1
|
Perez-Moreno E, Ortega-Hernández V, Zavala VA, Gamboa J, Fernández W, Carvallo P. Suppression of breast cancer metastatic behavior by microRNAs targeting EMT transcription factors. A relevant participation of miR-196a-5p and miR-22-3p in ZEB1 expression. Breast Cancer Res Treat 2025:10.1007/s10549-025-07723-5. [PMID: 40382762 DOI: 10.1007/s10549-025-07723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE Metastasis, the leading cause of cancer-associated deaths, is promoted by transcription factors SNAIL, SLUG, ZEB1 and TWIST through the activation of epithelial-mesenchymal transition (EMT). MicroRNAs can suppress EMT, emerging as candidate molecular biomarkers and novel therapeutic targets. Herein, we evaluated microRNAs downregulated in breast cancer (BC) tissues expressing EMT transcription factors, to find new potential regulators of EMT. METHODS Candidate microRNAs were selected from microarray data by their inversely correlated expression with SNAIL, SLUG, ZEB1 and TWIST, evaluated in BC tissues through immunohistochemistry. We selected eight microRNAs predicted in silico as probable modulators of SNAIL, SLUG, ZEB1 and TWIST, and validate their interaction through the 3'UTR region in luciferase reporter gene assays. MDA-MB-231 cells were transfected with selected microRNAs to perform migration, invasion and cell proliferation assays, and western blot was used to evaluate protein levels. RESULTS MiR-30a-5p, miR-1271-5p, miR-196a-5p, miR-202-3p, miR-210-3p, miR-22-3p and miR-331-3p decreased luciferase activity through SNAIL, SLUG, ZEB1 and/or TWIST 3'UTR. These microRNAs, including miR-34b-3p, decreased migration, invasion and cell proliferation in MDA-MB-231 cells. MiR-30a-5p, miR-202-3p and miR-22-3p decreased vimentin expression, whereas miR-196a-5p and miR-22-3p decreased endogenous ZEB1 levels. MiR-196a-5p, miR-202-3p and miR-30a-5p also decreased CCR7 expression, a chemokine receptor involved in lymph node metastasis. CONCLUSION microRNAs selected in this work can regulate gene expression trough 3'UTR region of EMT-transcription factors. In BC cells, miR-196a-5p and miR-22-3p decrease ZEB1 levels, being novel modulators of EMT. Also, the eight evaluated microRNAs, reduced the metastatic hallmarks in BC cells.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Victoria Ortega-Hernández
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina A Zavala
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Gamboa
- Unidad de Patología Mamaria, Hospital Clínico San Borja Arriarán, Santiago, Chile
| | - Wanda Fernández
- Unidad de Anatomía Patológica, Hospital Clínico San Borja Arriarán, Santiago, Chile
| | - Pilar Carvallo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Dong Z, He L, Wu J, Xie C, Geng S, Wu J, Zhong C, Li X. Bisphenol A-induced cancer-associated adipocytes promotes breast carcinogenesis via CXCL12/AKT signaling. Mol Cell Endocrinol 2025; 599:112473. [PMID: 39863150 DOI: 10.1016/j.mce.2025.112473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear. As obesity is a significant risk factor for breast cancer, this study aimed at exploring whether BPA facilitates the progression of breast cancer by inducing obesity. Using the National Health and Nutrition Examination Survey data, a positive correlation was observed between BPA exposure and the risk of sex-specific cancers among US adults with body mass index ≥30, suggesting that obesity may be influenced by urinary BPA. 3T3-L1 cells differentiated into mature adipocytes following treatment with 10-8 M BPA, and subsequent treatment with 4T1-conditioned medium acquired properties associated with cancer-associated adipocytes (CAAs). Network pharmacology suggested that CXCL12 may serve as a key target gene in breast cancer progression. Follow-up PCR analysis revealed high CXCL12 expression in BPA-induced CAAs. Overexpression of CXCL12 promoted epithelial-mesenchymal transition (EMT) and 4T1 cell migration by activating the AKT pathway. In vivo, BPA-induced CAAs accelerated tumor growth compared to a controls xenografted with only 4T1 cells. In tissues from the BPA-CAAs group, the expression of CXCL12, markers associated with CAAs, phosphorylated AKT, N-cadherin, and vimentin was markedly elevated, whereas the expression of E-cadherin was reduced. In conclusion, BPA may induce adipose cells to differentiate into CAA-like cells and subsequently advance breast cancer EMT through the CXCL12/AKT pathway.
