1
|
Liang H, Zhou B, Li P, Zhang X, Zhang S, Zhang Y, Yao S, Qu S, Chen J. Stemness regulation in prostate cancer: prostate cancer stem cells and targeted therapy. Ann Med 2025; 57:2442067. [PMID: 39711287 DOI: 10.1080/07853890.2024.2442067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that cancer stem cells (CSCs) and cancer stem-like cells form a special subpopulation of cells that are ubiquitous in tumors. These cells exhibit similar characteristics to those of normal stem cells in tissues; moreover, they are capable of self-renewal and differentiation, as well as high tumorigenicity and drug resistance. In prostate cancer (PCa), it is difficult to kill these cells using androgen signaling inhibitors and chemotherapy drugs. Consequently, the residual prostate cancer stem cells (PCSCs) mediate tumor recurrence and progression. OBJECTIVE This review aims to provide a comprehensive and up-to-date overview of PCSCs, with a particular emphasis on potential therapeutic strategies targeting these cells. METHODS After searching in PubMed and Embase databases using 'prostate cancer' and 'cancer stem cells' as keywords, studies related were compiled and examined. RESULTS In this review, we detail the origin and characteristics of PCSCs, introduce the regulatory pathways closely related to CSC survival and stemness maintenance, and discuss the link between epithelial-mesenchymal transition, tumor microenvironment and tumor stemness. Furthermore, we introduce the currently available therapeutic strategies targeting CSCs, including signaling pathway inhibitors, anti-apoptotic protein inhibitors, microRNAs, nanomedicine, and immunotherapy. Lastly, we summarize the limitations of current CSC research and mention future research directions. CONCLUSION A deeper understanding of the regulatory network and molecular markers of PCSCs could facilitate the development of novel therapeutic strategies targeting these cells. Previous preclinical studies have demonstrated the potential of this treatment approach. In the future, this may offer alternative treatment options for PCa patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Bin Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Peixin Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyi Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shijie Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaozhong Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengwen Yao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Sifeng Qu
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jun Chen
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
2
|
Guo Q, Lu J, Zhao H, Zhou D, Liu H. Effect of extracellular vesicle ZNF280B derived from lung cancer stem cells on lung cancer progression. Cancer Biol Ther 2025; 26:2450849. [PMID: 39819193 DOI: 10.1080/15384047.2025.2450849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/12/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
OBJECTIVE The purpose of this research was to investigate the role of extracellular vesicles derived from lung cancer stem cells (lung CSCs-EVs) in lung cancer and to explore their potential mechanisms. METHODS Lung CSCs were first isolated and verified using flow cytometry and RT-qPCR assays. Lung CSCs-EVs were extracted through ultracentrifugation and further characterized using transmission electron microscopy and Western blotting. The interaction between lung CSCs-EVs and lung cancer cells was observed through PKH67 staining. Subsequently, we analyzed the differentially expressed genes in lung CSCs using bioinformatics data analysis and evaluated the prognostic value of ZNF280B in lung cancer with the Kaplan-Meier Plotter. RT-qPCR was utilized to assess the mRNA expression levels of these genes, while Western blotting was used to evaluate the protein expression levels of ZNF280B and P53. Next, CCK-8 and colony formation assays were conducted to assess the effects of lung CSCs-EVs and ZNF280B on cancer cell proliferation, migration (via wound healing assay), and invasion (using transwell assay). Additionally, subcutaneous tumor-bearing experiments in nude mice were performed to evaluate the roles of lung CSCs-EVs in lung cancer progression in vivo. RESULTS The results indicated that lung CSCs-EVs accelerated the progression of lung cancer. Mechanistically, these lung CSCs-EVs transferred ZNF280B into cancer cells, leading to the inhibition of P53 expression. CONCLUSIONS In summary, the manuscript first describes the molecular mechanism by which lung CSCs-EVs promote pro-cancer functions in lung cancer through the ZNF280B/P53 axis.
