1
|
Zhao L, Li H, Liu Z, Wang Z, Xu D, Zhang J, Ran J, Mo H, Hu L. Copper ions induces ferroptosis in Staphylococcus aureus and promotes healing of MRSA-induced wound infections. Microbiol Res 2025; 296:128122. [PMID: 40024210 DOI: 10.1016/j.micres.2025.128122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
The emergence of multidrug-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA), poses a significant threat to public health, necessitating new antimicrobial strategies. Here, we demonstrate that low doses of copper sulfate (CuSO4) exhibit potent bactericidal effects against both S. aureus and MRSA by inducing ferroptosis. CuSO4 treatment causes bacterial cell membrane perforation, increases intracellular free copper (Cu+) and ferrous ions (Fe2+), elevates reactive oxygen species (ROS) production and lipid peroxidation, and triggers the intracellular Fenton reaction. The use of ROS scavengers, copper chelators, iron chelators, and iron oxidase inhibitors attenuated ROS levels and lipid peroxidation, reducing Cu2+-mediated cell death, confirming the role of ferroptosis. Proteomic analysis revealed that Cu2+ enhances the expression of Fur protein, mediates iron release from intracellular stores, and inhibits glutathione biosynthesis. Furthermore, we developed a sodium alginate hydrogel loaded with CuSO4 (Cu-SA), which significantly improved wound healing and reduced inflammation and organ damage in an MRSA-infected mouse skin model. Our findings suggest that Cu2+-induced ferroptosis offers a promising alternative to traditional antibiotics for treating MRSA infections, providing a novel strategy to combat antibiotic resistance in S. aureus.
Collapse
Affiliation(s)
- Lili Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhen Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Agricultural Products Processing Technology Research Institute, Xi'an 710021, China; School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiayi Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Agricultural Products Processing Technology Research Institute, Xi'an 710021, China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Wang R, Zhao C, Guo D, Wang Y, Sun L, Liu X, Sun Y, Liu D, Guan J, Wang L, Wang B. Disarming the Pathogenicity of Methicillin-Resistant Staphylococcus aureus via Osmundacetone-Mediated Inhibition of Sortase A. Microb Biotechnol 2025; 18:e70119. [PMID: 40358044 DOI: 10.1111/1751-7915.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 05/15/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major global health threat due to its resistance to multiple antibiotics, making conventional treatments ineffective. The rise in antibiotic resistance highlights the urgent need for new therapies. Sortase A (SrtA), a key virulence factor in Staphylococcus aureus (S. aureus), facilitates bacterial adhesion and infection by anchoring surface proteins to host cells, making it a promising drug target. In this study, we investigated the potential of osmundacetone (OSC), a natural compound from Osmundae Rhizoma, as an SrtA inhibitor. Using fluorescence resonance energy transfer (FRET), OSC was found to inhibit SrtA with an IC50 of 1.29 μg/mL (7.24 μM). Further in vitro assays confirmed the effectiveness of OSC in inhibiting SrtA-mediated bacterial adhesion, invasion and biofilm formation. Fluorescence quenching and molecular docking pinpointed the binding site of OSC on SrtA. In vivo, OSC improved survival rates in MRSA-infected mice and Galleria mellonella (G. mellonella) while reducing bacterial loads in infected tissues. These results suggest OSC as a promising candidate for anti-MRSA therapies.