Collapse
Affiliation(s)
- Zhiyuan Dong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Liping He
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jinyi Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Daaboul O, Arman G, Alom M, Swied A. Diagnostic Dilemma: Metastatic Breast Adenocarcinoma Presenting With a Cholestatic Liver Injury Without Radiological Findings of Liver Metastases. Cureus 2025; 17:e81368. [PMID: 40291193 PMCID: PMC12034330 DOI: 10.7759/cureus.81368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Cholestasis refers to a reduction in bile flow caused by either impaired secretion or obstruction. Cancers may manifest with cholestasis due to metastasis (either obstruction or infiltration), paraneoplastic syndromes, or as a side effect of treatment (chemotherapy, immunotherapy, or radiation). Various imaging techniques, including ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, are typically used to assess the obstruction, its location, and the underlying cause. We are presenting a complex and challenging case of metastatic breast cancer in the liver that presented as cholestatic liver injury without corresponding radiological findings. We aim to highlight the importance of considering liver metastasis as a differential diagnosis, even in the absence of supporting radiological evidence.
Collapse
Affiliation(s)
- Obada Daaboul
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Genan Arman
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Mulham Alom
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Aman Swied
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| |
Collapse
|
4
|
Cong B, Cao X, Jiang WG, Ye L. Molecular and Cellular Machinery of Lymphatic Metastasis in Breast Cancer. Onco Targets Ther 2025; 18:199-209. [PMID: 39926374 PMCID: PMC11806925 DOI: 10.2147/ott.s503272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is one of the most common malignant tumours in women worldwide. A primary route for breast cancer cells to disseminate is through regional lymphatic vessels and nodes. Cancer cell-induced lymphangiogenesis plays a crucial role in lymphatic metastasis and is associated with poor survival of breast cancer. Advances in molecular biology have led to the identification of biomarkers associated with lymphangiogenesis and lymphatic metastasis, including lymphatic vessel endothelial cell (LVEC) markers and tumour microenvironment markers, such as vascular endothelial growth factor receptor 3 (VEGFR3), podoplanin (PDPN), and lymphatic endothelial hyaluronan receptor-1 (LYVE1). LVEC molecular markers play a profound role in both the formation of new lymphatic vessels and the invasive expansion of primary tumour. Abnormal expression of LVEC markers may contribute to lymphatic vessel disease and/or metastasis of cancer cells through the lymphatic system. These molecular markers may present a potential for targeted therapies and precision diagnostics for managing lymphatic metastasis in breast cancer. This review aims to provide a comprehensive summary of the current understanding of the molecular and cellular machinery underlying lymphatic metastasis in breast cancer, with a particular focus on the lymphangiogenic markers and their role in the lymphatic dissemination.
Collapse
Affiliation(s)
- Binbin Cong
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
- Breast Cancer Centre, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Xiaoshan Cao
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
- Breast Cancer Centre, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
| |
Collapse
|
5
|
Chen C, Wang S, Tang Y, Liu H, Tu D, Su B, Peng R, Jin S, Jiang G, Cao J, Zhang C, Bai D. Identifying epithelial-mesenchymal transition-related genes as prognostic biomarkers and therapeutic targets of hepatocellular carcinoma by integrated analysis of single-cell and bulk-RNA sequencing data. Transl Cancer Res 2024; 13:4257-4277. [PMID: 39262476 PMCID: PMC11384925 DOI: 10.21037/tcr-24-521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/30/2024] [Indexed: 09/13/2024]
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the most lethal cancers globally. Patients with advanced HCC tend to have poor prognoses and shortened survival. Recently, data from bulk RNA sequencing have been employed to discover prognostic markers for various cancers. However, they fall short in precisely identifying core molecular and cellular activities within tumor cells. In our present study, we combined bulk-RNA sequencing (bulk RNA-seq) data with single-cell RNA sequencing (scRNA-seq) to develop a prognostic model for HCC. The goal of our research is to uncover new biomarkers and enhance the accuracy of HCC prognosis prediction. Methods Integrating single-cell sequencing data with transcriptomics were used to identify epithelial-mesenchymal transition (EMT)-related genes (ERGs) implicated in HCC progression and their clinical significance was elucidated. Utilizing marker genes derived from core cells and ERGs, we constructed a prognostic model using univariate Cox analysis, exploring a multitude of algorithmic combinations, and further refining it through multivariate Cox analysis. Additionally, we conducted an in-depth investigation into the disparities in clinicopathological features, immune microenvironment composition, immune checkpoint expression, and chemotherapeutic drug sensitivity profiles between high- and low-risk patient cohorts. Results We developed a prognostic model predicated on the expression profiles of eight signature genes, namely HSP90AA1, CIRBP, CCR7, S100A9, ADAM17, ENG, PGF, and INPP4B, aiming at predicting overall survival (OS) outcomes. Notably, patients classified with high-risk scores exhibited a propensity towards diminished OS rates, heightened frequencies of stage III-IV disease, increased tumor mutational burden (TMB), augmented immune cell infiltration, and diminished responsiveness to immunotherapeutic interventions. Conclusions This study presented a novel prognostic model for predicting the survival of HCC patients by integrating scRNA-seq and bulk RNA-seq data. The risk score emerges as a promising independent prognostic factor, showing a correlation with the immune microenvironment and clinicopathological features. It provided new clinical tools for predicting prognosis and aided future research into the pathogenesis of HCC.