Collapse
Affiliation(s)
- Qixia Guo
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Rugao Boai Hospital, Nantong, People's Republic of China
| | - Jiayan Lu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Rugao Boai Hospital, Nantong, People's Republic of China
| | - Hui Zhao
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People's Republic of China
| | - Ding Zhou
- Department of Radiotherapy, LianShui County People's Hospital, Huai'an, People's Republic of China
| | - Hua Liu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
3
|
Malla R, Bhamidipati P, Samudrala AS, Nuthalapati Y, Padmaraju V, Malhotra A, Rolig AS, Malhotra SV. Exosome-Mediated Cellular Communication in the Tumor Microenvironment Imparts Drug Resistance in Breast Cancer. Cancers (Basel) 2025; 17:1167. [PMID: 40227747 PMCID: PMC11987792 DOI: 10.3390/cancers17071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Globally, breast cancer (BC) is the leading cause of cancer-related death for women. BC is characterized by heterogeneity, aggressive behavior, and high metastatic potential. Chemotherapy, administered as monotherapy or adjuvant therapy, remains a cornerstone of treatment; however, acquired drug resistance is a significant clinical challenge. Deciphering mechanisms of drug resistance will be central to developing more efficient treatment options and improving patient outcomes. The current review examines the multifaceted nature of exosomes in conferring drug resistance in BC through complex communication networks within the tumor microenvironment. We further explore recent advances in understanding how exosomes contribute to resistance against established chemotherapeutic agents such as tamoxifen, paclitaxel, doxorubicin, platinum-based drugs, trastuzumab, and newer immunotherapies, such as immune checkpoint inhibitors. Moreover, we discuss existing systematic approaches to investigating the exosome-drug resistance relationship in BC. Finally, we explore promising therapeutic approaches to overcome exosome-dependent drug resistance in BC, highlighting potential avenues for improved treatment efficacy. Investigating the distinct functions and cargo of exosomes offers potential for developing innovative approaches to overcoming treatment resistance.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Priyamvada Bhamidipati
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Anuveda Sree Samudrala
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Yerusha Nuthalapati
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Vasudevaraju Padmaraju
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Aditya Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Annah S. Rolig
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Sanjay V. Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
4
|
Naimo GD, Forestiero M, Giordano F, Leonetti AE, Gelsomino L, Panno ML, Andò S, Mauro L. Adiponectin Influences the Behavior of Stem Cells in Hormone-Resistant Breast Cancer. Cells 2025; 14:286. [PMID: 39996758 PMCID: PMC11853953 DOI: 10.3390/cells14040286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
In the breast tumor microenvironment (TME), adipocytes exert a selective pressure on the behavior of breast cancer stem cells (BCSCs), which are involved in endocrine therapy resistance. In obesity, adipocytes secrete reduced levels of adiponectin, which promotes the growth and progression of ERα-positive breast cancer (BC). Here, we examined how low adiponectin levels affect the enrichment of the BCSC subpopulation and the mechanisms contributing to the maintenance of endocrine therapy resistance in BC. Flow cytometry, qRT-PCR, and Western blotting analysis were performed to assess stemness, the cell cycle, and apoptosis markers in MCF-7 wild-type (WT) and tamoxifen-resistant (TR) mammospheres. nLC-MS/MS was employed to profile and compare the proteome of BCSCs. Differentially expressed proteins were intersected with data from the MetacoreTM dataset. Our study demonstrated that adiponectin increased the percentage of CD44+/CD24-/ALDH1+ stem-like cells in TR MCF-7 mammospheres. Specifically, adiponectin contributed to the maintenance of BCSC bulk in TR MCF-7 cells through a slow cycling rate, supported by decreased levels of Cyclin D1 and Ki67 and increased p21 and p27 expression, and through escape from apoptosis, sustained by reduced ROS production and preserved maintenance of mitochondrial membrane potential. Our results provide new insights into the contribution of adiponectin to poor ERα-positive BC outcomes. Deeply understanding adiponectin's role in stemness may disclose novel therapeutic approaches to treat hormone-resistant obese BC patients.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Martina Forestiero
