1
|
Yu X, Xu H, Xing Y, Sun D, Li D, Shi J, Sui G, Li G. Identifying Essential Hub Genes and circRNA-Regulated ceRNA Networks in Hepatocellular Carcinoma. Int J Mol Sci 2025; 26:1408. [PMID: 40003874 PMCID: PMC11855757 DOI: 10.3390/ijms26041408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Competitive endogenous RNAs (ceRNAs) absorb microRNAs and subsequently promote corresponding mRNA and long noncoding RNA (lncRNA) expression, which may alter cancer cell malignancy. Thus, dissecting ceRNA networks may reveal novel targets in cancer therapies. In this study, we analyzed differentially expressed genes (DEGs) of mRNAs and lncRNAs, and differentially expressed microRNAs (DE-miRNAs) and circular RNAs (DE-circRNAs) extracted from high-throughput sequencing datasets of hepatocellular carcinoma patients. Based on these data, we identified 26 gene modules using weighted gene co-expression network analysis (WGCNA), of which 5 were associated with tumor differentiation. In these modules, 269 genes were identified by GO and KEGG enrichment and patient's survival correlation analyses. Next, 40 DE-miRNAs, each of which potentially bound a pair of DE-circRNA and hub gene, were discovered. Together with 201 circRNAs and 24 hub genes potentially bound by these miRNAs, 1151 ceRNA networks were constructed. Among them, 75 ceRNA networks consisting of 24 circRNAs, 28 miRNAs and 17 hub genes showed a positive circRNA-hub gene correlation. For validation, we carried out experiments for 4 randomly selected circRNAs regulating 19 potential ceRNA networks and verified 5 of them. This study represents a powerful strategy to identify essential gene networks and provides insights into designing effective therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoqian Yu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Hao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Yutao Xing
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Dehui Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310030, China
| |
Collapse
|
2
|
Zhao MY, Shen ZL, Dai H, Xu WY, Wang LN, Gu Y, Zhao JH, Yu TH, Wang CZ, Xu JF, Chen GJ, Chen DH, Hong WM, Zhang F. Single-cell sequencing elucidates the mechanism of NUSAP1 in glioma and its diagnostic and prognostic significance. Front Immunol 2025; 16:1512867. [PMID: 39975552 PMCID: PMC11835852 DOI: 10.3389/fimmu.2025.1512867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Background Personalized precision medicine (PPPM) in cancer immunology and oncology is a rapidly advancing field with significant potential. Gliomas, known for their poor prognosis, rank among the most lethal brain tumors. Despite advancements, there remains a critical need for precise, individualized treatment strategies. Methods We conducted a comprehensive analysis of RNA-seq and microarray data from the TCGA and GEO databases, supplemented by single-cell RNA sequencing (scRNA-seq) data from glioma patients. By integrating single-cell sequencing analysis with foundational experiments, we investigated the molecular variations and cellular interactions within neural glioma cell subpopulations during tumor progression. Results Our single-cell sequencing analysis revealed distinct gene expression patterns across glioma cell subpopulations. Notably, differentiation trajectory analysis identified NUSAP1 as a key marker for the terminal subpopulation. We found that elevated NUSAP1 expression correlated with poor prognosis, prompting further investigation of its functional role through both cellular and animal studies. Conclusions NUSAP1-based risk models hold potential as predictive and therapeutic tools for personalized glioma treatment. In-depth exploration of NUSAP1's mechanisms in glioblastoma could enhance our understanding of its response to immunotherapy, suggesting that targeting NUSAP1 may offer therapeutic benefits for glioma patients.