Collapse
Affiliation(s)
- Chen Chen
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shunyi Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yuhong Tang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Huanxiang Liu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
6
|
Jiang W, Yang Q, Yang X, Gan R, Hua H, Ding Z, Si D, Zhu X, Wang X, Zhang H, Gao C. T cell proliferation-related subtypes, prognosis model and characterization of tumor microenvironment in head and neck squamous cell carcinoma. Heliyon 2024; 10:e34221. [PMID: 39082023 PMCID: PMC11284379 DOI: 10.1016/j.heliyon.2024.e34221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Background Thirty-three synthetic driver genes of T-cell proliferation have recently been identified through genome-scale screening. However, the tumor microenvironment (TME) cell infiltration, prognosis, and response to immunotherapy mediated by multiple T cell proliferation-related genes (TRGs) in patients with head and neck squamous cell carcinoma (HNSC) remain unclear. Methods This study examined the genetic and transcriptional changes in 771 patients with HNSC by analyzing the TRGs from two independent datasets. Two different subtypes were analyzed to investigate their relationship with immune infiltrating cells in the TME and patient prognosis. The study also developed and validated a risk score to predict overall survival (OS). Furthermore, to enhance the clinical utility of the risk score, an accurate nomogram was constructed by combining the characteristics of this study. Results The low-risk score observed in this study was associated with high levels of immune checkpoint expression and TME immune activation, indicating a favorable OS outcome. Additionally, various factors related to risk scores were depicted. Conclusion Through comprehensive analysis of TRGs in HNSC, our study has revealed the characteristics of the TME and prognosis, providing a basis for further investigation into TRGs and the development of more effective immunotherapy and targeted therapy strategies.
Collapse
Affiliation(s)
- Wanjin Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Wannan Medical College Yijishan Hospital, Wuhu, 241000, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qi Yang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College Yijishan Hospital, Wuhu, 241000, China
| | - Xiaonan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ruijia Gan
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hongting Hua
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhimin Ding
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dongyu Si
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xinbei Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second People’s Hospital of Hefei, Hefei, 230011, China
| | - Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Huabing Zhang
- Department of Biochemistry & Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Chaobing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
7
|
Hu X, Xie S, Yi X, Ouyang Y, Zhao W, Yang Z, Zhang Z, Wang L, Huang X, Peng M, Yu F. Bidirectional Mendelian Randomization of Causal Relationship between Inflammatory Cytokines and Different Pathological Types of Lung Cancer. J Cancer 2024; 15:4969-4984. [PMID: 39132165 PMCID: PMC11310887 DOI: 10.7150/jca.98301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 08/13/2024] Open
Abstract
Prior research has proposed a potential association between lung cancer and inflammatory cytokines, yet the specific causal relationship remains unclear, especially across various lung cancer pathologies. This study utilized bidirectional Mendelian randomization (MR) to explore these causal connections, unveiling novel insights. Our research revealed distinctive inflammatory cytokine profiles for each subtype of lung cancer and identified potential biomarkers that could refine diagnostic and therapeutic approaches. We applied two-sample Mendelian randomization, leveraging genetic variance data from three extensive genome-wide association studies (GWAS) focusing on different lung cancer types (lung adenocarcinoma: 1590 cases and 314,193 controls of healthy individuals of European descent; lung squamous cell carcinoma: 1510 cases and 314,193 controls of European ancestry; small cell lung cancer: 717 cases and 314,193 controls of European ancestry). A separate GWAS summary on inflammatory cytokines from 8,293 healthy participants was also included. The inverse variance weighting method was utilized to examine causal relationships, with robustness confirmed through multiple sensitivity analyses, including MR-Egger, weighted median, and MR-PRESSO. Our analysis revealed that elevated levels of IL_1RA were associated with an increased risk of lung adenocarcinoma (OR: 1.29, 95% CI: 1.02-1.64, p = 0.031), while higher MCP_1_MCAF levels correlated with a decreased risk of lung squamous cell carcinoma (OR: 0.77, 95% CI: 0.61-0.98, p = 0.031). Furthermore, IL_10, IL_13, and TRAIL levels were positively associated with lung