jun Du
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zhixin Bie
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yuanming Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaomao Xu
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Zhou
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaonan Wu
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Li Yang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Di
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chenyang Li
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaoguang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Dongge Liu
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zheng Wang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
9
|
Werner R, Crosbie R, Dorney M, Connolly A, Collins D, Hand CK, Burke L. Implementation of an ISO 15189 accredited next generation sequencing service for cell-free total nucleic acid (cfTNA) analysis to facilitate driver mutation reporting in blood: the experience of a clinical diagnostic laboratory. J Clin Pathol 2024:jcp-2024-209514. [PMID: 38914446 DOI: 10.1136/jcp-2024-209514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
AIMS Next generation sequencing (NGS) on tumour tissue is integral to the delivery of personalised medicine and targeted therapy. NGS on liquid biopsy, a much less invasive technology, is an emerging clinical tool that has rapidly expanded clinical utility. Gene mutations in cell-free total nucleic acids (cfTNA) circulating in the blood are representative of whole tumour biology and can reveal different mutations from different tumour sites, thus addressing tumour heterogeneity challenges. METHODS The novel Ion Torrent Genexus NGS system with automated sample preparation, onboard library preparation, templating, sequencing, data analysis and Oncomine Reporter software was used. cfTNA extracted from plasma was verified with the targeted pan-cancer (~50 genes) Oncomine Precision Assay (OPA). Assessment criteria included analytical sensitivity, specificity, limits of detection (LOD), accuracy, repeatability, reproducibility and the establishment of performance metrics. RESULTS An ISO 15189 accredited, minimally invasive cfTNA NGS diagnostic service has been implemented. High sensitivity (>83%) and specificity between plasma and tissue were observed. A sequencing LOD of 1.2% was achieved when the depth of coverage was >22 000×. A reduction (>68%) in turnaround time (TAT) of liquid biopsy results was achieved: 5 days TAT for in-house analysis from sample receipt to a final report issued to oncologists as compared with >15 days from reference laboratories. CONCLUSION Tumour-derived somatic variants can now be reliably assessed from plasma to provide minimally invasive tumour profiling. Successful implementation of this accredited service resulted in:Appropriate molecular profiling of patients where tumour tissue is unavailable or inaccessible.Rapid TAT of plasma NGS results.
Collapse
Affiliation(s)
- Reiltin Werner
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| | - Ruth Crosbie
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Mairead Dorney
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Amy Connolly
- Pathology Department, Cork University Hospital, Cork, Ireland
| | | | - Collette K Hand
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| | - Louise Burke
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| |
Collapse
|
10
|
Ahmed J, Torrado C, Chelariu A, Kim SH, Ahnert JR. Fusion Challenges in Solid Tumors: Shaping the Landscape of Cancer Care in Precision Medicine. JCO Precis Oncol 2024; 8:e2400038. [PMID: 38986029 PMCID: PMC11371109 DOI: 10.1200/po.24.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Targeting actionable fusions has emerged as a promising approach to cancer treatment. Next-generation sequencing (NGS)-based techniques have unveiled the landscape of actionable fusions in cancer. However, these approaches remain insufficient to provide optimal treatment options for patients with cancer. This article provides a comprehensive overview of the actionability and clinical development of targeted agents aimed at driver fusions. It also highlights the challenges associated with fusion testing, including the evaluation of patients with cancer who could potentially benefit from testing and devising an effective strategy. The implementation of DNA NGS for all tumor types, combined with RNA sequencing, has the potential to maximize detection while considering cost effectiveness. Herein, we also present a fusion testing strategy aimed at improving outcomes in patients with cancer.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anca Chelariu
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center, German Cancer Consortium (DKTK), Munich, Germany
| | - Sun-Hee Kim
- Precision Oncology Decision Support, Khalifa Institute for Personalized Cancer Therapy, University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
11
|
XU Y, MU N, LIU M, WU S, MA C. [A Case of EML4-ALK Fusion V1 Subtype Lung Adenocarcinoma
Detected by RNA-based NGS]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:480-484. [PMID: 39026500 PMCID: PMC11258648 DOI: 10.3779/j.issn.1009-3419.2024.102.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Indexed: 07/20/2024]
Abstract
Lung cancer is the malignant tumor with the highest incidence and mortality rate worldwide. For lung adenocarcinoma, identifying specific gene mutations, fusions, and giving corresponding targeted drugs can greatly improve the survival time of the patients. Among them, anaplastic lymphoma kinase (ALK) fusion occurs in 3%-7% of non-small cell lung cancer (NSCLC). In clinical practice, a variety of detection methods can be used to determine the ALK fusion status, but false negative test results are possible. This paper retrospectively analyzed the diagnosis and treatment of a patient with lung adenocarcinoma, judged the ALK fusion status by various detection methods. Among them, immunohistochemistry (IHC)(Ventana D5F3), RNA based next-generation sequencing (RNA-based NGS) confirmed positive echinoderm microtubule associated protein like 4 (EML4)-ALK fusion, while DNA-based NGS was negative. This paper analyzed the detection methods of ALK fusion, in order to clarify which detection method is the most accurate and simple to choose in different clinical cases and guide the subsequent treatment.
.
