1
|
Ye X, Fang X, Li F, Jin D. Targeting TIME in advanced hepatocellular carcinoma: Mechanisms of drug resistance and treatment strategies. Crit Rev Oncol Hematol 2025; 211:104735. [PMID: 40250780 DOI: 10.1016/j.critrevonc.2025.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer. While early-stage HCC can be effectively managed with surgical resection and other interventions, treatment options for advanced HCC are limited. Current systemic treatments for advanced HCC include VEGF-targeted tyrosine kinase inhibitors (Sorafenib, Lenvatinib), and the combination therapy of anti PD-1/PD-L1 and anti VEGF (Atezolizumab plus Bevacizumab, Camrelizumab plus Rivoceranib). However, the lack of response to these drugs and the emergence of acquired drug resistance significantly impairs their efficacy. Numerous studies have demonstrated that the tumor immune microenvironment (TIME) plays a crucial role in modulating the response to these therapies. Various immune cells and their secreted factors within the TIME play a pivotal role in the emergence of secondary drug resistance in HCC. This article reviews the mechanism of TIME promoting drug resistance, discusses the influence of current systemic HCC treatment drugs on TIME, and evaluates how these TIME changes affect the efficacy of treatment. A deeper understanding of the interaction between TIME and systemic treatment drugs may be beneficial to enhance the treatment effect, mitigate drug resistance of advanced HCC, and ultimately improve the prognosis of patients.
Collapse
Affiliation(s)
- Xinyi Ye
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 13002, China.
| | - Xizhu Fang
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 13002, China.
| | - Fangfang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 13002, China.
| | - Dan Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 13002, China.
| |
Collapse
|
2
|
Somasegar S, MSN BS, Jairam-Thodla A, Dorigo O. Long term treatment of advanced endometrial cancer with lenvatinib and pembrolizumab. Gynecol Oncol Rep 2025; 58:101717. [PMID: 40161551 PMCID: PMC11950743 DOI: 10.1016/j.gore.2025.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Objective To describe a case of sustained disease control for over five years in a patient with recurrent, advanced endometrial cancer treated with lenvatinib and pembrolizumab, despite significant treatment-related toxicities. Methods We present a 49-year-old patient with grade 3, stage IVB endometrioid endometrial adenocarcinoma. After cytoreductive surgery, carboplatin and paclitaxel chemotherapy, and radiation therapy, the patient experienced progression with widespread metastases. She was then treated with lenvatinib (20 mg daily) and pembrolizumab (200 mg every three weeks). The patient experienced multiple treatment-related adverse events, including hypertension, colitis, hypothyroidism, adrenal insufficiency, and ocular toxicity, requiring dose adjustments and treatment interruptions. Results Despite frequent toxicities, the patient achieved a durable response to lenvatinib and pembrolizumab. Five years after treatment initiation, imaging showed no metabolically active disease, with only minimal stable residual lesions. Careful management of adverse effects, including supportive care, dose modifications, and temporary treatment pauses, enabled continued therapy. Conclusion This case underscores the potential for long-term disease control with lenvatinib and pembrolizumab in advanced endometrial cancer, even in patients with proficient mismatch repair (pMMR) and low tumor mutational burden. Although toxicities can require treatment adjustments, they can often be effectively managed, allowing for prolonged therapy. Further research is needed to determine the optimal treatment duration and strategies to mitigate long-term side effects.