squamous cell carcinoma risk (IL_10: OR: 1.27, 95% CI: 1.06-1.53, p = 0.012; IL_13: OR: 1.15, 95% CI: 1.06-1.53, p = 0.036; TRAIL: OR: 1.15, 95% CI: 1.06-1.53, p = 0.043). No association was found between inflammatory cytokine levels and small cell lung cancer development, whereas SDF_1A and B-NGF were linked to an increased risk of this cancer type (SDF_1A: OR: 1.13, 95% CI: 1.05-1.21, p = 0.001; B-NGF: OR: 1.13, 95% CI: 1.01-1.27, p = 0.029). No significant relationship was observed between the 41 circulating inflammatory cytokines and lung adenocarcinoma or squamous cell carcinoma development. Our findings indicate distinct associations between specific inflammatory cytokines and different types of lung cancer. Elevated IL_1RA levels are a risk marker for lung adenocarcinoma, whereas higher MCP_1_MCAF levels appear protective against lung squamous cell carcinoma. Conversely, elevated levels of IL_10, IL_13, and TRAIL are linked with an increased risk of lung squamous cell carcinoma. The relationships of SDF_1A and B-NGF with small-cell lung cancer highlight the complexity of inflammatory markers in cancer development. This study provides a nuanced understanding of the role of inflammatory cytokines in lung cancer, underscoring their potential in refining diagnosis and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Muyun Peng
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Fenglei Yu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410000, China
| |
Collapse
|
8
|
Cabioglu N, Onder S, Karatay H, Bayram A, Oner G, Tukenmez M, Muslumanoglu M, Igci A, Dinccag A, Ozmen V, Aydiner A, Saip P, Yavuz E. New Emerging Chemokine Receptors: CCR5 or CXCR5 on Tumor Is Associated with Poor Response to Chemotherapy and Poor Prognosis in Locally Advanced Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:2388. [PMID: 39001456 PMCID: PMC11240792 DOI: 10.3390/cancers16132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND We aim to investigate any possible associations between chemokine receptor expression and responses to neoadjuvant chemotherapy (NAC) along with outcomes in patients with triple-negative breast cancer (TNBC) with locally advanced disease. METHOD Expressions of chemokine receptors were examined immunohistochemically after staining archival tissue of surgical specimens (n = 63) using specific antibodies for CCR5, CCR7, CXCR4, and CXCR5. RESULTS Patients with high CCR5, CCR7, CXCR4, and CXCR5 expression on tumors and high CXCR4 expression on tumor-infiltrating lymphocytes (TILs) were less likely to have a pathological complete response (pCR) or Class 0-I RCB-Index compared to others. Patients with residual lymph node metastases (ypN-positive), high CCR5TM(tumor), and high CXCR4TM expressions had an increased hazard ratio (HR) compared to others (DFS: HR = 2.655 [1.029-6.852]; DSS: HR = 2.763 [1.008-7.574]), (DFS: HR = 2.036 [0.805-5.148]; DSS: HR = 2.689 [1.020-7.090]), and (DFS: HR = 2.908 [1.080-7.829]; DSS: HR = 2.132 (0.778-5.846)), respectively. However, patients without CXCR5TIL expression had an increased HR compared to those with CXCR5TIL (DFS: 2.838 [1.266-6.362]; DSS: 4.211 [1.770-10.016]). CONCLUSIONS High expression of CXCR4TM and CCR5TM was found to be associated with poor prognosis, and CXCR5TM was associated with poor chemotherapy response in the present cohort with locally advanced TNBC. Our results suggest that patients with TNBC could benefit from a chemokine receptor inhibitor therapy containing neoadjuvant chemotherapy protocols.
Collapse
Affiliation(s)
- Neslihan Cabioglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey; (G.O.); (M.T.); (M.M.); (A.I.); (A.D.); (V.O.)
| | - Semen Onder
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey; (S.O.); (H.K.); (A.B.); (E.Y.)
| | - Hüseyin Karatay
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey; (S.O.); (H.K.); (A.B.); (E.Y.)
| | - Aysel Bayram
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey; (S.O.); (H.K.); (A.B.); (E.Y.)
| | - Gizem Oner
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey; (G.O.); (M.T.); (M.M.); (A.I.); (A.D.); (V.O.)
| | - Mustafa Tukenmez
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey; (G.O.); (M.T.); (M.M.); (A.I.); (A.D.); (V.O.)
| | - Mahmut Muslumanoglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey; (G.O.); (M.T.); (M.M.); (A.I.); (A.D.); (V.O.)
| | - Abdullah Igci
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey; (G.O.); (M.T.); (M.M.); (A.I.); (A.D.); (V.O.)
| | - Ahmet Dinccag
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey; (G.O.); (M.T.); (M.M.); (A.I.); (A.D.); (V.O.)
| | - Vahit Ozmen
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey; (G.O.); (M.T.); (M.M.); (A.I.); (A.D.); (V.O.)
| | - Adnan Aydiner
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul 34452, Turkey; (A.A.); (P.S.)
| | - Pınar Saip
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul 34452, Turkey; (A.A.); (P.S.)
| | - Ekrem Yavuz
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey; (S.O.); (H.K.); (A.B.); (E.Y.)
