1
|
Liu Y, Xia G, Zhu S, Shi Y, Huang X, Wu J, Xu C, Du A. Differential transcriptomic profiling of lipid metabolism and collagen remodeling in fast- and slow-twitch skeletal muscles in aging. FASEB J 2025; 39:e70335. [PMID: 39831549 PMCID: PMC11744740 DOI: 10.1096/fj.202402294r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Skeletal muscle function gradually declines with aging, presenting substantial health and societal challenges. Comparative analysis of how aging affects fast- and slow-twitch muscles remains lacking. We utilized 20-month-old mice to reveal the aging effects on muscle structure and fiber composition, followed by bulk RNA sequencing for fast- and slow-twitch muscles and integration with human single-cell RNA sequencing dataset providing a comparative analysis across species. In mouse slow-twitch muscles, aging induced a switch from fast to slow fibers and distinctively altered lipid metabolism in ceramide and triglyceride, with the upregulation of regulatory genes Gk and Ppargc1a also observed in human slow fibers. Additionally, both types of muscles exhibited common collagen deposition and fibrosis, possibly due to the imbalance between collagen synthesis and degradation. The extracellular matrix gene changes substantially overlapped between mice and humans in aging, yet also highlighted clear differences. This integrative analysis provides further understanding of aged fast- and slow-twitch muscles and offers new insights into the molecular changes in aging.
Collapse
Affiliation(s)
- Yujia Liu
- Department of NeurologySongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guofang Xia
- Department of CardiologyShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiChina
| | - Simeng Zhu
- Department of CardiologyShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiChina
| | - Yifan Shi
- Department of CardiologyShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiChina
| | - Xueping Huang
- Department of NeurologySongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jin Wu
- Department of Pediatric SurgeryXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Congfeng Xu
- Department of CardiologyShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiChina
| | - Ailian Du
- Department of NeurologySongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Jose A, Fernando JJ, Kienesberger PC. Lysophosphatidic acid metabolism and signaling in heart disease. Can J Physiol Pharmacol 2024; 102:685-696. [PMID: 38968609 DOI: 10.1139/cjpp-2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid that is mainly produced by the secreted lysophospholipase D, autotaxin (ATX), and signals through at least six G protein-coupled receptors (LPA1-6). Extracellular LPA is degraded through lipid phosphate phosphatases (LPP1, LPP2, and LPP3) at the plasmamembrane, terminating LPA receptor signaling. The ATX-LPA-LPP3 pathway is critically involved in a wide range of physiological processes, including cell survival, migration, proliferation, angiogenesis, and organismal development. Similarly, dysregulation of this pathway has been linked to many pathological processes, including cardiovascular disease. This review summarizes and interprets current literature examining the regulation and role of the ATX-LPA-LPP3 axis in heart disease. Specifically, the contribution of altered LPA metabolism via ATX and LPP3 and resulting changes to LPA receptor signaling in obesity cardiomyopathy, cardiac mitochondrial dysfunction, myocardial infarction/ischemia-reperfusion injury, hypertrophic cardiomyopathy, and aortic valve stenosis is discussed.
Collapse
Affiliation(s)
- Anu Jose
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jeffy J Fernando
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Petra C Kienesberger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Pilarczyk M, Gąssowska-Dobrowolska M, Jarmużek P, Szućko-Kociuba I, Kulik-Sajewicz J, Chlubek D, Baranowska-Bosiacka I. Phospholipid Acyltransferases: Characterization and Involvement of the Enzymes in Metabolic and Cancer Diseases. Cancers (Basel) 2024; 16:2115. [PMID: 38893234 PMCID: PMC11171337 DOI: 10.3390/cancers16112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Jarmużek
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | | | - Justyna Kulik-Sajewicz
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
4
|
Liu A, Kage F, Abdulkareem AF, Aguirre-Huamani MP, Sapp G, Aydin H, Higgs HN. Fatty acyl-coenzyme A activates mitochondrial division through oligomerization of MiD49 and MiD51. Nat Cell Biol 2024; 26:731-744. [PMID: 38594588 PMCID: PMC11404400 DOI: 10.1038/s41556-024-01400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Mitochondrial fission occurs in many cellular processes, but the regulation of fission is poorly understood. We show that long-chain acyl-coenzyme A (LCACA) activates two related mitochondrial fission proteins, MiD49 and MiD51, by inducing their oligomerization, which activates their ability to stimulate the DRP1 GTPase. The 1:1 stoichiometry of LCACA:MiD in the oligomer suggests interaction in the previously identified nucleotide-binding pocket, and a point mutation in this pocket reduces LCACA binding and LCACA-induced oligomerization for MiD51. In cells, this LCACA binding mutant does not assemble into puncta on mitochondria or rescue MiD49/51 knockdown effects on mitochondrial length and DRP1 recruitment. Furthermore, cellular treatment with BSA-bound oleic acid, which causes increased LCACA, promotes mitochondrial fission in an MiD49/51-dependent manner. These results suggest that LCACA is an endogenous ligand for MiDs, inducing mitochondrial fission and providing a potential mechanism for fatty-acid-induced mitochondrial division. Finally, MiD49 or MiD51 oligomers synergize with Mff, but not with actin filaments, in DRP1 activation, suggesting distinct pathways for DRP1 activation.