Collapse
|
12
|
Choudhury NJ, Woo HJ, Chen M, Shah R, Donoghue M, Berger M, Drilon A. Serial Cell-Free DNA Sequencing in ROS1 Fusion-Positive Lung Cancers During Treatment With Entrectinib. JCO Precis Oncol 2024; 8:e2300721. [PMID: 38848521 PMCID: PMC11545664 DOI: 10.1200/po.23.00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
PURPOSE Patients with metastatic ROS1 fusion-positive non-small cell lung cancer (NSCLC) are effectively treated with entrectinib, a multikinase inhibitor. Whether serial targeted gene panel sequencing of cell-free DNA (cfDNA) can identify response and progression along with mechanisms of acquired resistance to entrectinib is underexplored. METHODS In patients with ROS1 fusion-positive NSCLC, coclinical trial plasma samples were collected before treatment, after two cycles, and after progression on entrectinib (global phase II clinical trial, ClinicalTrials.gov identifier: NCT02568267). Samples underwent cfDNA analysis using MSK-ACCESS. Variant allele frequencies of detectable alterations were correlated with objective response per RECIST v1.1 criteria. RESULTS Twelve patients were included, with best response as partial response (n = 9, 75%), stable disease (n = 2, 17%), and progressive disease (PD; n = 1, 8%). A ROS1 fusion was variably detected in cfDNA; however, patients without a ROS1 fusion in cfDNA had no other somatic alterations detected, indicative of possible low cfDNA shedding. Clearance of the enrolling ROS1 fusion or concurrent non-ROS1 alterations (TP53, CDH1, NF1, or ARID1A mutations) was observed in response to entrectinib therapy. Radiologic PD was accompanied by redemonstration of a ROS1 fusion or non-ROS1 alterations. On-target resistance was rare; only one patient acquired ROS1 G2032R at the time of progression. Several patients acquired new off-target likely oncogenic alterations, including a truncating alteration in NF1. CONCLUSION Serial cfDNA monitoring may complement radiographic assessments as determinants of response and resistance to entrectinib in ROS1 fusion-positive lung cancers in addition to detecting putative resistance mechanisms on progression.
Collapse
Affiliation(s)
- Noura J. Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Hyung Jun Woo
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Monica Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ronak Shah
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark Donoghue
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Berger
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
13
|
Verzè M, Boscolo Bragadin A, Minari R, Pasello G, Perrone F, Scattolin D, Bordi P, Pluchino M, Leonetti A, Mazzaschi G, Bonatti F, Gnetti L, Bottarelli L, Zulato E, Nardo G, Dalle Fratte C, Padovan A, Bonanno L, Tiseo M, Indraccolo S. NGS detection of gene rearrangements and METexon14 mutations in liquid biopsy of advanced NSCLC patients: A study of two Italian centers. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100143. [PMID: 40027148 PMCID: PMC11863814 DOI: 10.1016/j.jlb.2024.100143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2025]
Abstract
Introduction ctDNA is a useful tool for NGS molecular profiling in advanced NSCLC patients. Its clinical applicability in patients with gene rearrangements is still limited due to a lower detection rate of these types of alterations compared to single SNVs or small indels. To this purpose, we performed a study in two Italian centers to assess the concordance between tissue and plasma samples in the detection of genes fusions (ALK, ROS, RET) and METexon14 mutations in advanced NSCLC patients. Methods Patients with a histological diagnosis of oncogene addicted (ALK, ROS1, RET positive or METexon14 mutated) advanced NSCLC were enrolled at the time of first line of TKI treatment. Plasma samples were harvested before the start of TKI treatment and NGS analysis on ctDNA samples using the AVENIO ctDNA Expanded kit was performed. The Positive Percent Agreement (PPA) between tissue and plasma was calculated. Results Fifty-eight rearranged or METexon14 mutated NSCLC patients were included and 57 ctDNA samples were successfully sequenced. An overall PPA of 37% (21/57) was obtained, with a best performance for RET fusion (80%), intermediate for METexon14 skipping mutations (40%) and ALK rearranged (36%) and a worst one for ROS1 rearranged samples (18%). We found TP53, APC and SMAD4 as most prevalent co-mutated genes (21%, 12% and 10% of patients, respectively). Among different factors considered, increased driver detection rate in patients with extra-thoracic metastases (p = 0.0049) was observed. Significantly shorter survival was observed in patients harboring co-occurring KRAS/NRAS mutations in ctDNA. Conclusions ctDNA testing to detect oncogenic fusions or METexon14 mutations in advanced NSCLC patients is useful, even if type of gene alterations and clinical characteristics could influence the driver detection rate. Liquid biopsy represents a complementary tool to tissue genotyping, however more sensitive approaches for gene fusions and METexon14 detection are needed to implement its strength and reliability.
Collapse
Affiliation(s)
- Michela Verzè
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Boscolo Bragadin
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Fabiana Perrone
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Daniela Scattolin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Paola Bordi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Monica Pluchino
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Giulia Mazzaschi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Bonatti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Lorena Bottarelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisabetta Zulato
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Giorgia Nardo
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Chiara Dalle Fratte
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Alessia Padovan
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Laura Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|
14
|
Chunmei CHEN, Yang YU, Meijuan HUANG. [Afatinib Treatment for Advanced Mixed Non-small Cell Lung Cancer
with CRISPLD2-NRG1 Fusion: A Case Report and Literature Review]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:399-404. [PMID: 38880928 PMCID: PMC11183315 DOI: 10.3779/j.issn.1009-3419.2024.102.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 06/18/2024]
Abstract
Lung cancer is the most common malignant disease and the leading cause of cancer death in China. Non-small cell lung cancer (NSCLC) accounts for over 80% of all lung cancers, and the probability of NSCLC gene mutations is high, with a wide variety of types. With the development of next-generation sequencing (NGS) detection technology, more and more patients with rare fusion gene mutations are detected. Neuregulin 1 (NRG1) gene is a rare oncogenic driver that can lead to activation of human epidermal growth factor receptor 3 (Her3/ErbB3) mediated pathway, resulting in tumor formation. In this article, we reported a case of mixed NSCLC with CRISPLD2-NRG1 fusion detected by RNA-based NGS, who responsed to Afatinib well after 1 month of treatment, and magnetic resonance imaging (MRI) showed shrinkage of intracranial lesions. Meanwhile, we also compiled previously reported NSCLC patients with NRG1 rare gene fusion mutation, in order to provide effective references for clinical diagnosis and treatment.
.