| |
Collapse
|
9
|
Luo Y, Ye Y, Zhang Y, Chen L, Qu X, Yi N, Ran J, Chen Y. New insights into COL26A1 in thyroid carcinoma: prognostic prediction, functional characterization, immunological drug target and ceRNA network. Transl Cancer Res 2023; 12:3384-3408. [PMID: 38197076 PMCID: PMC10774062 DOI: 10.21037/tcr-23-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/08/2023] [Indexed: 01/11/2024]
Abstract
Background Thyroid carcinoma (THCA) is one of the most commonly diagnosed malignancies. Collagen is the main component in extracellular matrix. Rising studies have determined the oncogenic effect of collagen in cancer progression, which is intriguing to be further explored. Collagen type XXVI alpha 1 chain (COL26A1) is a newly discovered collagen subtype, functions of which still remain poorly demonstrated in THCA. Methods Based on the transcriptome data from The Cancer Genome Atlas (TCGA) and other public databases, we conducted investigations of COL26A1 in THCA with respects to diagnostic/prognostic prediction, functional characterization, immune infiltration, chemical drug target and non-coding RNA regulatory network. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to verify the expression of COL26A1 in THCA. Results COL26A1 was significantly upregulated in THCA, and the high COL26A1 expression inferred poor prognosis [hazard ratio (HR) =4.76; 95% confidence interval (CI): 1.36-16.73; P=0.015]. The diagnostic area under the curve (AUC) of COL26A1 achieved 0.736 (95% CI: 0.669-0.802). COL26A1 was also identified as an independent prognostic predictor for THCA (HR =3.928; 95% CI: 3.716-4.151; P<0.001). Besides, logistic regression analysis indicated that age >45 years [odds ratio (OR) =1.532; 95% CI: 1.081-2.176; P=0.017], pathological stage III (OR =2.055; 95% CI: 1.314-3.184; P=0.001), tall cell subtype (OR =5.533; 95% CI: 2.420-14.957; P<0.001), residual tumor R1 (OR =1.844; 95% CI: 1.035-3.365; P=0.041) and extrathyroidal extension (OR =1.800; 95% CI: 1.225-1.660; P=0.003) were risk factors associated with high COL26A1 expression in THCA. Functional characterizations implied that COL26A1 was associated with immunological processes and oncogenic signaling pathways. High COL26A1 expression was accompanied by more abundant infiltration of immune cells and higher stromal/immune score. In addition, most immune checkpoints were significantly positively co-expressed with COL26A1, including PD-1, PD-L1 and CTLA4. Drugs including trichloroethylene, acetamide and thioacetamide etc. that can decrease the expression of COL26A1 were also identified. The predicted long noncoding RNA (lncRNA)-microRNA (miRNA)-COL26A1 regulatory axes were successfully deciphered. qRT-PCR and western blot verified the upregulation of COL26A1 in THCA. Conclusions Our work has primarily appraised COL26A1 as a promising biomarker for diagnosis/prognosis and immuno/therapeutic target in THCA.
Collapse
Affiliation(s)
- Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yinghui Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuting Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lan Chen
- The Second Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ximing Qu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Na Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jihua Ran
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Region, Urumqi, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, China
| |
Collapse
|
10
|
Ma R, Guan X, Teng N, Du Y, Ou S, Li X. Construction of ceRNA prognostic model based on the CCR7/CCL19 chemokine axis as a biomarker in breast cancer. BMC Med Genomics 2023; 16:254. [PMID: 37864213 PMCID: PMC10590005 DOI: 10.1186/s12920-023-01683-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND The study of CCR7/CCL19 chemokine axis and breast cancer (BC) prognosis and metastasis is a current hot topic. We constructed a ceRNA network and risk-prognosis model based on CCR7/CCL19. METHODS Based on the lncRNA, miRNA and mRNA expression data downloaded from the TCGA database, we used the starbase website to find the lncRNA and miRNA of CCR7/CCL19 and established the ceRNA network. The 1008 BC samples containing survival data were divided into Train group (504 cases) and Test group (504 cases) using R "caret" package. Then we constructed a prognostic risk model using RNA screened by univariate Cox analysis in the Train group and validated it in the Test and All groups. In addition, we explored the correlation between riskScores and clinical trials and immune-related factors (22 immune-infiltrating cells, tumor microenvironment, 13 immune-related pathways and 24 HLA genes). After transfection with knockdown CCR7, we observed the activity and migration ability of MDA-MB-231 and MCF-7 cells using CCK8, scratch assays and angiogenesis assays. Finally, qPCR was used to detect the expression levels of five RNAs in the prognostic risk model in MDA-MB-231 and MCF-7 cell. RESULTS Patients with high expression of CCR7 and CCL19 had significantly higher overall survival times than those with low expression. The ceRNA network is constructed by 3 pairs of mRNA-miRNA pairs and 8 pairs of miRNA-lncRNA. After multivariate Cox analysis, we obtained a risk prognostic model: riskScore= -1.544 *`TRG-AS1`+ 0.936 * AC010327.5 + 0.553 *CCR7 -0.208 *CCL19 -0.315 *`hsa-let-7b-5p. Age, stage and riskScore can all be used as independent risk factors for BC prognosis. By drug sensitivity analysis, we found 5 drugs targeting CCR7 (convolamine, amikacin, AH-23,848, ondansetron, flucloxacillin). After transfection with knockdown CCR7, we found a significant reduction in cell activity and migration capacity in MDA-MB-231 cells. CONCLUSION We constructed the first prognostic model based on the CCR7/CCL19 chemokine axis in BC and explored its role in immune infiltration, tumor microenvironment, and HLA genes.