Collapse
Affiliation(s)
- Rong Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Chunhui Zhao
- Changchun University of Chinese Medicine, Changchun, China
| | - Dongbin Guo
- Changchun University of Chinese Medicine, Changchun, China
| | - Yueying Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Luanbiao Sun
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Xinyao Liu
- Changchun University of Chinese Medicine, Changchun, China
| | - Yun Sun
- Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- State Key·Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University Changchun, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Shulga DA, Kudryavtsev KV. Ensemble Docking as a Tool for the Rational Design of Peptidomimetic Staphylococcus aureus Sortase A Inhibitors. Int J Mol Sci 2024; 25:11279. [PMID: 39457061 PMCID: PMC11508331 DOI: 10.3390/ijms252011279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Sortase A (SrtA) of Staphylococcus aureus has long been shown to be a relevant molecular target for antibacterial development. Moreover, the designed SrtA inhibitors act via the antivirulence mechanism, potentially causing less evolutional pressure and reduced antimicrobial resistance. However, no marketed drugs or even drug candidates have been reported until recently, despite numerous efforts in the field. SrtA has been shown to be a tough target for rational structure-based drug design (SBDD), which hampers the regular development of small-molecule inhibitors using the available arsenal of drug discovery tools. Recently, several oligopeptides resembling the sorting sequence LPxTG (Leu-Pro-Any-Thr-Gly) of the native substrates of SrtA were reported to be active in the micromolar range. Despite the good experimental design of those works, their molecular modeling parts are still not convincing enough to be used as a basis for a rational modification of peptidic inhibitors. In this work, we propose to use the ensemble docking approach, in which the relevant SrtA conformations are extracted from the molecular dynamics simulation of the LPRDA (Leu-Pro-Arg-Asp-Ala)-SrtA complex, to effectively represent the most significant and diverse target conformations. The developed protocol is shown to describe the known experimental data well and then is applied to a series of new peptidomimetic molecules resembling the active oligopeptide structures reported previously in order to prioritize structures from this work for further synthesis and activity testing. The proposed approach is compared to existing alternatives, and further directions for its development are outlined.
Collapse
Affiliation(s)
- Dmitry A. Shulga
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Konstantin V. Kudryavtsev
- Vreden National Medical Research Center of Traumatology and Orthopedics, 195427 St. Petersburg, Russia
| |
Collapse
|
4
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
5
|
Vogel BA, Blount JM, Kodama HM, Goodwin-Rice NJ, Andaluz DJ, Jackson SN, Antos JM, Amacher JF. A unique binding mode of P1' Leu-containing target sequences for Streptococcus pyogenes sortase A results in alternative cleavage. RSC Chem Biol 2024; 5:30-40. [PMID: 38179192 PMCID: PMC10763551 DOI: 10.1039/d3cb00129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/26/2023] [Indexed: 01/06/2024] Open
Abstract
Sortase enzymes are cysteine transpeptidases that attach environmental sensors, toxins, and other proteins to the cell surface in Gram-positive bacteria. The recognition motif for many sortases is the cell wall sorting signal (CWSS), LPXTG, where X = any amino acid. Recent work from ourselves and others has described recognition of additional amino acids at a number of positions in the CWSS, specifically at the Thr (or P1) and Gly (or P1') positions. In addition, although standard cleavage occurs between these two residues (P1/P1'), we previously observed that the SrtA enzyme from Streptococcus pneumoniae will cleave after the P1' position when its identity is a Leu or Phe. The stereochemical basis of this alternative cleavage is not known, although homologs, e.g., SrtA from Listeria monocytogenes or Staphylococcus aureus do not show alternative cleavage to a significant extent. Here, we use protein biochemistry, structural biology, and computational biochemistry to predict an alternative binding mode that facilitates alternative cleavage. We use Streptococcus pyogenes SrtA (spySrtA) as our model enzyme, first confirming that it shows similar standard/alternative cleavage ratios for LPATL, LPATF, and LPATY sequences. Molecular dynamics simulations suggest that when P1' is Leu, this amino acid binds in the canonical S1 pocket, pushing the P1 Thr towards solvent. The P4 Leu (L̲PATL) binds as it does in standard binding, resulting in a puckered binding conformation. We use P1 Glu-containing peptides to support our hypotheses, and present the complex structure of spySrtA-LPALA to confirm favorable accommodation of Leu in the S1 pocket. Overall, we structurally characterize an alternative binding mode for spySrtA and specific target sequences, expanding the potential protein engineering possibilities in sortase-mediated ligation applications.