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Francesca Giordano
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Adele Elisabetta Leonetti
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Luca Gelsomino
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Maria Luisa Panno
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Sebastiano Andò
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Loredana Mauro
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| |
Collapse
|
5
|
Nakatsuji M, Fujimori K. Adipocyte-conditioned medium induces tamoxifen resistance by activating PI3K/Akt/mTOR pathway in estrogen receptor-positive breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119821. [PMID: 39159684 DOI: 10.1016/j.bbamcr.2024.119821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Resistance to endocrine therapy is a major clinical challenge in estrogen receptor (ER)-positive breast cancer. Obesity is associated with the clinical response to ER-positive breast cancers; however, the mechanism underlying obesity-induced resistance to endocrine therapy in ER-positive breast cancers remains unclear. In this study, we investigated the molecular mechanisms underlying obesity-induced resistance to tamoxifen (TAM), an anti-estrogen agent, in the ER-positive breast cancer cell line MCF-7 using differentiated adipocyte-conditioned medium (D-CM). Treatment of the cells with D-CM promoted TAM resistance by reducing TAM-induced apoptosis. The expression levels of the ERα target genes were higher in D-CM-treated cells than those in untreated ones. In contrast, when the cells were cultured in the presence of TAM, the expression levels were decreased, with or without D-CM. Moreover, the expression of the markers for cancer stem-like cells (CSCs) and mammosphere formation was enhanced by co-treating with D-CM and TAM, compared with TAM alone. The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was activated in MCF-7 cells by D-CM treatment, even in the presence of TAM. Inhibition of the PI3K/Akt/mTOR pathway decreased the expression levels of the CSC markers, suppressed mammosphere formation, and resensitized to TAM via inducing apoptosis in D-CM-treated cells. These results indicate that the conditioned medium of differentiated adipocytes promoted TAM resistance by inducing the CSC phenotype through activation of the PI3K/Akt/mTOR pathway in ER-positive breast cancer cells. Thus, the PI3K/Akt/mTOR pathway may be a therapeutic target in obese patients with ER-positive breast cancers.
Collapse
Affiliation(s)
- Masatoshi Nakatsuji
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
6
|
Yoshida J, Hayashi T, Munetsuna E, Khaledian B, Sueishi F, Mizuno M, Maeda M, Watanabe T, Ushida K, Sugihara E, Imaizumi K, Kawada K, Asai N, Shimono Y. Adipsin-dependent adipocyte maturation induces cancer cell invasion in breast cancer. Sci Rep 2024; 14:18494. [PMID: 39122742 PMCID: PMC11316094 DOI: 10.1038/s41598-024-69476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Adipocyte-cancer cell interactions promote tumor development and progression. Previously, we identified adipsin (CFD) and its downstream effector, hepatocyte growth factor (HGF), as adipokines that enhance adipocyte-breast cancer stem cell interactions. Here, we show that adipsin-dependent adipocyte maturation and the subsequent upregulation of HGF promote tumor invasion in breast cancers. Mature adipocytes, but not their precursors, significantly induced breast tumor cell migration and invasion in an adipsin expression-dependent manner. Promoters of tumor invasion, galectin 7 and matrix metalloproteinases, were significantly upregulated in cancer cells cocultured with mature adipocytes; meanwhile, their expression levels in cancer cells cocultured with adipocytes were reduced by adipsin knockout (Cfd KO) or a competitive inhibitor of CFD. Tumor growth and distant metastasis of mammary cancer cells were significantly suppressed when syngeneic mammary cancer cells were transplanted into Cfd KO mice. Histological analyses revealed reductions in capsular formation and tumor invasion at the cancer-adipocyte interface in the mammary tumors formed in Cfd KO mice. These findings indicate that adipsin-dependent adipocyte maturation may play an important role in adipocyte-cancer cell interaction and breast cancer progression.