Collapse
Affiliation(s)
- Ao Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Asan F Abdulkareem
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Mac Pholo Aguirre-Huamani
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Gracie Sapp
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Halil Aydin
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
5
|
Hernandez-Corbacho M, Canals D. Drug Targeting of Acyltransferases in the Triacylglyceride and 1-O-AcylCeramide Biosynthetic Pathways. Mol Pharmacol 2024; 105:166-178. [PMID: 38164582 DOI: 10.1124/molpharm.123.000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Acyltransferase enzymes (EC 2.3.) are a large group of enzymes that transfer acyl groups to a variety of substrates. This review focuses on fatty acyltransferases involved in the biosynthetic pathways of glycerolipids and sphingolipids and how these enzymes have been pharmacologically targeted in their biologic context. Glycerolipids and sphingolipids, commonly treated independently in their regulation and biologic functions, are put together to emphasize the parallelism in their metabolism and bioactive roles. Furthermore, a newly considered signaling molecule, 1-O-acylceramide, resulting from the acylation of ceramide by DGAT2 enzyme, is discussed. Finally, the implications of DGAT2 as a putative ceramide acyltransferase (CAT) enzyme, with a putative dual role in TAG and 1-O-acylceramide generation, are explored. SIGNIFICANCE STATEMENT: This manuscript reviews the current status of drug development in lipid acyltransferases. These are current targets in metabolic syndrome and other diseases, including cancer. A novel function for a member in this group of lipids has been recently reported in cancer cells. The responsible enzyme and biological implications of this added member are discussed.
Collapse
Affiliation(s)
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
6
|
Smith KR, Wang W, Miller MR, Boucher M, Reynold JE, Daurio NA, Li D, Hirenallur-Shanthappa D, Ahn Y, Beebe DA, Kelly KL, Ross TT, Bence KK, Wan M. GPAT1 Deficiency in Mice Modulates NASH Progression in a Model-Dependent Manner. Cell Mol Gastroenterol Hepatol 2023; 17:279-291. [PMID: 37844795 PMCID: PMC10829521 DOI: 10.1016/j.jcmgh.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD), and its more severe form, nonalcoholic steatohepatitis (NASH), is the leading cause for liver failure and liver cancer. Although the etiology is likely multifactorial, genes involved in regulating lipid metabolism are enriched in human NAFLD genome-wide association studies (GWAS), pointing to dysregulated lipid metabolism as a major pathogenic factor. Glycerol-3-phosphate acyltransferase 1 (GPAT1), encoded by GPAM, converts acyl-CoAs and glycerol-3-phosphate into lysophosphatidic acid and has been shown to regulate lipid accumulation in the liver. However, its role in mediating the progression from NAFLD to NASH has not been explored. METHODS GPAT1-deficient mice were generated and challenged with diets inducing hepatic steatosis and NASH. Effects of GPAT1 deficiency on lipid and systemic metabolic end points were evaluated. RESULTS Ablating GPAT1 globally or specifically in mouse hepatocytes reduced hepatic steatosis in the context of diet-induced or genetic obesity. Interestingly, blunting of progression from NAFLD to NASH in global GPAT1 knockout (KO) mice was model dependent. GPAT1 KO mice were protected from choline deficient, amino acid defined high-fat diet-induced NASH development, but not from the high fat, high carbohydrate, and high cholesterol diet-induced NASH. CONCLUSIONS Our preclinical data support the notion that lipid metabolism pathways regulated by GPAT1 in hepatocytes play an essential role in NASH progression, albeit in a model-dependent manner.
Collapse
Affiliation(s)
- Kathleen R Smith
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Wenshan Wang
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Melissa R Miller
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Magalie Boucher
- WRDM Drug Safety, Research and Development, Pfizer Inc, Groton, Connecticut
| | - Jessica E Reynold
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Natalie A Daurio
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Dongmei Li
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | | | - Youngwook Ahn
- WRDM Target Sciences, Pfizer Inc, Cambridge, Massachusetts
| | - David A Beebe
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kenneth L Kelly
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Trenton T Ross
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kendra K Bence
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Min Wan
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts.
| |
Collapse
|