Collapse
|
15
|
Zhong P, Bai L, Hong M, Ouyang J, Wang R, Zhang X, Chen P. A Comprehensive Review on Circulating cfRNA in Plasma: Implications for Disease Diagnosis and Beyond. Diagnostics (Basel) 2024; 14:1045. [PMID: 38786343 PMCID: PMC11119755 DOI: 10.3390/diagnostics14101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Circulating cfRNA in plasma has emerged as a fascinating area of research with potential applications in disease diagnosis, monitoring, and personalized medicine. Circulating RNA sequencing technology allows for the non-invasive collection of important information about the expression of target genes, eliminating the need for biopsies. This comprehensive review aims to provide a detailed overview of the current knowledge and advancements in the study of plasma cfRNA, focusing on its diverse landscape and biological functions, detection methods, its diagnostic and prognostic potential in various diseases, challenges, and future perspectives.
Collapse
Affiliation(s)
- Pengqiang Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lu Bai
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengzhi Hong
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Ouyang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ruizhi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoli Zhang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peisong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
16
|
Li MS, Mok KK, Chan LL, Mok TS. Clinical application of liquid biopsy genomic profiling in NSCLC: Asian perspectives. THE JOURNAL OF LIQUID BIOPSY 2024; 3:100131. [PMID: 40026566 PMCID: PMC11863888 DOI: 10.1016/j.jlb.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 03/05/2025]
Abstract
Molecular profiling is essential for treatment of patients with advanced non-small cell lung cancer. Extensive evidence supports the clinical application of liquid biopsy in molecular profiling and thus has been incorporated into multiple international guidelines. In Asia, clinical practice of liquid biopsy varies between countries owing to difference in molecular characteristics of lung cancer as well as variations in socioeconomic conditions and healthcare systems. The current review covers the landscape and clinical application of liquid biopsy in Asia. An emphasis is placed on epidermal growth factor receptor (EGFR) mutation given its high prevalence in the region. We focus on the emerging data on liquid biopsy in reference to risk stratification, recurrence monitoring, and lung cancer screening in Asian context. Finally, we present potential solutions to optimize the clinical application of liquid biopsy in Asian countries.
Collapse
Affiliation(s)
- Molly S.C. Li
- Department of Clinical Oncology, The Chinese University of Hong Kong, China
| | - Kevin K.S. Mok
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong, China
| | - Landon L. Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, China
| | - Tony S.K. Mok
- Department of Clinical Oncology, The Chinese University of Hong Kong, China
| |
Collapse
|
17
|
Kim HH, Lee JC, Oh IJ, Kim EY, Yoon SH, Lee SY, Lee MK, Lee JE, Park CK, Lee KY, Lee SY, Kim SJ, Lim JH, Choi CM. Real-World Outcomes of Crizotinib in ROS1-Rearranged Advanced Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:528. [PMID: 38339278 PMCID: PMC10854608 DOI: 10.3390/cancers16030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Real-world data on the use and outcomes of crizotinib in ROS1-rearranged non-small-cell lung cancer (NSCLC) are limited. This study aims to analyze the real-world efficacy of crizotinib in South Korea and explore the utilization of liquid biopsies that implement next-generation sequencing (NGS) using cell-free total nucleic acids. In this prospective multicenter cohort study, 40 patients with ROS1-rearranged NSCLC, either starting or already on crizotinib, were enrolled. Patients had a median age of 61 years, with 32.5% presenting brain/central nervous system (CNS) metastases at treatment initiation. At the data cutoff, 48.0% were still in treatment; four continued with it even after disease progression due to the clinical benefits. The objective response rate was 70.0%, with a median duration of response of 27.8 months. The median progression-free survival was 24.1 months, while the median overall survival was not reached. Adverse events occurred in 90.0% of patients, primarily with elevated transaminases, yet these were mostly manageable. The NGS assay detected a CD74-ROS1 fusion in 2 of the 14 patients at treatment initiation and identified emerging mutations, such as ROS1 G2032R, ROS1 D2033N, and KRAS G12D, during disease progression. These findings confirm crizotinib's sustained clinical efficacy and safety in a real-world context, which was characterized by a higher elderly population and higher rates of brain/CNS metastases. The study highlights the clinical relevance of liquid biopsy for detecting resistance mechanisms, suggesting its value in personalized treatment strategies.
Collapse
Affiliation(s)
- Hyeon Hwa Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea;
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Gwangju 58128, Republic of Korea;
| | - Eun Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong Hoon Yoon
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Shin Yup Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41404, Republic of Korea
| | - Min Ki Lee
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Jeong Eun Lee
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea;
| | - Kye Young Lee
- Departments of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Sung Yong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea;
| | - Jun Hyeok Lim
- Department of Internal Medicine, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Chang-min Choi
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea;
- Department of Oncology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| |
Collapse
|
18
|
Lin Y, Ho C, Hsu W, Liao W, Yang C, Yu C, Tsai T, Yang JC, Wu S, Hsu C, Hsieh M, Huang Y, Wu C, Shih J. Tissue or liquid rebiopsy? A prospective study for simultaneous tissue and liquid NGS after first-line EGFR inhibitor resistance in lung cancer. Cancer Med 2024; 13:e6870. [PMID: 38140788 PMCID: PMC10807591 DOI: 10.1002/cam4.6870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION According to current International Association for the Study of Lung Cancer guideline, physicians may first use plasma cell-free DNA (cfDNA) methods to identify epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-resistant mechanisms (liquid rebiopsy) for lung cancer. Tissue rebiopsy is recommended if the plasma result is negative. However, this approach has not been evaluated prospectively using next-generation sequencing (NGS). METHODS We prospectively enrolled patients with lung cancer with first-line EGFR-TKI resistance who underwent tissue rebiopsy. The rebiopsied tissues and cfDNA were sequenced using targeted NGS, ACTDrug®+, and ACTMonitor®Lung simultaneously. The clinicopathological characteristics and treatment outcomes were analyzed. RESULTS Totally, 86 patients were enrolled. Twenty-six (30%) underwent tissue biopsy but the specimens were inadequate for NGS. Among the 60 patients with paired tissue and liquid rebiopsies, two-thirds (40/60) may still be targetable. T790M mutations were found in 29, including 14 (48%) only from tissue and 5 (17%) only from cfDNA. Twenty-four of them were treated with osimertinib, and progression-free survival was longer in patients without detectable T790M in cfDNA than in patients with detectable T790M in cfDNA (p = 0.02). For the 31 T790M-negative patients, there were six with mesenchymal-epithelial transition factor (MET) amplifications, four with ERBB2 amplifications, and one with CCDC6-RET fusion. One with MET amplification and one with ERBB2 amplification responded to subsequent MET and ERBB2 targeting agents respectively. CONCLUSIONS NGS after EGFR-TKI resistance may detect targetable drivers besides T790M. To do either liquid or tissue NGS only could miss patients with T790M. To do tissue and liquid NGS in parallel after EGFR-TKI resistance may find more patients with targetable cancers.