Collapse
Affiliation(s)
- Jumpei Yoshida
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
- Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Takanori Hayashi
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
| | - Behnoush Khaledian
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
| | - Fujiko Sueishi
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
| | - Masahiro Mizuno
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
| | - Masao Maeda
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
- Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Takashi Watanabe
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 4701192, Japan
| | - Kaori Ushida
- Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 4701192, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Kenji Kawada
- Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan.
| |
Collapse
|
7
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Yamamoto S, Yamamoto K, Hirao Y, Yamaguchi K, Nakajima K, Sato M, Kawachi M, Domon M, Goto K, Omori K, Iino N, Shimada H, Aoyagi R, Ei I, Goto S, Goto Y, Gejyo F, Yamamoto T, Narita I. Mass spectrometry-based proteomic analysis of proteins adsorbed by hexadecyl-immobilized cellulose bead column for the treatment of dialysis-related amyloidosis. Amyloid 2024; 31:105-115. [PMID: 38343068 DOI: 10.1080/13506129.2024.2315148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Dialysis-related amyloidosis (DRA) is a severe complication in end-stage kidney disease (ESKD) patients undergoing long-term dialysis treatment, characterized by the deposition of β2-microglobulin-related amyloids (Aβ2M amyloid). To inhibit DRA progression, hexadecyl-immobilized cellulose bead (HICB) columns are employed to adsorb circulating β2-microglobulin (β2M). However, it is possible that the HICB also adsorbs other molecules involved in amyloidogenesis. METHODS We enrolled 14 ESKD patients using HICB columns for DRA treatment; proteins were extracted from HICBs following treatment and identified using liquid chromatography-linked mass spectrometry. We measured the removal rate of these proteins and examined the effect of those molecules on Aβ2M amyloid fibril formation in vitro. RESULTS We identified 200 proteins adsorbed by HICBs. Of these, 21 were also detected in the amyloid deposits in the carpal tunnels of patients with DRA. After passing through the HICB column and hemodialyzer, the serum levels of proteins such as β2M, lysozyme, angiogenin, complement factor D and matrix Gla protein were reduced. These proteins acted in the Aβ2M amyloid fibril formation. CONCLUSIONS HICBs adsorbed diverse proteins in ESKD patients with DRA, including those detected in amyloid lesions. Direct hemoperfusion utilizing HICBs may play a role in acting Aβ2M amyloidogenesis by reducing the amyloid-related proteins.
Collapse
Affiliation(s)
- Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiko Yamamoto
- Biofluid Biomarker Center, Niigata University, Niigata, Japan
| | - Yoshitoshi Hirao
- Instrumental Analysis Section, Okinawa Institute of Science and Technology, Onna, Japan
| | | | | | - Mami Sato
- Sakelogy Center, Niigata University, Niigata, Japan
| | - Miho Kawachi
- Division of Clinical Chemistry, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Mio Domon
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kei Goto
- Division of Nephrology, Agano Municipal Hospital, Niigata, Japan
| | | | - Noriaki Iino
- Division of Nephrology, Uonuma Kikan Hospital, Niigata, Japan
| | | | - Ryuzi Aoyagi
- Department of Nephrology, Tachikawa General Hospital, Niigata, Japan
| | - Isei Ei
- Santo-Second Clinic, Niigata, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuji Goto
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Fumitake Gejyo
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Tadashi Yamamoto
- Biofluid Biomarker Center, Niigata University, Niigata, Japan
- Department of Clinical Laboratory, Shinrakuen Hospital, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
9
|
Peng X, Dong H, Zhang L, Liu S. Role of cancer stem cell ecosystem on breast cancer metastasis and related mouse models. Zool Res 2024; 45:506-517. [PMID: 38682432 PMCID: PMC11188611 DOI: 10.24272/j.issn.2095-8137.2023.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem, including tumor cells and microenvironment. Breast cancer stem cells (BCSCs) constitute a small population of cancer cells with unique characteristics, including their capacity for self-renewal and differentiation. Studies have shown that BCSCs not only drive tumorigenesis but also play a crucial role in promoting metastasis in breast cancer. The tumor microenvironment (TME), composed of stromal cells, immune cells, blood vessel cells, fibroblasts, and microbes in proximity to cancer cells, is increasingly recognized for its crosstalk with BCSCs and role in BCSC survival, growth, and dissemination, thereby influencing metastatic ability. Hence, a thorough understanding of BCSCs and the TME is critical for unraveling the mechanisms underlying breast cancer metastasis. In this review, we summarize current knowledge on the roles of BCSCs and the TME in breast cancer metastasis, as well as the underlying regulatory mechanisms. Furthermore, we provide an overview of relevant mouse models used to study breast cancer metastasis, as well as treatment strategies and clinical trials addressing BCSC-TME interactions during metastasis. Overall, this study provides valuable insights for the development of effective therapeutic strategies to reduce breast cancer metastasis.