Collapse
Affiliation(s)
- Sahana Somasegar
- Stanford University School of Medicine, Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, USA
| | - Becky Sousa MSN
- Stanford University School of Medicine, Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, USA
| | - Arati Jairam-Thodla
- Stanford University School of Medicine, Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, USA
| | - Oliver Dorigo
- Stanford University School of Medicine, Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, USA
| |
Collapse
|
3
|
Zhang S, Guan M, Ren T, Li N, Ding Q, Sun D, Zhu H. Prexasertib exerts a synergistic effect on the antitumor activity of Lenvatinib through ALOX15-mediated ferroptosis in hepatocellular carcinoma. Int Immunopharmacol 2025; 150:114278. [PMID: 39954659 DOI: 10.1016/j.intimp.2025.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal malignancies worldwide. Lenvatinib, a potent multi-receptor tyrosine kinase inhibitor approved for the treatment of advanced HCC, demonstrates limited clinical efficacy. Therefore, there is an urgent need to investigate therapeutic strategies that combine Lenvatinib with other anticancer agents. Lenvatinib induces DNA damage in tumor cells, and the inhibition of the DNA damage response (DDR) pathway is hypothesized to enhance Lenvatinib-induced tumor cell death. In this study, we initially observed that Lenvatinib upregulated phosphorylated checkpoint kinase 1 (CHK1) protein levels, a key molecule in the DDR pathway, in HCC cells. This observation prompted us to investigate the antitumor efficacy of combining Lenvatinib with Prexasertib, a novel CHK1 inhibitor. The combination demonstrated synergistic anticancer effects in HCC cells. Mechanistically, treatment with Lenvatinib and Prexasertib resulted in cell death primarily through ferroptosis. Furthermore, we found that Lenvatinib and Prexasertib cooperatively upregulated ALOX15 expression, which culminated in the induction of ferroptosis. Taken together, our findings suggest the potential application of Prexasertib in combination with Lenvatinib as a promising therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingcheng Guan
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyuan Ren
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China
| | - Na Li
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Ding
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Di Sun
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Yu Z, Leng B, You R, Wang C, Diao L, Xu Q, Yin G. Lenvatinib plus immunotherapy versus lenvatinib monotherapy in lenvatinib-insensitive patients with unresectable hepatocellular carcinoma: a retrospective study. Invest New Drugs 2025; 43:93-100. [PMID: 39762642 PMCID: PMC11868197 DOI: 10.1007/s10637-024-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025]
Abstract
PURPOSE The combination therapy of lenvatinib and immunotherapy as first-line treatment remains controversial in unresectable hepatocellular carcinoma (uHCC). This research aimed to compare the efficacy and safety of lenvatinib monotherapy (L) and combination therapy of lenvatinib and immune checkpoint inhibitor (LI) in lenvatinib-insensitive patients with uHCC. METHODS Two hundred fifty-five uHCC patients were enrolled in this study. Patients were classified into two groups: (1) Lenvatinib monotherapy (L); (2) Combination therapy (LI). Patients who remained stable disease (SD) but did not achieve complete response (CR) or partial response (PR) or progression disease (PD) for at least 3 months after receiving lenvatinib monotherapy were defined as lenvatinib-insensitive. Overall survival (OS) and progression-free survival (PFS), baseline characteristics, and safety were compared between groups. RESULTS The LI group had longer OS (15.9 months vs. 11.9 months, P = 0.001) and PFS (12.6 months vs. 7.3 months, P < 0.001) than the L group. ECOG PS was an independent prognostic factor affecting OS and Up-to-seven was an independent prognostic factor affecting PFS. The frequency of grade ≥ 3 treatment-related adverse events (TRAEs) was not significantly different. CONCLUSIONS Our study demonstrated that the combination therapy (LI) had longer OS and PFS than the lenvatinib monotherapy (L) in lenvatinib-insensitive patients with uHCC.
Collapse
Affiliation(s)
- Zeyu Yu
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bin Leng
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ran You
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chendong Wang
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lingfeng Diao
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qingyu Xu
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Guowen Yin
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Wei Y, Yang L, Tang C, Zhuang H, Chen X, Ma X, Deng X, Chen Y, Tan W, Shang C. Lenvatinib inhibits cholangiocarcinoma progression by targeting the FGF19/PI3K/AKT signaling pathway. Apoptosis 2025; 30:185-196. [PMID: 39522105 DOI: 10.1007/s10495-024-02028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Cholangiocarcinoma (CCA) is known for its high aggressiveness and dismal prognosis, whose effectiveness of systemic therapy remains limited. As a multi-target drug, lenvatinib has exhibited promising effects in many solid tumors. However, the therapeutic role of lenvatinib in CCA is rarely investigated. Here, the in vitro assays including EdU, colony formation, transwell, wound healing, and apoptosis analyses demonstrated that lenvatinib significantly inhibited the proliferation, migration, and invasion, while simultaneously inducing apoptosis of CCA cells. Mechanistically, lenvatinib downregulated the expression of FGF19 and inactivated the PI3K/AKT signaling pathway. Depletion of FGF19 enhanced the anti-tumor effects of lenvatinib, which was attributed to the inhibition of p-PI3K and p-AKT expression in CCA cells. In contrast, overexpression of FGF19 activated the PI3K/AKT signaling pathway, thereby impairing the inhibitory effects of lenvatinib against CCA. In addition, the AKT inhibitor, MK-2206, reinforced the lenvatinib-induced CCA inhibition. Notably, the in vivo experiment confirmed that the subcutaneous tumorigenicity of CCA cells in nude mice was weakened by lenvatinib. Lenvatinib markedly downregulated the expression of FGF19, p-AKT, Ki-67, vimentin, and VEGF in the xenograft tumor tissues. Collectively, these findings demonstrated that lenvatinib inhibits CCA progression by targeting the FGF19/PI3K/AKT signaling pathway. The present study provides novel experimental evidence for the potential clinical application of lenvatinib in CCA, which also highlights the promising role of targeting FGF19 in combined therapeutic approaches for CCA.