Collapse
Affiliation(s)
- Yen‐Ting Lin
- Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipeiTaiwan
- Department of MedicineNational Taiwan University Cancer CenterTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Chao‐Chi Ho
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Wei‐Hsun Hsu
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Wei‐Yu Liao
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Ching‐Yao Yang
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Chong‐Jen Yu
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University Hospital Hsin‐Chu BranchHsin‐ChuTaiwan
| | - Tzu‐Hsiu Tsai
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - James Chih‐Hsin Yang
- Department of Medical OncologyNational Taiwan University Cancer CenterTaipeiTaiwan
- Department of OncologyNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of OncologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Shang‐Gin Wu
- Department of MedicineNational Taiwan University Cancer CenterTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Chia‐Lin Hsu
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Min‐Shu Hsieh
- Department of PathologyNational Taiwan University HospitalTaipeiTaiwan
- Department of PathologyNational Taiwan University Cancer CenterTaipeiTaiwan
| | - Yen‐Lin Huang
- Department of PathologyNational Taiwan University Cancer CenterTaipeiTaiwan
| | | | - Jin‐Yuan Shih
- Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
19
|
[Chinese Expert Consensus on the Clinical Practice of Non-small Cell Lung Cancer
Fusion Gene Detection Based on RNA-based NGS]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:801-812. [PMID: 37985137 PMCID: PMC10714047 DOI: 10.3779/j.issn.1009-3419.2023.102.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 11/22/2023]
Abstract
RNA-based next-generation sequencing (NGS) has been recommended as a method for detecting fusion genes in non-small cell lung cancer (NSCLC) according to clinical practice guidelines and expert consensus. The primary targetable alterations in NSCLC consist of gene mutations and fusions, making the detection of gene mutations and fusions indispensable for assessing the feasibility of targeted therapies. Currently, the integration of DNA-based NGS and RNA-based NGS allows for simultaneous detection of gene mutations and fusions and has been partially implemented in clinical practice. However, standardized guidelines and criteria for the significance, application scenarios, and quality control of RNA-based NGS in fusion gene detection are still lacking in China. This consensus aims to provide further clarity on the practical significance, application scenarios, and quality control measures of RNA-based NGS in fusion gene detection. Additionally, it offers guiding recommendations to facilitate the clinical implementation of RNA-based NGS in the diagnosis and treatment of NSCLC, ultimately maximizing the benefits for patients from fusion gene detection.
.
Collapse
|
20
|
Ranghiero A, Frascarelli C, Cursano G, Pescia C, Ivanova M, Vacirca D, Rappa A, Taormina SV, Barberis M, Fusco N, Rocco EG, Venetis K. Circulating tumour DNA testing in metastatic breast cancer: Integration with tissue testing. Cytopathology 2023; 34:519-529. [PMID: 37640801 DOI: 10.1111/cyt.13295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Breast cancer biomarker profiling predominantly relies on tissue testing (surgical and/or biopsy samples). However, the field of liquid biopsy, particularly the analysis of circulating tumour DNA (ctDNA), has witnessed remarkable progress and continues to evolve rapidly. The incorporation of ctDNA-based testing into clinical practice is creating new opportunities for patients with metastatic breast cancer (MBC). ctDNA offers advantages over conventional tissue analyses, as it reflects tumour heterogeneity and enables multiple serial biopsies in a minimally invasive manner. Thus, it serves as a valuable complement to standard tumour tissues and, in certain instances, may even present a potential alternative approach. In the context of MBC, ctDNA testing proves highly informative in the detection of disease progression, monitoring treatment response, assessing actionable biomarkers, and identifying mechanisms of resistance. Nevertheless, ctDNA does exhibit inherent limitations, including its generally low abundance, necessitating timely blood samplings and rigorous management of the pre-analytical phase. The development of highly sensitive assays and robust bioinformatic tools has paved the way for reliable ctDNA analyses. The time has now come to establish how ctDNA and tissue analyses can be effectively integrated into the diagnostic workflow of MBC to provide patients with the most comprehensive and accurate profiling. In this manuscript, we comprehensively analyse the current methodologies employed in ctDNA analysis and explore the potential benefits arising from the integration of tissue and ctDNA testing for patients diagnosed with MBC.