Collapse
Affiliation(s)
- Meng-Yu Zhao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhao-Lei Shen
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongzhen Dai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wan-Yan Xu
- School of Nursing, Anhui Medical University, Hefei, China
| | - Li-Na Wang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Yu- Gu
- School of Nursing, Anhui Medical University, Hefei, China
| | - Jie-Hui Zhao
- School of Nursing, Anhui Medical University, Hefei, China
| | - Tian-Hang Yu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cun-Zhi Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-feng Xu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guan-Jun Chen
- Research and Experiment Center of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dong-Hui Chen
- Department of Neurosurgery, Lu’an People’s Hospital, Luan, China
| | - Wen-Ming Hong
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Open Project of Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Fang Zhang
- School of Nursing, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Wang C, Li MC, Huang WG, Huang SY, Wusiman M, Liu ZY, Zhu HL. Betaine inhibits the stem cell-like properties of hepatocellular carcinoma by activating autophagy via SAM/m 6A/YTHDF1-mediated enhancement on ATG3 stability. Theranostics 2025; 15:1949-1965. [PMID: 39897540 PMCID: PMC11780527 DOI: 10.7150/thno.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
Background: Stem cell-like properties are known to promote the recurrence and metastasis of hepatocellular carcinoma (HCC), contributing to a poor prognosis for HCC patients. Betaine, an important phytochemical and a methyl-donor related substance, has shown protective effects against liver diseases. However, its effect on HCC stem cell-like properties and the underlying mechanisms remains uninvestigated. Methods: We measured the effects of betaine on the stem cell-like properties and malignant progression of HCC using patient-derived xenografts, cell-derived xenografts, tail vein-lung metastasis models, in vitro limiting dilution, tumor sphere formation, colony formation, and transwell assays. Mechanistic exploration was conducted using western blots, dot blots, methylated RNA immunoprecipitation-qPCR, RNA stability assays, RNA immunoprecipitation-qPCR, RNA pull-down, and gene mutation assays. Results: A cohort study of HCC found that a higher serum concentration of betaine was associated with decreased levels of stemness-related markers. Furthermore, in HCC cells and xenograft mice, betaine suppressed the stem cell-like properties of HCC by activating autophagy. Mechanistically, betaine increased the m6A modification in HCC by producing S-adenosylmethionine (SAM) via betaine-homocysteine S-methyltransferase (BHMT). This increase in SAM subsequently triggered autophagy by enhancing the stability of autophagy-related protein 3 (ATG3) via YTHDF1 in an m6A-dependent manner, thereby inhibiting the stem cell-like properties of HCC cells. Conclusions: These findings indicate that betaine inhibits the stem cell-like properties of HCC via the SAM/m6A/YTHDF1/ATG3 pathway. This study underscores the potential anti-tumor effects of betaine on HCC and offers novel therapeutic prospects for HCC patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meng-chu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-ge Huang
- Center of Experimental Animals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Si-yu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Maierhaba Wusiman
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhao-yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
4
|
Gao YF, Liu YQ, Zhang H, Zhang MY. Proteo-genomic characterization of cirrhosis-associated liver cancers reveals potential subtypes and therapeutic targets. Clin Transl Oncol 2024; 26:3085-3099. [PMID: 38806996 DOI: 10.1007/s12094-024-03517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND This study aimed to identify potential subtypes of hepatocellular carcinoma (HCC) associated with cirrhosis and to investigate key markers using bioinformatic analysis of gene expression datasets-0. METHODS Three data sets (GSE17548, GSE56140, and GSE87630) were extracted from the Gene Expression Omnibus (GEO) database and normalized using the Limma package in R. Principal component analysis (PCA) and cluster analysis was performed to examine data distribution and identify subtypes. Differential gene expression analysis was performed using the Limma software package. Protein-protein interaction analysis and functional annotation were performed using the STRING database and Cytoscape software. Important signaling pathways and processes were identified using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis. RESULTS The analysis revealed different subtypes of HCC associated with cirrhosis and identified several key genes, including CCNB2, MCM4, and CDC20, with strong binding power and prognostic value. Functional annotation indicated involvement in cell cycle regulation and metabolic pathways. ROC analysis showed high sensitivity and specificity of these genes in predicting HCC prognosis. CONCLUSION These results suggest that CCNB2, MCM4, and CDC20 may serve as potential biomarkers for predicting HCC prognosis in patients with cirrhosis and provide insights into the molecular mechanisms of HCC progression.