Collapse
Affiliation(s)
- Yingcheng Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Hepatopancreatobiliary Surgery, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516621, Guangdong, China
| | - Lei Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Chenwei Tang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hongkai Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xinming Chen
- Department of Breast Surgery, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516621, Guangdong, China
| | - Xiaowu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xuesong Deng
- Department of Hepatobiliary Surgery, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yajin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Wenliang Tan
- Department of Hepatobiliary and Pancreatic Surgery, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.
| | - Changzhen Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
6
|
Chen Y, Dai S, Cheng CS, Chen L. Lenvatinib and immune-checkpoint inhibitors in hepatocellular carcinoma: mechanistic insights, clinical efficacy, and future perspectives. J Hematol Oncol 2024; 17:130. [PMID: 39709431 PMCID: PMC11663365 DOI: 10.1186/s13045-024-01647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Lenvatinib is a multi-target tyrosine kinase inhibitor widely used in the treatment of hepatocellular carcinoma (HCC). Its primary mechanism of action involves inhibiting signal pathways such as vascular endothelial growth factor receptors (VEGFR) and fibroblast growth factor receptors (FGFR), thereby reducing tumor cell proliferation and angiogenesis and affecting the tumor's immune microenvironment. In the treatment of liver cancer, although lenvatinib monotherapy has shown good clinical effect, the problem of drug resistance is becoming more and more serious. This resistance may be caused by a variety of factors, including genetic mutations, signaling pathway remodeling, and changes in the tumor microenvironment. In order to overcome drug resistance, the combination of lenvatinib and other therapeutic strategies has gradually become a research hotspot, and it is worth noting that the combination of lenvatinib and immune checkpoint inhibitors (ICIs) has shown a good application prospect. This combination not only enhances the anti-tumor immune response but also helps improve therapeutic efficacy. However, combination therapy also faces challenges regarding safety and tolerability. Therefore, studying the mechanisms of resistance and identifying relevant biomarkers is particularly important, as it aids in early diagnosis and personalized treatment. This article reviews the mechanisms of lenvatinib in treating liver cancer, the mechanisms and efficacy of its combination with immune checkpoint inhibitors, the causes of resistance, the exploration of biomarkers, and other novel combination therapy strategies for lenvatinib. We hope to provide insights into the use and research of lenvatinib in clinical and scientific settings, offering new strategies for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yuhang Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, China
| | - Suoyi Dai
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, China.
| | - Lianyu Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, China.
| |
Collapse
|
7
|
Vanli S, Kurtoglu F, Alan BS, Akcakavak G, Ozdemir O. Investigation of the effects of Theranekron and Sorafenib treatments on carcinogenesis, apoptosis and biochemical profile in hepatocellular carcinoma in rats. Toxicol Mech Methods 2024; 34:750-760. [PMID: 38577837 DOI: 10.1080/15376516.2024.2332909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
This study aimed to investigate the effects of Tarantula cubensis alcohol extract (TCAE, Theranekron) and Sorafenib (S) treatments on carcinogenesis, apoptosis and biochemical profile of rats with experimentally induced hepatocellular carcinoma (HCC). In the presented study, 58 male rats were divided into 7 groups; Negative Control (NC, n = 6), NC + TCAE (NCT, n = 6), NC + Sorafenib (NCS, n = 6), Positive Control (PC, n = 10), Positive Control + TCAE (PCT, n = 10), Positive Control + Sorafenib (PCS, n = 10), Positive Control + TCAE + Sorafenib (PCTS, n = 10). The active ingredients Diethylnitrosamine (DEN, 120 mg/kg, single dose) and Nitrosomorpholine (NMOR, 50 ppm, 21 weeks orally) were used to induce HCC in rats. At the end of the experiment, the animals were euthanized under appropriate conditions and samples were collected for biochemical and pathological investigations. In the PC group, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) levels were higher (p < 0.001) and urea levels were lower (p < 0.001) compared to all other groups. Treatment groups reorganized the relevant markers (ALT, AST, GGT, and urea). A significant increase was detected in Caspase-10, Caspase-3 and Granzyme-B (GrzB) (p < 0.001) in blood and Caspase-10 and GrzB (p < 0.05) in liver tissue in PCT, PCS and PCTS groups compared to the PC group. Histopathological examination revealed that the PC group showed cancer morphology, and the treatment groups caused a decrease in tumor incidence and size. Our current findings suggest that the mechanism of action of TCAE in HCC is through the NKs/CTLs-GrzB-Casp10-Casp3 signaling pathway and can be used in combination with chemotherapy drugs for the development of future drug designs.