Collapse
Affiliation(s)
- Rufei Ma
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Xiuliang Guan
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Nan Teng
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Yue Du
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Shu Ou
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Xiaofeng Li
- Department of Epidemiology, Dalian Medical University, Dalian, China.
| |
Collapse
|
11
|
Yang L, Zhao R, Qiao P, Cui J, Chen X, Fan J, Hu A, Huang S. The novel oncogenic factor TET3 combines with AHR to promote thyroid cancer lymphangiogenesis via the HIF-1α/VEGF signaling pathway. Cancer Cell Int 2023; 23:206. [PMID: 37718440 PMCID: PMC10506260 DOI: 10.1186/s12935-023-03021-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Lymphangiogenesis has been reported to play crucial roles in the metastasis of thyroid cancer (THCA), but despite the significant research on lymphangiogenesis in THCA, the precise regulatory mechanism remains unclear. METHODS Public databases including the Cancer Genome Atlas (TCGA), TIMER, and UALCAN were used to analyze and visualize the expression of TET3 and AHR in THCA, and the correlation between these molecules were used by TIMER. Additionally, RT-PCR and Western Blot were performed to determine the mRNA and protein expression of related proteins. Plate colony formation, wound healing, cell cycle, apoptosis, angiogenesis and transwell assay were used to examine the ability of proliferation, movement, lymphangiogenesis, migration and invasion of THCA cells. RESULTS Analysis of the TCGA database revealed higher expression levels of TET3 and AHR in tumor tissue compared to normal tissue in THCA. Additionally, a strong correlation was observed between TET3 and AHR. UALCAN database demonstrated that high expression of TET3 and AHR was associated with advanced THCA TNM stages in THCA patients. Furthermore, TET3 activation accelerated THCA cell proliferation by inducing G2/M phase arrest and suppressing apoptosis, while AHR inactivation reduced THCA cell proliferation by decreasing G2/M phase arrest and promoting apoptosis in vitro. Notably, both TET3 and AHR significantly enhanced THCA cell lymphangiogenesis, migration and invasion. Moreover, TET3 activation and AHR inactivation regulated HIF-1α/VEGF signaling pathway, which ultimately, blocked the HIF-1α/VEGF in THCA cells and impaired their movement, migration and invasion abilities. CONCLUSIONS The combined action of TET3 and AHR to promote lymphangiogenesis in THCA through the HIF-1α/VEGF signaling pathway, and targeting them might provide a potential treatment strategy for THCA.
Collapse
Affiliation(s)
- Liyun Yang
- Department of Otolaryngology Head and Neck Surgery, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China
| | - Runyu Zhao
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, China
| | - Peipei Qiao
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, China
| | - Jiaxin Cui
- Department of Otolaryngology Head and Neck Surgery, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China
| | - Xiaoping Chen
- Department of Otolaryngology Head and Neck Surgery, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China
| | - Jinping Fan
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, 200135, China
| | - An Hu
- Department of Otolaryngology Head and Neck Surgery, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China.
| | - Shuixian Huang
- Department of Otolaryngology Head and Neck Surgery, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China.
| |
Collapse
|
12
|
SHEN JUN, MA HONGFANG, CHEN YONGXIA, SHEN JIANGUO. ScRNA-seq reveals the correlation between M2 phenotype of tumor-associated macrophages and lymph node metastasis of breast cancer. Oncol Res 2023; 31:955-966. [PMID: 37744272 PMCID: PMC10513958 DOI: 10.32604/or.2023.029638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/18/2023] [Indexed: 09/26/2023] Open
Abstract
The process of lymphatic metastasis was proved to be associated with podoplanin-expressing macrophages in breast cancer (BC). This study aimed to investigate the role of the M2 phenotype of tumor-associated macrophages and mine the key M2 macrophages-related genes for lymph node metastasis in BC. We downloaded the GSE158399 dataset from the Gene Expression Omnibus (GEO) database, which includes transcriptomic profiles of individual cells from primary tumors, negative lymph nodes (NLNs), and positive lymph nodes (PLNs) of breast cancer patients. The cell subsets were identified by clustering analysis after quality control of the scRNA-seq using Seurat. The activation and migration capability of M2 macrophages were evaluated with R package "GSVA". The key M2 macrophages-related genes were screened from the differential expressed genes (DEGs) and M2 macrophages activation and migration gene sets collected from MSigDB database. Our analysis identified three main cell types in primary tumors, NLNs, and PLNs: basal cells, luminal cells, and immune cell subsets. The further cell type classification of immune cell subsets indicated M2 macrophages accumulation in NLs and PLs. The GSVA enrichment scores for activation and migration capability were increased significantly in M2 macrophages from primary tumors than NLNs and PLNs (p-value < 0.001). Seven M2 macrophages activation-related and 15 M2 macrophages migration-related genes were significantly up-regulated in primary tumors than NLNs and PLNs. The proportion and GSVA enrichment scores for activation and migration of M2 macrophages may be potential markers for lymph node metastasis in breast cancer. Our study demonstrated that twenty-two up-regulated mRNA may be possible therapeutic targets for lymph node metastasis in breast cancer.