Collapse
Affiliation(s)
- Xilei Peng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences
- State Key Laboratory of Genetic Engineering
- Cancer Institutes
- Department of Oncology
- Key Laboratory of Breast Cancer in Shanghai
- Shanghai Key Laboratory of Medical Epigenetics
- Shanghai Key Laboratory of Radiation Oncology
- International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology
- Shanghai Medical College
- Fudan University, Shanghai 200032, China
| | - Haonan Dong
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences
- State Key Laboratory of Genetic Engineering
- Cancer Institutes
- Department of Oncology
- Key Laboratory of Breast Cancer in Shanghai
- Shanghai Key Laboratory of Medical Epigenetics
- Shanghai Key Laboratory of Radiation Oncology
- International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology
- Shanghai Medical College
- Fudan University, Shanghai 200032, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences
- State Key Laboratory of Genetic Engineering
- Cancer Institutes
- Department of Oncology
- Key Laboratory of Breast Cancer in Shanghai
- Shanghai Key Laboratory of Medical Epigenetics
- Shanghai Key Laboratory of Radiation Oncology
- International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology
- Shanghai Medical College
- Fudan University, Shanghai 200032, China. E-mail:
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences
- State Key Laboratory of Genetic Engineering
- Cancer Institutes
- Department of Oncology
- Key Laboratory of Breast Cancer in Shanghai
- Shanghai Key Laboratory of Medical Epigenetics
- Shanghai Key Laboratory of Radiation Oncology
- International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology
- Shanghai Medical College
- Fudan University, Shanghai 200032, China. E-mail:
| |
Collapse
|
10
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
11
|
Frąszczak K, Barczyński B. The Role of Cancer Stem Cell Markers in Ovarian Cancer. Cancers (Basel) 2023; 16:40. [PMID: 38201468 PMCID: PMC10778113 DOI: 10.3390/cancers16010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and the eighth most common female cancer. The early diagnosis of ovarian cancer remains a clinical problem despite the significant development of technology. Nearly 70% of patients with ovarian cancer are diagnosed with stages III-IV metastatic disease. Reliable diagnostic and prognostic biomarkers are currently lacking. Ovarian cancer recurrence and resistance to chemotherapy pose vital problems and translate into poor outcomes. Cancer stem cells appear to be responsible for tumour recurrence resulting from chemotherapeutic resistance. These cells are also crucial for tumour initiation due to the ability to self-renew, differentiate, avoid immune destruction, and promote inflammation and angiogenesis. Studies have confirmed an association between CSC occurrence and resistance to chemotherapy, subsequent metastases, and cancer relapses. Therefore, the elimination of CSCs appears important for overcoming drug resistance and improving prognoses. This review focuses on the expression of selected ovarian CSC markers, including CD133, CD44, CD24, CD117, and aldehyde dehydrogenase 1, which show potential prognostic significance. Some markers expressed on the surface of CSCs correlate with clinical features and can be used for the diagnosis and prognosis of ovarian cancer. However, due to the heterogeneity and plasticity of CSCs, the determination of specific CSC phenotypes is difficult.
Collapse
Affiliation(s)
| | - Bartłomiej Barczyński
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland;
| |
Collapse
|