Collapse
Affiliation(s)
- Brandon A Vogel
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Jadon M Blount
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Hanna M Kodama
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Noah J Goodwin-Rice
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Devin J Andaluz
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Sophie N Jackson
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - John M Antos
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Jeanine F Amacher
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| |
Collapse
|
6
|
Godse S, Sapar T, Amacher JF. An idea to explore: Engaging high school students in structure-function studies of bacterial sortase enzymes and inhibitors - A comprehensive computational experimental pipeline. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 51:606-615. [PMID: 37462254 DOI: 10.1002/bmb.21769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 11/22/2023]
Abstract
High school science fairs provide an exceptional opportunity for students to gain experience with scientific research, and participation has positive outcomes with respect to chosen careers in the sciences. However, it can be challenging to engage high school students in university-level research outside of formal internship programs. Here, we describe an experimental pipeline for a computational structural biology project that engages high school students. Students are involved at every step of the investigation and utilize freely available software to dock inhibitors onto protein homologues, and then analyze the resulting complexes. Bacterial sortases are transpeptidases on the cell surface of Gram-positive bacteria and are a potential target for the development of antibiotics. Students modeled inhibitors bound to sortases from several organisms, asking questions about affinity and selectivity. Their project was ranked in the top 10% at both regional and state science fairs. This project design is easily adaptable to countless other protein systems and provides a pipeline for collaborative high school student/university professor inquiry.
Collapse
Affiliation(s)
| | - Tanvi Sapar
- Tesla STEM High School, Redmond, Washington, USA
| | - Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
7
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
8
|
Selection of Promising Novel Fragment Sized S. aureus SrtA Noncovalent Inhibitors Based on QSAR and Docking Modeling Studies. Molecules 2021; 26:molecules26247677. [PMID: 34946760 PMCID: PMC8709105 DOI: 10.3390/molecules26247677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
Sortase A (SrtA) of Staphylococcus aureus has been identified as a promising target to a new type of antivirulent drugs, and therefore, the design of lead molecules with a low nanomolar range of activity and suitable drug-like properties is important. In this work, we aimed at identifying new fragment-sized starting points to design new noncovalent S. aureus SrtA inhibitors by making use of the dedicated molecular motif, 5-arylpyrrolidine-2-carboxylate, which has been previously shown to be significant for covalent binding SrtA inhibitors. To this end, an in silico approach combining QSAR and molecular docking studies was used. The known SrtA inhibitors from the ChEMBL database with diverse scaffolds were first employed to derive descriptors and interpret their significance and correlation to activity. Then, the classification and regression QSAR models were built, which were used for rough ranking of the virtual library of the synthetically feasible compounds containing the dedicated motif. Additionally, the virtual library compounds were docked into the “activated” model of SrtA (PDB:2KID). The consensus ranking of the virtual library resulted in the most promising structures, which will be subject to further synthesis and experimental testing in order to establish new fragment-like molecules for further development into antivirulent drugs.
Collapse
|
9
|
Ricci-Lopez J, Aguila SA, Gilson MK, Brizuela CA. Improving Structure-Based Virtual Screening with Ensemble Docking and Machine Learning. J Chem Inf Model 2021; 61:5362-5376. [PMID: 34652141 DOI: 10.1021/acs.jcim.1c00511] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the main challenges of structure-based virtual screening (SBVS) is the incorporation of the receptor's flexibility, as its explicit representation in every docking run implies a high computational cost. Therefore, a common alternative to include the receptor's flexibility is the approach known as ensemble docking. Ensemble docking consists of using a set of receptor conformations and performing the docking assays over each of them. However, there is still no agreement on how to combine the ensemble docking results to obtain the final ligand ranking. A common choice is to use consensus strategies to aggregate the ensemble docking scores, but these strategies exhibit slight improvement regarding the single-structure approach. Here, we claim that using machine learning (ML) methodologies over the ensemble docking results could improve the predictive power of SBVS. To test this hypothesis, four proteins were selected as study cases: CDK2, FXa, EGFR, and HSP90. Protein conformational ensembles were built from crystallographic structures, whereas the evaluated compound library comprised up to three benchmarking data sets (DUD, DEKOIS 2.0, and CSAR-2012) and cocrystallized molecules. Ensemble docking results were processed through 30 repetitions of 4-fold cross-validation to train and validate two ML classifiers: logistic regression and gradient boosting trees. Our results indicate that the ML classifiers significantly outperform traditional consensus strategies and even the best performance case achieved with single-structure docking. We provide statistical evidence that supports the effectiveness of ML to improve the ensemble docking performance.