Collapse
Affiliation(s)
- JUN SHEN
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - HONGFANG MA
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - YONGXIA CHEN
- Laboratory of Cancer Biology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - JIANGUO SHEN
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Deng Y, Li Z, Pan M, Wu H, Ni B, Han X. Implications of inflammatory cell death-related IFNG and co-expressed RNAs (AC006369.1 and CCR7) in breast carcinoma prognosis, and anti-tumor immunity. Front Genet 2023; 14:1112251. [PMID: 37408777 PMCID: PMC10318797 DOI: 10.3389/fgene.2023.1112251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/14/2023] [Indexed: 07/07/2023] Open
Abstract
Objective: Interferon-γ (IFN-γ) encoded by IFNG gene is a pleiotropic molecule linked with inflammatory cell death mechanisms. This work aimed to determine and characterize IFNG and co-expressed genes, and to define their implications in breast carcinoma (BRCA). Methods: Transcriptome profiles of BRCA were retrospectively acquired from public datasets. Combination of differential expression analysis with WGCNA was conducted for selecting IFNG-co-expressed genes. A prognostic signature was generated through Cox regression approaches. The tumor microenvironment populations were inferred utilizing CIBERSORT. Epigenetic and epitranscriptomic mechanisms were also probed. Results: IFNG was overexpressed in BRCA, and connected with prolonged overall survival and recurrence-free survival. Two IFNG-co-expressed RNAs (AC006369.1, and CCR7) constituted a prognostic model that acted as an independent risk factor. The nomogram composed of the model, TNM, stage, and new event owned the satisfying efficacy in BRCA prognostication. IFNG, AC006369.1, and CCR7 were closely linked with the tumor microenvironment components (e.g., macrophages, CD4/CD8 T cells, NK cells), and immune checkpoints (notably PD1/PD-L1). Somatic mutation frequencies were 6%, and 3% for CCR7, and IFNG, and high amplification potentially resulted in their overexpression in BRCA. Hypomethylated cg05224770 and cg07388018 were connected with IFNG and CCR7 upregulation, respectively. Additionally, transcription factors, RNA-binding proteins, and non-coding RNAs possibly regulated IFNG and co-expressed genes at the transcriptional and post-transcriptional levels. Conclusion: Collectively, our work identifies IFNG and co-expressed genes as prognostic markers for BRCA, and as possible therapeutic targets for improving the efficacy of immunotherapy.
Collapse
|
14
|
Kuhn E, Gambini D, Despini L, Asnaghi D, Runza L, Ferrero S. Updates on Lymphovascular Invasion in Breast Cancer. Biomedicines 2023; 11:biomedicines11030968. [PMID: 36979946 PMCID: PMC10046167 DOI: 10.3390/biomedicines11030968] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Traditionally, lymphovascular invasion (LVI) has represented one of the foremost pathological features of malignancy and has been associated with a worse prognosis in different cancers, including breast carcinoma. According to the most updated reporting protocols, the assessment of LVI is required in the pathology report of breast cancer surgical specimens. Importantly, strict histological criteria should be followed for LVI assessment, which nevertheless is encumbered by inconsistency in interpretation among pathologists, leading to significant interobserver variability and scarce reproducibility. Current guidelines for breast cancer indicate biological factors as the main determinants of oncological and radiation therapy, together with TNM staging and age. In clinical practice, the widespread use of genomic assays as a decision-making tool for hormone receptor-positive, HER2-negative breast cancer and the subsequent availability of a reliable prognostic predictor have likely scaled back interest in LVI's predictive value. However, in selected cases, the presence of LVI impacts adjuvant therapy. This review summarizes current knowledge on LVI in breast cancer with regard to definition, histopathological assessment, its biological understanding, clinicopathological association, and therapeutic implications.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Department of Biomedical Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20129 Milan, Italy
| | - Luca Despini
- Breast Surgery Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Asnaghi
- Radiotherapy Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Letterio Runza
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
15
|
Houthuijzen JM, de Bruijn R, van der Burg E, Drenth AP, Wientjens E, Filipovic T, Bullock E, Brambillasca CS, Pulver EM, Nieuwland M, de Rink I, van Diepen F, Klarenbeek S, Kerkhoven R, Brunton VG, Scheele CLGJ, Boelens MC, Jonkers J. CD26-negative and CD26-positive tissue-resident fibroblasts contribute to functionally distinct CAF subpopulations in breast cancer. Nat Commun 2023; 14:183. [PMID: 36635273 PMCID: PMC9837080 DOI: 10.1038/s41467-023-35793-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are abundantly present in the microenvironment of virtually all tumors and strongly impact tumor progression. Despite increasing insight into their function and heterogeneity, little is known regarding the origin of CAFs. Understanding the origin of CAF heterogeneity is needed to develop successful CAF-based targeted therapies. Through various transplantation studies in mice, we show that CAFs in both invasive lobular breast cancer and triple-negative breast cancer originate from mammary tissue-resident normal fibroblasts (NFs). Single-cell transcriptomics, in vivo and in vitro studies reveal the transition of CD26+ and CD26- NF populations into inflammatory CAFs (iCAFs) and myofibroblastic CAFs (myCAFs), respectively. Functional co-culture experiments show that CD26+ NFs transition into pro-tumorigenic iCAFs which recruit myeloid cells in a CXCL12-dependent manner and enhance tumor cell invasion via matrix-metalloproteinase (MMP) activity. Together, our data suggest that CD26+ and CD26- NFs transform into distinct CAF subpopulations in mouse models of breast cancer.