Collapse
Affiliation(s)
- Yi-Fan Gao
- Department of Research and Discipline Construction, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road No. 7, Zhengzhou City, 450003, Henan, China.
| | - Yang-Qing Liu
- Department of Research and Discipline Construction, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road No. 7, Zhengzhou City, 450003, Henan, China
| | - Hui Zhang
- Department of Research and Discipline Construction, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road No. 7, Zhengzhou City, 450003, Henan, China
| | - Meng-Yi Zhang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| |
Collapse
|
5
|
Zhang S, Zhang X, Huang W, Jiang G, Mo Y, Wei L, Fan P, Chen M, Jiang W. NUSAP1 is Upregulated by Estrogen to Promote Lung Adenocarcinoma Growth and Serves as a Therapeutic Target. Int J Biol Sci 2024; 20:5375-5395. [PMID: 39430250 PMCID: PMC11489181 DOI: 10.7150/ijbs.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1), a microtubule-associated protein, has been recently identified to exhibit aberrant expression patterns that correlate with malignant tumorigenesis and progression across various cancer types. However, the specific regulatory mechanisms and potential targeting therapies of NUSAP1 in lung adenocarcinoma (LUAD) remain largely elusive. In this study, by conducting bioinformatics analyses as well as in vitro and in vivo experiments, we identified that NUSAP1 was significantly upregulated in LUAD, with a notable correlation with poorer overall survival, higher scores for immunogenicity and immune infiltration, as well as increased sensitivity to conventional chemotherapeutic drugs such as paclitaxel, docetaxel and vinorelbine in LUAD. Functionally, NUSAP1 overexpression significantly promoted LUAD cell proliferation, while its knockdown markedly suppressed this process. Interestingly, our results revealed that NUSAP1 upregulation was mediated by estrogen via ERβ activation. Furthermore, we identified entinostat as a novel inhibitor of NUSAP1. Pharmacological targeting ERβ/NUSAP1 axis with fulvestrant (ERβ antagonist) or entinostat (novel NUSAP1 inhibitor) significantly reduced LUAD growth both in vitro and in vivo, which may represent effective alternative therapeutic strategies for patients with LUAD.
Collapse
Affiliation(s)
- Shaoping Zhang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaozhen Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Wenjian Huang
- Department of Breast Surgery, the Sixth Affiliated Hospital of South China University of Technology, the Sixth Clinical College of South China University of Technology, Foshan 528225, China
| | - Ganling Jiang
- Department of pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510145, China
| | - Yuanxin Mo
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Liuxia Wei
- Department of Medical Oncology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Pingming Fan
- Department of Breast Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Maojian Chen
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| |
Collapse
|
6
|
Ge Y, Wang B, Xiao J, Wu H, Shao Q. NUSAP1 promotes gastric cancer radioresistance by inhibiting ubiquitination of ANXA2 and is suppressed by miR-129-5p. J Cancer Res Clin Oncol 2024; 150:406. [PMID: 39212774 PMCID: PMC11364566 DOI: 10.1007/s00432-024-05927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Radiotherapy is an important strategy for the treatment of advanced gastric cancer (GC), while the radioresistance limits its effectiveness. Nucleolar and spindle associated protein 1 (NUSAP1) was implicated in cancer progression and chemoresistance. However, the underlying mechanisms of NUSAP1 influencing GC radioresistance remain largely unknown. METHODS Meta-analysis was conducted to systematically evaluate the prognostic value of NUSAP1 in human cancers. Gene set enrichment analysis (GSEA) was conducted using The Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO) datasets. MRNA and protein expressions were detected by qRT-PCR and western blot, respectively. The radiosensitivity of GC cells was observed by colony formation, flow cytometry, comet, immunofluorescence, and animal assays. Immunoprecipitation assay and mass spectrometry were utilized to identify protein associations. MiRNAs binding with NUSAP1 were determined by starbase prediction, luciferase reporter, and RNA immunoprecipitation (RIP) assays. RESULTS NUSAP1 high expression predicted worse overall survival (OS) and disease-free survival (DFS) with no statistical heterogeneity through the meta-analysis. Downregulation of NUSAP1 significantly increased GC radiosensitivity by inhibiting colony formation, DNA damage repair, and promoting apoptosis following irradiation. Additionally, NUSAP1 silencing combined with radiation resulted in a synergistic anti-tumor effect in xenograft mouse model. Mechanistically, NUSAP1 interacted with ANXA2, protecting it against protein degradation via impeding its ubiquitination process. NUSAP1 was confirmed as a target of miR-129-5p and negatively regulated by it. CONCLUSION Our results suggested that NUSAP1 enhanced the radioresistance of GC cells. NUSAP1 could be a promising target to increase GC radiosensitivity.