Collapse
Affiliation(s)
- Alberto Ranghiero
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Carlo Pescia
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- School of Pathology, University of Milan, Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Davide Vacirca
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandra Rappa
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elena Guerini Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
21
|
Giménez‐Capitán A, Sánchez‐Herrero E, Robado de Lope L, Aguilar‐Hernández A, Sullivan I, Calvo V, Moya‐Horno I, Viteri S, Cabrera C, Aguado C, Armiger N, Valarezo J, Mayo‐de‐las‐Casas C, Reguart N, Rosell R, Provencio M, Romero A, Molina‐Vila MA. Detecting ALK, ROS1, and RET fusions and the METΔex14 splicing variant in liquid biopsies of non-small-cell lung cancer patients using RNA-based techniques. Mol Oncol 2023; 17:1884-1897. [PMID: 37243883 PMCID: PMC10483610 DOI: 10.1002/1878-0261.13468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 05/29/2023] Open
Abstract
ALK, ROS1, and RET fusions and MET∆ex14 variant associate with response to targeted therapies in non-small-cell lung cancer (NSCLC). Technologies for fusion testing in tissue must be adapted to liquid biopsies, which are often the only material available. In this study, circulating-free RNA (cfRNA) and extracellular vesicle RNA (EV-RNA) were purified from liquid biopsies. Fusion and MET∆ex14 transcripts were analyzed by nCounter (Nanostring) and digital PCR (dPCR) using the QuantStudio® System (Applied Biosystems). We found that nCounter detected ALK, ROS1, RET, or MET∆ex14 aberrant transcripts in 28/40 cfRNA samples from positive patients and 0/16 of control individuals (70% sensitivity). Regarding dPCR, aberrant transcripts were detected in the cfRNA of 25/40 positive patients. Concordance between the two techniques was 58%. Inferior results were obtained when analyzing EV-RNA, where nCounter often failed due to a low amount of input RNA. Finally, results of dPCR testing in serial liquid biopsies of five patients correlated with response to targeted therapy. We conclude that nCounter can be used for multiplex detection of fusion and MET∆ex14 transcripts in liquid biopsies, showing a performance comparable with next-generation sequencing platforms. dPCR could be employed for disease follow-up in patients with a known alteration. cfRNA should be preferred over EV-RNA for these analyses.
Collapse
Affiliation(s)
- Ana Giménez‐Capitán
- Pangaea Oncology, Laboratory of OncologyDexeus University HospitalBarcelonaSpain
| | - Estela Sánchez‐Herrero
- Atrys HealthBarcelonaSpain
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaMadridSpain
| | - Lucía Robado de Lope
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaMadridSpain
| | | | - Ivana Sullivan
- Dr Rosell Oncology InstituteQuirón Dexeus University HospitalBarcelonaSpain
- Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Virginia Calvo
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | - Irene Moya‐Horno
- Hospital Universitario General de Cataluña Grupo QuirónSant Cugat del VallésSpain
| | | | | | - Cristina Aguado
- Pangaea Oncology, Laboratory of OncologyDexeus University HospitalBarcelonaSpain
| | - Noelia Armiger
- Pangaea Oncology, Laboratory of OncologyDexeus University HospitalBarcelonaSpain
| | - Joselyn Valarezo
- Pangaea Oncology, Laboratory of OncologyDexeus University HospitalBarcelonaSpain
| | | | | | - Rafael Rosell
- Dr Rosell Oncology InstituteQuirón Dexeus University HospitalBarcelonaSpain
- Hospital Germans Trias i PujolHealth Sciences Institute and Hospital (IGTP)BarcelonaSpain
| | - Mariano Provencio
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | - Atocha Romero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaMadridSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | | |
Collapse
|
22
|
Bertoli E, De Carlo E, Basile D, Zara D, Stanzione B, Schiappacassi M, Del Conte A, Spina M, Bearz A. Liquid Biopsy in NSCLC: An Investigation with Multiple Clinical Implications. Int J Mol Sci 2023; 24:10803. [PMID: 37445976 DOI: 10.3390/ijms241310803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Tissue biopsy is essential for NSCLC diagnosis and treatment management. Over the past decades, liquid biopsy has proven to be a powerful tool in clinical oncology, isolating tumor-derived entities from the blood. Liquid biopsy permits several advantages over tissue biopsy: it is non-invasive, and it should provide a better view of tumor heterogeneity, gene alterations, and clonal evolution. Consequentially, liquid biopsy has gained attention as a cancer biomarker tool, with growing clinical applications in NSCLC. In the era of precision medicine based on molecular typing, non-invasive genotyping methods became increasingly important due to the great number of oncogene drivers and the small tissue specimen often available. In our work, we comprehensively reviewed established and emerging applications of liquid biopsy in NSCLC. We made an excursus on laboratory analysis methods and the applications of liquid biopsy either in early or metastatic NSCLC disease settings. We deeply reviewed current data and future perspectives regarding screening, minimal residual disease, micrometastasis detection, and their implication in adjuvant and neoadjuvant therapy management. Moreover, we reviewed liquid biopsy diagnostic utility in the absence of tissue biopsy and its role in monitoring treatment response and emerging resistance in metastatic NSCLC treated with target therapy and immuno-therapy.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Debora Basile
- Department of Medical Oncology, San Giovanni Di Dio Hospital, 88900 Crotone, Italy
| | - Diego Zara
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Monica Schiappacassi
- Molecular Oncology Unit, (OMMPPT) Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
23
|
Wang W, He Y, Yang F, Chen K. Current and emerging applications of liquid biopsy in pan-cancer. Transl Oncol 2023; 34:101720. [PMID: 37315508 DOI: 10.1016/j.tranon.2023.101720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Cancer morbidity and mortality are growing rapidly worldwide and it is urgent to develop a convenient and effective method that can identify cancer patients at an early stage and predict treatment outcomes. As a minimally invasive and reproducible tool, liquid biopsy (LB) offers the opportunity to detect, analyze and monitor cancer in any body fluids including blood, complementing the limitations of tissue biopsy. In liquid biopsy, circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are the two most common biomarkers, displaying great potential in the clinical application of pan-cancer. In this review, we expound the samples, targets, and newest techniques in liquid biopsy and summarize current clinical applications in several specific cancers. Besides, we put forward a bright prospect for further exploring the emerging application of liquid biopsy in the field of pan-cancer precision medicine.