Collapse
Affiliation(s)
- Julia M Houthuijzen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ellen Wientjens
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tamara Filipovic
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esme Bullock
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chiara S Brambillasca
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilia M Pulver
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank van Diepen
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ron Kerkhoven
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Colinda L G J Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mirjam C Boelens
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Wang C, Jiang X, Qi J, Xu J, Yang G, Mi C. PAIP2 is a potential diagnostic and prognostic biomarker of breast cancer and is associated with immune infiltration. Front Genet 2022; 13:1009056. [PMID: 36437922 PMCID: PMC9685164 DOI: 10.3389/fgene.2022.1009056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/26/2022] [Indexed: 01/03/2024] Open
Abstract
Breast cancer is the second highest incidence of cancer in the world. It is of great significance to find biomarkers to diagnose breast cancer and predict the prognosis of breast cancer patients. PAIP2 is a poly (A) -binding protein interacting protein that regulates the expression of VEGF. However, the possible role of PAIP2 in the progression of breast cancer is still unknown. RT-qRCR and Western blotting were used to verify the expression of PAIP2 in breast cancer cells and normal breast cells. The data of breast cancer samples were obtained in the TCGA database and the HPA database to analyze the expression of PAIP2 in breast cancer samples. Transwell experiment and CCK8 experiment confirmed the changes in the invasion and proliferation ability of PAIP2 after siRNA was down-regulated. Using bioinformatics technology to explore the prognostic value of PAIP2 and its possible biological function, and its effect on tumor immunity and immunotherapy. Studies have shown that PAIP2 has higher expression in breast cancer tissues and breast cancer cells. PAIP2 can promote the proliferation and invasion of breast cancer cells and has significantly high expression in higher tumor stages. The high expression of PAIP2 is associated with better OS in breast cancer patients and is negatively correlated with most chemotherapeutic drug sensitivity and IPS in cancer immunotherapy. Our study explored the potential value of PAIP2 as a biomarker for diagnosis and prognosis and may predict the efficacy of immunotherapy, providing reference for the follow-up study on the role of PAIP2 in breast cancer.
Collapse
Affiliation(s)
- Chenyu Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xianglai Jiang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jiaojiao Qi
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jiachao Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Guangfei Yang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chengrong Mi
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
17
|
Li YL, Hung WC. Reprogramming of sentinel lymph node microenvironment during tumor metastasis. J Biomed Sci 2022; 29:84. [PMID: 36266717 PMCID: PMC9583492 DOI: 10.1186/s12929-022-00868-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/15/2022] [Indexed: 11/10/2022] Open
Abstract
Metastasis is a major cause of death in patients with cancer. The two main routes for cancer cell dissemination are the blood and lymphatic systems. The underlying mechanism of hematogenous metastasis has been well characterized in the past few decades. However, our understanding of the molecular basis of lymphatic metastasis remains at a premature stage. Conceptually, cancer cells invade into lymphatic capillary, passively move to collecting lymphatic vessels, migrate into sentinel lymph node (SLN;, the first lymph node to which cancer cells spread from the primary tumor), and enter the blood circulatory system via the subclavian vein. Before arriving, cancer cells release specific soluble factors to modulate the microenvironment in SLN to establish a beachhead for successful colonization. After colonization, cancer cells inhibit anti-tumor immunity by inducing the recruitment of regulatory T cell and myeloid-derived suppressor cells, suppressing the function of dendritic cell and CD8+ T cell, and promoting the release of immunosuppressive cytokines. The development of novel strategies to reverse cancer cell-triggered SLN remodeling may re-activate immunity to reduce beachhead buildup and distant metastasis. In addition to being a microanatomic location for metastasis, the SLN is also an important site for immune modulation. Nanotechnology-based approaches to deliver lymph node-tropic antibodies or drug-conjugated nanoparticles to kill cancer cells on site are a new direction for cancer treatment. Conversely, the induction of stronger immunity by promoting antigen presentation in lymph nodes provides an alternate way to enhance the efficacy of immune checkpoint therapy and cancer vaccine. In this review article, we summarize recent findings on the reprogramming of SLN during lymphatic invasion and discuss the possibility of inhibiting tumor metastasis and eliciting anti-tumor immunity by targeting SLN.
Collapse
Affiliation(s)
- Yen-Liang Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan. .,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|