Collapse
Affiliation(s)
- Yugang Ge
- Department of General Surgery, Jiangyin People's Hospital, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu Province, China
| | - Biao Wang
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, Wuxi, China
| | - Qing Shao
- Department of General Surgery, Jiangyin People's Hospital, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu Province, China.
| |
Collapse
|
7
|
Meng J, Yang Z, Jiang X, Zou J. Unveiling NUSAP1 as a common gene signature linking chronic HBV infection and HBV-related HCC. Discov Oncol 2024; 15:61. [PMID: 38441732 PMCID: PMC10914659 DOI: 10.1007/s12672-024-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a significant contributor to the development of hepatocellular carcinoma (HCC). Chronic HBV infection (CHB) facilitates disease progression through various mechanisms. However, the specific factor responsible for the progression of HBV infection to HCC remains unresolved. This study aims to identify the hub gene linking CHB and HBV-related HCC through bioinformatic analysis and experimental verification. METHODS Differentially expressed genes (DEGs) were identified in datasets encompassing CHB and HBV-HCC patients from the GEO database. Enriched pathways were derived from GO and KEGG analysis. Hub genes were screened by protein-protein interaction (PPI) analysis and different modules in Cytoscape software. The significance of the selected hub gene in prognosis was further assessed in validated datasets. The effects of hub genes on cell growth and apoptosis were further determined in functional experiments. RESULTS The study revealed upregulation of NUSAP1 in CHBs and HBV-HCCs. High expression of NUSAP1 served as an independent predictor for poor prognosis of liver cancers. Functional experiments demonstrated that NUSAP1 promotes cell growth, influences cell cycle process, and protects cells from apoptosis in HepG2.2.15 cells. CONCLUSION NUSAP1 serves as a poor prognostic indicator for liver cancers, and potentially plays a crucial role in HBV-HCC progression by promoting proliferation and inhibiting apoptosis.
Collapse
Affiliation(s)
- Jiao Meng
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Zhenkun Yang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Xinyi Jiang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
8
|
Rong Y, Tang MZ, Liu SH, Li XF, Cai H. Comprehensive analysis of the potential pathogenesis of COVID-19 infection and liver cancer. World J Gastrointest Oncol 2024; 16:436-457. [PMID: 38425388 PMCID: PMC10900145 DOI: 10.4251/wjgo.v16.i2.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019 (COVID-19) appears to have an impact on the treatment of patients with liver cancer compared to the normal population, and the prevalence of COVID-19 is significantly higher in patients with liver cancer. However, this mechanism of action has not been clarified. AIM To investigate the disease relevance of COVID-19 in liver cancer. METHODS Gene sets for COVID-19 (GSE180226) and liver cancer (GSE87630) were obtained from the Gene Expression Omnibus database. After identifying the common differentially expressed genes (DEGs) of COVID-19 and liver cancer, functional enrichment analysis, protein-protein interaction network construction and screening and analysis of hub genes were performed. Subsequently, the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed. RESULTS Of 518 common DEGs were obtained by screening for functional analysis. Fifteen hub genes including aurora kinase B, cyclin B2, cell division cycle 20, cell division cycle associated 8, nucleolar and spindle associated protein 1, etc., were further identified from DEGs using the "cytoHubba" plugin. Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation, cell cycle and other functions, and they may serve as potential molecular markers for COVID-19 and liver cancer. Finally, we selected 10 of the hub genes for in vitro expression validation in liver cancer cells. CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19. These common pathways and key genes may provide new ideas for further mechanistic studies.
Collapse
Affiliation(s)
- Yao Rong
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Ming-Zheng Tang
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Song-Hua Liu
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiao-Feng Li
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
9
|
Jiang D, Chowdhury AY, Nogalska A, Contreras J, Lee Y, Vergel-Rodriguez M, Valenzuela M, Lu R. Quantitative association between gene expression and blood cell production of individual hematopoietic stem cells in mice. SCIENCE ADVANCES 2024; 10:eadk2132. [PMID: 38277455 PMCID: PMC10816716 DOI: 10.1126/sciadv.adk2132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Individual hematopoietic stem cells (HSCs) produce different amounts of blood cells upon transplantation. Taking advantage of the intercellular variation, we developed an experimental and bioinformatic approach to evaluating the quantitative association between gene expression and blood cell production across individual HSCs. We found that most genes associated with blood production exhibit the association only at some levels of blood production. By mapping gene expression with blood production, we identified four distinct patterns of their quantitative association. Some genes consistently correlate with blood production over a range of levels or across all levels, and these genes are found to regulate lymphoid but not myeloid production. Other genes exhibit one or more clear peaks of association. Genes with overlapping peaks are found to be coexpressed in other tissues and share similar molecular functions and regulatory motifs. By dissecting intercellular variations, our findings revealed four quantitative association patterns that reflect distinct dose-response molecular mechanisms modulating the blood cell production of HSCs.