Collapse
Affiliation(s)
- Joel Ricci-Lopez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California C.P. 22860, Mexico.,Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California C.P. 22860, Mexico
| | - Sergio A Aguila
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California C.P. 22860, Mexico
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Carlos A Brizuela
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California C.P. 22860, Mexico
| |
Collapse
|
10
|
Sapra R, Rajora AK, Kumar P, Maurya GP, Pant N, Haridas V. Chemical Biology of Sortase A Inhibition: A Gateway to Anti-infective Therapeutic Agents. J Med Chem 2021; 64:13097-13130. [PMID: 34516107 DOI: 10.1021/acs.jmedchem.1c00386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is the leading cause of hospital-acquired infections. The enzyme sortase A, present on the cell surface of S. aureus, plays a key role in bacterial virulence without affecting the bacterial viability. Inhibition of sortase A activity offers a powerful but clinically less explored therapeutic strategy, as it offers the possibility of not inducing any selective pressure on the bacteria to evolve drug-resistant strains. In this Perspective, we offer a chemical space narrative for the design of sortase A inhibitors, as delineated into three broad domains: peptidomimetics, natural products, and synthetic small molecules. This provides immense opportunities for medicinal chemists to alleviate the ever-growing crisis of antibiotic resistance.
Collapse
Affiliation(s)
- Rachit Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Amit K Rajora
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Pushpendra Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Govind P Maurya
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nalin Pant
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| |
Collapse
|
11
|
Ogedjo M, Onoka I, Sahini M, Shadrack DM. Accommodating receptor flexibility and free energy calculation to reduce false positive binders in the discovery of natural products blockers of SARS-COV-2 spike RBD-ACE2 interface. Biochem Biophys Rep 2021; 27:101024. [PMID: 34056140 PMCID: PMC8148615 DOI: 10.1016/j.bbrep.2021.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), which causes coronavirus disease-19 (COVID-19) has caused more than 2 million deaths around the globe. The high transmissibility rate of the disease is related to the strong interaction between the virus spike receptor-binding domain (RBD) and the human angiotensin-converting enzyme 2 (ACE2) as documented in several reports. In this study, using state-of-the-art computational methods, natural products were screened and their molecular mechanism to disrupt spike RBD-ACE2 recognition was evaluated. There is the sensitivity of results to receptor ensemble docking calculations. Binding free energy and MD simulation are important tools to evaluate the thermodynamics of binding stability and the capacity of top hits to disrupt RBD-ACE2 recognition. The free energy profiles provide a slight decrease in binding affinity of the virus-receptor interaction. Three flavonoids parvisoflavone B (3), alpinumisoflavone (5) and norisojamicin (2) were effective in blocking the viral entry by binding strongly at the spike RBD-ACE2 interface with the inhibition constant of 0.56, 0.78 and 0.93 μM, respectively. The same compounds demonstrated similar effect on free ACE2 protein. Compound (2), also demonstrated ability to bind strongly on free spike RBD. Well-tempered metadynamics established that parvisoflavone B (3) works by binding to three sites namely interface α, β and loop thereby inhibiting viral cell entry. Owing to their desirable pharmacokinetic properties, the presented top hit natural products are suggested for further SARS-COV-2 molecular targets and subsequent in vitro and in vivo evaluations.
Collapse
Affiliation(s)
- Marcelina Ogedjo
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma, P.O.Box 338, Dodoma, Tanzania
| | - Isaac Onoka
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma, P.O.Box 338, Dodoma, Tanzania
| | - Mtabazi Sahini
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma, P.O.Box 338, Dodoma, Tanzania
| | - Daniel M. Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St. John's University of Tanzania, P.O.Box 47, Dodoma, Tanzania
| |
Collapse
|
12
|
Zrelovs N, Kurbatska V, Rudevica Z, Leonchiks A, Fridmanis D. Sorting out the Superbugs: Potential of Sortase A Inhibitors among Other Antimicrobial Strategies to Tackle the Problem of Antibiotic Resistance. Antibiotics (Basel) 2021; 10:164. [PMID: 33562778 PMCID: PMC7916047 DOI: 10.3390/antibiotics10020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Rapid spread of antibiotic resistance throughout the kingdom bacteria is inevitably bringing humanity towards the "post-antibiotic" era. The emergence of so-called "superbugs"-pathogen strains that develop resistance to multiple conventional antibiotics-is urging researchers around the globe to work on the development or perfecting of alternative means of tackling the pathogenic bacteria infections. Although various conceptually different approaches are being considered, each comes with its advantages and drawbacks. While drug-resistant pathogens are undoubtedly represented by both Gram(+) and Gram(-) bacteria, possible target spectrum across the proposed alternative approaches of tackling them is variable. Numerous anti-virulence strategies aimed at reducing the pathogenicity of target bacteria rather than eliminating them are being considered among such alternative approaches. Sortase A (SrtA) is a membrane-associated cysteine protease that catalyzes a cell wall sorting reaction by which surface proteins, including virulence factors, are anchored to the bacterial cell wall of Gram(+) bacteria. Although SrtA inhibition seems perspective among the Gram-positive pathogen-targeted antivirulence strategies, it still remains less popular than other alternatives. A decrease in virulence due to inactivation of SrtA activity has been extensively studied in Staphylococcus aureus, but it has also been demonstrated in other Gram(+) species. In this manuscript, results of past studies on the discovery of novel SrtA inhibitory compounds and evaluation of their potency were summarized and commented on. Here, we discussed the rationale behind the inhibition of SrtA, raised some concerns on the comparability of the results from different studies, and touched upon the possible resistance mechanisms as a response to implementation of such therapy in practice. The goal of this article is to encourage further studies of SrtA inhibitory compounds.