Collapse
Affiliation(s)
- Wenxiang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Yue He
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China.
| |
Collapse
|
24
|
Brockley LJ, Souza VGP, Forder A, Pewarchuk ME, Erkan M, Telkar N, Benard K, Trejo J, Stewart MD, Stewart GL, Reis PP, Lam WL, Martinez VD. Sequence-Based Platforms for Discovering Biomarkers in Liquid Biopsy of Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:2275. [PMID: 37190212 PMCID: PMC10136462 DOI: 10.3390/cancers15082275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Lung cancer detection and monitoring are hampered by a lack of sensitive biomarkers, which results in diagnosis at late stages and difficulty in tracking response to treatment. Recent developments have established liquid biopsies as promising non-invasive methods for detecting biomarkers in lung cancer patients. With concurrent advances in high-throughput sequencing technologies and bioinformatics tools, new approaches for biomarker discovery have emerged. In this article, we survey established and emerging biomarker discovery methods using nucleic acid materials derived from bodily fluids in the context of lung cancer. We introduce nucleic acid biomarkers extracted from liquid biopsies and outline biological sources and methods of isolation. We discuss next-generation sequencing (NGS) platforms commonly used to identify novel biomarkers and describe how these have been applied to liquid biopsy. We highlight emerging biomarker discovery methods, including applications of long-read sequencing, fragmentomics, whole-genome amplification methods for single-cell analysis, and whole-genome methylation assays. Finally, we discuss advanced bioinformatics tools, describing methods for processing NGS data, as well as recently developed software tailored for liquid biopsy biomarker detection, which holds promise for early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Liam J. Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Michelle E. Pewarchuk
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Melis Erkan
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Jessica Trejo
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Matt D. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Victor D. Martinez
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
25
|
Harada G, Yang SR, Cocco E, Drilon A. Rare molecular subtypes of lung cancer. Nat Rev Clin Oncol 2023; 20:229-249. [PMID: 36806787 PMCID: PMC10413877 DOI: 10.1038/s41571-023-00733-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
Oncogenes that occur in ≤5% of non-small-cell lung cancers have been defined as 'rare'; nonetheless, this frequency can correspond to a substantial number of patients diagnosed annually. Within rare oncogenes, less commonly identified alterations (such as HRAS, NRAS, RIT1, ARAF, RAF1 and MAP2K1 mutations, or ERBB family, LTK and RASGRF1 fusions) can share certain structural or oncogenic features with more commonly recognized alterations (such as KRAS, BRAF, MET and ERBB family mutations, or ALK, RET and ROS1 fusions). Over the past 5 years, a surge in the identification of rare-oncogene-driven lung cancers has challenged the boundaries of traditional clinical grade diagnostic assays and profiling algorithms. In tandem, the number of approved targeted therapies for patients with rare molecular subtypes of lung cancer has risen dramatically. Rational drug design has iteratively improved the quality of small-molecule therapeutic agents and introduced a wave of antibody-based therapeutics, expanding the list of actionable de novo and resistance alterations in lung cancer. Getting additional molecularly tailored therapeutics approved for rare-oncogene-driven lung cancers in a larger range of countries will require ongoing stakeholder cooperation. Patient advocates, health-care agencies, investigators and companies with an interest in diagnostics, therapeutics and real-world evidence have already taken steps to surmount the challenges associated with research into low-frequency drivers.
Collapse
Affiliation(s)
- Guilherme Harada
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soo-Ryum Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emiliano Cocco
- Department of Biochemistry and Molecular Biology/Sylvester Comprehensive Cancer Center, University of Miami/Miller School of Medicine, Miami, FL, USA.
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
26
|
Wang Z, Li L, Wang Y, Li X, Xu Y, Wang M, Liang L, Wu X, Tang M, Li Y, He S, Du J, He L, Sun M, Yang L, Di J, Gai F, Liu D. Sputum cell-free DNA for detection of alterations of multiple driver genes in lung adenocarcinoma. Cancer Cytopathol 2023; 131:110-116. [PMID: 36103360 DOI: 10.1002/cncy.22644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sputum cell-free DNA (cfDNA) has been confirmed to be a valued surrogate sample for detection of EGFR mutations in patients with lung adenocarcinoma (LAC). Whether it is suitable for detection of mutations of multiple driver genes has not been reported. METHODS A total of 83 patients with LAC were enrolled and their sputum and paired tumor samples were collected. A next-generation sequencing (NGS)-based 10-gene panel was used to test sputum supernatant-derived cfDNA and paired tumor DNA. The sputum sediments were used for cytological evaluation. RESULTS The total positive rates of hotspot mutations of the 10 driver genes in sputum cfDNA and matched tissue samples were 65.1% and 77.1%, respectively. The overall detection sensitivity of variants in sputum cfDNA was 81.3% (95% confidence interval [CI], 69.2%, 89.5%) and the specificity was 100% (95% CI, 79.1%, 100%). The sensitivities of testing sputum cfDNA from patients with stage IIIB-IV was 87.0% (95% CI, 74.5%, 94.1%); the sensitivities of testing sputum cfDNA from patients with malignant sputum was 92.3% (95% CI, 78.0%, 98.0%); and the sensitivity of testing sputum cfDNA from patients with malignant sputum in stage IIIB-IV were 94.1% (95% CI, 78.9%, 99.0%). CONCLUSIONS This study demonstrated that sputum cfDNA were successfully used for the detection of multiple driver genes by NGS. Sputum cfDNA could be a valuable surrogate clinical sample for all-in-one test of mutations to guide target therapies, especially for patients with advanced LAC and malignant sputum.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Yifei Wang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Xiaoguang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Li Liang
- Department of Cancer Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xiaonan Wu
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Yuanming Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Shurong He
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Jun Du
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Lei He