Collapse
Affiliation(s)
- Du Jiang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Adnan Y. Chowdhury
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anna Nogalska
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jorge Contreras
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yeachan Lee
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mary Vergel-Rodriguez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Melissa Valenzuela
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Wu J, Chan YT, Lu Y, Wang N, Feng Y. The tumor microenvironment in the postsurgical liver: Mechanisms and potential targets of postoperative recurrence in human hepatocellular carcinoma. Med Res Rev 2023; 43:1946-1973. [PMID: 37102365 DOI: 10.1002/med.21967] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Surgery remains to be the mainstay of treatment for hepatocellular carcinoma (HCC). Nonetheless, its therapeutic efficacy is significantly impaired by postoperative recurrence, which occurs in more than half of cases as a result of intrahepatic metastasis or de novo tumorigenesis. For decades, most therapeutic strategies on inhibiting postoperative HCC recurrence have been focused on the residual tumor cells but satisfying therapeutic outcomes are barely observed in the clinic. In recent years, a better understanding of tumor biology allows us to shift our focus from tumor cells toward the postoperative tumor microenvironment (TME), which is gradually identified to play a pivotal role in tumor recurrence. In this review, we describe various surgical stress and surgical perturbation on postoperative TME. Besides, we discuss how such alternations in TME give rise to postoperative recurrence of HCC. Based on its clinical significance, we additionally highlight the potential of the postoperative TME as a target for postoperative adjuvant therapeutics.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Tu H, Feng S, Chen L, Huang Y, Zhang J, Wu X. Contrast enhanced ultrasound combined with serology predicts hepatocellular carcinoma recurrence: a retrospective observation cohort study. Front Oncol 2023; 13:1154064. [PMID: 37519810 PMCID: PMC10380982 DOI: 10.3389/fonc.2023.1154064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Objectives To construct a novel model based on contrast-enhanced ultrasound (CEUS) and serological biomarkers to predict the early recurrence (ER) of primary hepatocellular carcinoma within 2 years after hepatectomy. Methods A total of 466 patients who underwent CEUS and curative resection between 2016.1.1 and 2019.1.1 were retrospectively recruited from one institution. The training and testing cohorts comprised 326 and 140 patients, respectively. Data on general characteristics, CEUS Liver Imaging Reporting and Data System (LI-RADS) parameters, and serological were collected. Univariate analysis and multivariate Cox proportional hazards regression model were used to evaluate the independent prognostic factors for tumor recurrence, and the Contrast-enhanced Ultrasound Serological (CEUSS) model was constructed. Different models were compared using prediction error and time-dependent area under the receiver operating characteristic curve (AUC). The CEUSS model's performances in ER prediction were assessed. Results The baseline data of the training and testing cohorts were equal. LI-RADS category, α-fetoprotein level, tumor maximum diameter, total bilirubin level, starting time, iso-time, and enhancement pattern were independent hazards, and their hazards ratios were 1.417, 1.309, 1.133, 1.036, 0.883, 0.985, and 0.70, respectively. The AUCs of CEUSS, BCLC,TNM, and CNLC were 0.706, 0.641, 0.647, and 0.636, respectively, in the training cohort and 0.680, 0.583, 0.607, and 0.597, respectively, in the testing cohort. The prediction errors of CEUSS, BCLC, TNM, and CNLC were 0.202, 0.205, 0.205, and 0.200, respectively, in the training cohort and 0.204, 0.221, 0.219, and 0.211, respectively, in the testing cohort. Conclusions The CEUSS model can accurately and individually predict ER before surgery and may represent a new tool for individualized treatment.
Collapse
Affiliation(s)
- Haibin Tu
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Siyi Feng
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lihong Chen
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yujie Huang
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Juzhen Zhang
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoxiong Wu
- Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|