Collapse
Affiliation(s)
- Serdar Vanli
- Ministry of Agriculture and Forestry, Ilgin District Directorate of Agriculture and Forestry, Konya, Turkey
| | - Firuze Kurtoglu
- Department of Biochemistry, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| | - Beyza S Alan
- Department of Biochemistry, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| | - Gokhan Akcakavak
- Department of Pathology, Faculty of Veterinary Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Ozgur Ozdemir
- Department of Pathology, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| |
Collapse
|
8
|
Qin Y, Han S, Yu Y, Qi D, Ran M, Yang M, Liu Y, Li Y, Lu L, Liu Y, Li Y. Lenvatinib in hepatocellular carcinoma: Resistance mechanisms and strategies for improved efficacy. Liver Int 2024; 44:1808-1831. [PMID: 38700443 DOI: 10.1111/liv.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent and destructive causes of cancer-related deaths worldwide, approximately 70% of patients with HCC exhibit advanced disease at diagnosis, limiting the potential for radical treatment. For such patients, lenvatinib, a long-awaited alternative to sorafenib for first-line targeted therapy, has become a key treatment. Unfortunately, despite some progress, the prognosis for advanced HCC remains poor because of drug resistance development. However, the molecular mechanisms underlying lenvatinib resistance and ways to relief drug resistance in HCC are largely unknown and lack of systematic summary; thus, this review not only aims to explore factors contributing to lenvatinib resistance in HCC, but more importantly, summary potential methods to conquer or mitigate the resistance. The results suggest that abnormal activation of pathways, drug transport, epigenetics, tumour microenvironment, cancer stem cells, regulated cell death, epithelial-mesenchymal transition, and other mechanisms are involved in the development of lenvatinib resistance in HCC and subsequent HCC progression. To improve the therapeutic outcomes of lenvatinib, inhibiting acquired resistance, combined therapies, and nano-delivery carriers may be possible approaches.
Collapse
Affiliation(s)
- Yongqing Qin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Shisong Han
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Ding Qi
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Mengnan Ran
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yunyi Li
- Department of Nephrology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| |
Collapse
|
9
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
10
|
Shao Y, Su R, Wang Y, Yin S, Pu W, Koo S, Yu H. Drug co-administration in the tumor immune microenvironment of Hepatocellular carcinoma. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:189-199. [DOI: 10.1097/hm9.0000000000000074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The etiology and exact molecular mechanisms of primary hepatocellular carcinoma (HCC) remain unclear, and its incidence has continued to increase in recent years. Despite tremendous advances in systemic therapies such as molecularly targeted drugs, HCC has some of the worst prognoses owing to drug resistance, frequent recurrence, and metastasis. Hepatocellular carcinoma is a widespread disease and its progression is regulated by the immune system. Traditional Chinese medicine (TCM) has been gradually theorized and systematized to have a holistic regulatory role for use in the prevention and treatment of tumors. Although half of the patients with HCC receive systemic therapy, traditionally sorafenib or lenvatinib are used as first-line treatment modalities. TCM is also widely used in the treatment of HCC, and the same immune checkpoint inhibitors (ICIs) such as PD-L1 have also received much focus in the field of continuously changing cancer treatment. Owing to the high probability of resistance to specific drugs and unsatisfactory efficacy due to administration of chemotherapy in single doses, the combination of drugs is the newest therapeutic option for patients with tumors and has become increasingly prominent for treatment. In this article, the research progress on combination therapy in the immunology of HCC is reviewed and the unique advantages of synergistic anti-tumor therapy with combination drugs are highlighted to provide new solutions for the clinical treatment of tumors.
Graphical abstract:
http://links.lww.com/AHM/A65
Collapse
Affiliation(s)
- Yingying Shao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ranran Su
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yu Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Weiling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Sangho Koo
- Department of Energy Science and Technology, Department of Chemistry, Myongji University, Yongin, Gyeonggi-Do, Korea
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|