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Mingjun Sun
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Li Yang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Jing Di
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Fei Gai
- Amoy Diagnostics Co, Ltd, Xiamen, People's Republic of China
| | - Dongge Liu
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, People's Republic of China
| |
Collapse
|
27
|
Chaddha M, Rai H, Gupta R, Thakral D. Integrated analysis of circulating cell free nucleic acids for cancer genotyping and immune phenotyping of tumor microenvironment. Front Genet 2023; 14:1138625. [PMID: 37091783 PMCID: PMC10117686 DOI: 10.3389/fgene.2023.1138625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) consist of a heterogenous cocktail of both single (ssNA) and double-stranded (dsNA) nucleic acids. These ccfNAs are secreted into the blood circulation by both healthy and malignant cells via various mechanisms including apoptosis, necrosis, and active secretion. The major source of ccfNAs are the cells of hematopoietic system under healthy conditions. These ccfNAs include fragmented circulating cell free DNA (ccfDNA), coding or messenger RNA (mRNA), long non-coding RNA (lncRNA), microRNA (miRNA), and mitochondrial DNA/RNA (mtDNA and mtRNA), that serve as prospective biomarkers in assessment of various clinical conditions. For, e.g., free fetal DNA and RNA migrate into the maternal plasma, whereas circulating tumor DNA (ctDNA) has clinical relevance in diagnostic, prognostic, therapeutic targeting, and disease progression monitoring to improve precision medicine in cancer. The epigenetic modifications of ccfDNA as well as circulating cell-free RNA (ccfRNA) such as miRNA and lncRNA show disease-related variations and hold potential as epigenetic biomarkers. The messenger RNA present in the circulation or the circulating cell free mRNA (ccf-mRNA) and long non-coding RNA (ccf-lncRNA) have gradually become substantial in liquid biopsy by acting as effective biomarkers to assess various aspects of disease diagnosis and prognosis. Conversely, the simultaneous characterization of coding and non-coding RNAs in human biofluids still poses a significant hurdle. Moreover, a comprehensive assessment of ccfRNA that may reflect the tumor microenvironment is being explored. In this review, we focus on the novel approaches for exploring ccfDNA and ccfRNAs, specifically ccf-mRNA as biomarkers in clinical diagnosis and prognosis of cancer. Integrating the detection of circulating tumor DNA (ctDNA) for cancer genotyping in conjunction with ccfRNA both quantitatively and qualitatively, may potentially hold immense promise towards precision medicine. The current challenges and future directions in deciphering the complexity of cancer networks based on the dynamic state of ccfNAs will be discussed.
Collapse
Affiliation(s)
| | | | - Ritu Gupta
- *Correspondence: Deepshi Thakral, ; Ritu Gupta,
| | | |
Collapse
|
28
|
Seki Y, Yoshida T, Kohno T, Masuda K, Okuma Y, Goto Y, Horinouchi H, Yamamoto N, Kuwano K, Ohe Y. Liquid biopsy for the detection of resistance mutations to ROS1 and RET inhibitors in non-small lung cancers: A case series study. Respir Investig 2022; 60:852-856. [PMID: 36089506 DOI: 10.1016/j.resinv.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Liquid biopsy can identify gene alterations that are associated with resistance to fusion gene-targeted treatments. In this study, we present three cases of advanced non-small cell lung cancer (NSCLC) harboring gene fusions; cell-free DNA (cfDNA) was used to assess the resistance mutations. A patient with MET amplification underwent RET-fusion NSCLC treatment with selpercatinib. A patient with ROS1 G2032R underwent ROS1-fusion NSCLC treatment with crizotinib. A patient who underwent ROS1-fusion NSCLC treatment with crizotinib harbored no somatic mutations. This case series shows that cfDNA analysis can identify potentially actionable genomic alterations, after disease progression, in targeted therapy for fusion genes. TRIAL REGISTRATION: The study was registered in the UMIN Clinical Trial Registry (UMIN 000017581).
Collapse
Affiliation(s)
- Yoshitaka Seki
- Division of Respirology, Department of Internal Medicine, The Jikei University Katsushika Medical Center; Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.
| | - Tatsuya Yoshida
- Division of Thoracic Oncology, National Cancer, Center Hospital, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Ken Masuda
- Division of Thoracic Oncology, National Cancer, Center Hospital, Tokyo, Japan
| | - Yusuke Okuma
- Division of Thoracic Oncology, National Cancer, Center Hospital, Tokyo, Japan
| | - Yasushi Goto
- Division of Thoracic Oncology, National Cancer, Center Hospital, Tokyo, Japan
| | - Hidehito Horinouchi
- Division of Thoracic Oncology, National Cancer, Center Hospital, Tokyo, Japan
| | - Noboru Yamamoto
- Division of Thoracic Oncology, National Cancer, Center Hospital, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Yuichiro Ohe
- Division of Thoracic Oncology, National Cancer, Center Hospital, Tokyo, Japan
| |
Collapse
|
29
|
Hassan S, Shehzad A, Khan SA, Miran W, Khan S, Lee YS. Diagnostic and Therapeutic Potential of Circulating-Free DNA and Cell-Free RNA in Cancer Management. Biomedicines 2022; 10:2047. [PMID: 36009594 PMCID: PMC9405989 DOI: 10.3390/biomedicines10082047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022] Open
Abstract
Over time, molecular biology and genomics techniques have been developed to speed up the early diagnosis and clinical management of cancer. These therapies are often most effective when administered to the subset of malignancies harboring the target identified by molecular testing. Important advances in applying molecular testing involve circulating-free DNA (cfDNA)- and cell-free RNA (cfRNA)-based liquid biopsies for the diagnosis, prognosis, prediction, and treatment of cancer. Both cfDNA and cfRNA are sensitive and specific biomarkers for cancer detection, which have been clinically proven through multiple randomized and prospective trials. These help in cancer management based on the noninvasive evaluation of size, quantity, and point mutations, as well as copy number alterations at the tumor site. Moreover, personalized detection of ctDNA helps in adjuvant therapeutics and predicts the chances of recurrence of cancer and resistance to cancer therapy. Despite the controversial diagnostic values of cfDNA and cfRNA, many clinical trials have been completed, and the Food and Drug Administration has approved many multigene assays to detect genetic alterations in the cfDNA of cancer patients. In this review, we underpin the recent advances in the physiological roles of cfDNA and cfRNA, as well as their roles in cancer detection by highlighting recent clinical trials and their roles as prognostic and predictive markers in cancer management.
Collapse
Affiliation(s)
- Sadia Hassan
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Waheed Miran
- Department of Chemical Engineering, School of Chemical and Materials Engineering National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Salman Khan
- Department of pharmacy, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Young-Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
30
|
Liquid biopsy and non-small cell lung cancer: are we looking at the tip of the iceberg? Br J Cancer 2022; 127:383-393. [PMID: 35264788 PMCID: PMC9345955 DOI: 10.1038/s41416-022-01777-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
The possibility to analyse the tumour genetic material shed in the blood is undoubtedly one of the main achievements of translational research in the latest years. In the modern clinical management of advanced non-small cell lung cancer, molecular characterisation plays an essential role. In parallel, immunotherapy is widely employed, but reliable predictive markers are not available yet. Liquid biopsy has the potential to face the two issues and to increase its role in advanced NSCLC in the next future. The aim of this review is to summarise the main clinical applications of liquid biopsy in advanced non-small cell lung cancer, underlining both its potential and limitations from a clinically driven perspective.
Collapse
|
31
|
Chan HT, Chin YM, Low SK. Circulating Tumor DNA-Based Genomic Profiling Assays in Adult Solid Tumors for Precision Oncology: Recent Advancements and Future Challenges. Cancers (Basel) 2022; 14:3275. [PMID: 35805046 PMCID: PMC9265547 DOI: 10.3390/cancers14133275] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
Genomic profiling using tumor biopsies remains the standard approach for the selection of approved molecular targeted therapies. However, this is often limited by its invasiveness, feasibility, and poor sample quality. Liquid biopsies provide a less invasive approach while capturing a contemporaneous and comprehensive tumor genomic profile. Recent advancements in the detection of circulating tumor DNA (ctDNA) from plasma samples at satisfactory sensitivity, specificity, and detection concordance to tumor tissues have facilitated the approval of ctDNA-based genomic profiling to be integrated into regular clinical practice. The recent approval of both single-gene and multigene assays to detect genetic biomarkers from plasma cell-free DNA (cfDNA) as companion diagnostic tools for molecular targeted therapies has transformed the therapeutic decision-making procedure for advanced solid tumors. Despite the increasing use of cfDNA-based molecular profiling, there is an ongoing debate about a 'plasma first' or 'tissue first' approach toward genomic testing for advanced solid malignancies. Both approaches present possible advantages and disadvantages, and these factors should be carefully considered to personalize and select the most appropriate genomic assay. This review focuses on the recent advancements of cfDNA-based genomic profiling assays in advanced solid tumors while highlighting the major challenges that should be tackled to formulate evidence-based guidelines in recommending the 'right assay for the right patient at the right time'.
Collapse
Affiliation(s)
- Hiu Ting Chan
- Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (Y.M.C.); (S.-K.L.)
| | - Yoon Ming Chin
- Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (Y.M.C.); (S.-K.L.)
- Cancer Precision Medicine, Inc., Kawasaki 213-0012, Japan
| | - Siew-Kee Low
- Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (Y.M.C.); (S.-K.L.)
| |
Collapse
|
32
|
Werner TV, Kock S, Weber I, Kayser G, Werner M, Lassmann S. Validation of a DNA-Based Next-Generation Sequencing Test for Molecular Diagnostic Variant and Fusion Detection in Formalin-Fixed, Paraffin-Embedded Tissue Specimens and Liquid Biopsy Plasma/Cell-Free DNA Samples. J Mol Diagn 2022; 24:784-802. [PMID: 35787794 DOI: 10.1016/j.jmoldx.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
This study evaluated two DNA-based next-generation sequencing approaches for detection of single-nucleotide variants (SNVs) and fusions in formalin-fixed, paraffin-embedded (FFPE) tissue specimens and liquid biopsies (AVENIO Targeted and Surveillance Panels). Reference standards (n = 7 with SNVs and structural variants) and real-world FFPE tissue specimens (n = 26 lung, colorectal, pancreas, ovary, breast, prostate, melanoma, and soft tissue cancer cases with n = 27 samples), liquid biopsies [n = 29 cases with n = 40 plasma/cell-free DNA (cfDNA) samples], and one pleural effusion (lung cancer) were analyzed by the AVENIO workflow for known SNVs (BRAF, BRCA1/2, CTNNB1, EGFR, KRAS, MET exon 14 skipping, NRAS, PIK3CA, and TP53), insertions and deletions (ERBB2 and KIT), and fusions (ALK and ROS1). Detection of SNVs, insertions and deletions, and fusions was reliable in 24 of 26 FFPE tissue specimen cases and at 1% allele frequency in 5 of 5 cfDNA reference standards and 37 of 40 plasma/cfDNA samples. Pitfalls were identified for the AVENIO workflow in calling and listing of clinically relevant variants, requiring additional manual inspection. Moreover, laboratory workflows are distinct for FFPE tissue specimens and liquid biopsies as well as time-consuming for sample quality control assays. In summary, the DNA-based next-generation sequencing approaches may be suitable for routine molecular pathology diagnostics on careful data interpretation and further optimization of the technical and laboratory workflows.
Collapse
Affiliation(s)
- Tamara V Werner
- Institute for Surgical Pathology, Medical Center, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany; German Cancer Consortium, partner site Freiburg, and German Cancer Research Center, Heidelberg, Germany
| | - Sylvia Kock
- Institute for Surgical Pathology, Medical Center, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Isabel Weber
- Institute for Surgical Pathology, Medical Center, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Gian Kayser
- Institute for Surgical Pathology, Medical Center, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Center, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany; German Cancer Consortium, partner site Freiburg, and German Cancer Research Center, Heidelberg, Germany
| | - Silke Lassmann
- Institute for Surgical Pathology, Medical Center, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany; German Cancer Consortium, partner site Freiburg, and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|