Collapse
Affiliation(s)
| | | | | | | | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, LV-1067 Riga, Latvia; (N.Z.); (V.K.); (Z.R.); (A.L.)
| |
Collapse
|
13
|
Design and Synthesis of Small Molecules as Potent Staphylococcus aureus Sortase A Inhibitors. Antibiotics (Basel) 2020; 9:antibiotics9100706. [PMID: 33081148 PMCID: PMC7602840 DOI: 10.3390/antibiotics9100706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023] Open
Abstract
The widespread and uncontrollable emergence of antibiotic-resistant bacteria, especially methicillin-resistant Staphylococcus aureus, has promoted a wave of efforts to discover a new generation of antibiotics that prevent or treat bacterial infections neither as bactericides nor bacteriostats. Due to its crucial role in virulence and its nonessentiality in bacterial survival, sortase A has been considered as a great target for new antibiotics. Sortase A inhibitors have emerged as promising alternative antivirulence agents against bacteria. Herein, the structural and preparative aspects of some small synthetic organic compounds that block the pathogenic action of sortase A have been described.
Collapse
|
14
|
Gosschalk JE, Chang C, Sue CK, Siegel SD, Wu C, Kattke MD, Yi SW, Damoiseaux R, Jung ME, Ton-That H, Clubb RT. A Cell-based Screen in Actinomyces oris to Identify Sortase Inhibitors. Sci Rep 2020; 10:8520. [PMID: 32444661 PMCID: PMC7244523 DOI: 10.1038/s41598-020-65256-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Sortase enzymes are attractive antivirulence drug targets that attach virulence factors to the surface of Staphylococcus aureus and other medically significant bacterial pathogens. Prior efforts to discover a useful sortase inhibitor have relied upon an in vitro activity assay in which the enzyme is removed from its native site on the bacterial surface and truncated to improve solubility. To discover inhibitors that are effective in inactivating sortases in vivo, we developed and implemented a novel cell-based screen using Actinomyces oris, a key colonizer in the development of oral biofilms. A. oris is unique because it exhibits sortase-dependent growth in cell culture, providing a robust phenotype for high throughput screening (HTS). Three molecules representing two unique scaffolds were discovered by HTS and disrupt surface protein display in intact cells and inhibit enzyme activity in vitro. This represents the first HTS for sortase inhibitors that relies on the simple metric of cellular growth and suggests that A. oris may be a useful platform for discovery efforts targeting sortase.
Collapse
Affiliation(s)
- Jason E Gosschalk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Chungyu Chang
- Division of Oral Biology and Medicine, University of California, Los Angeles, USA
| | - Christopher K Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Sara D Siegel
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Chenggang Wu
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Michele D Kattke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Sung Wook Yi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Robert Damoiseaux
- Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, USA.,California NanoSystems Institute, University of California, Los Angeles, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Hung Ton-That
- Division of Oral Biology and Medicine, University of California, Los Angeles, USA. .,Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, USA.
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA. .,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA. .,Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Li J, Zhang Y, Soubias O, Khago D, Chao FA, Li Y, Shaw K, Byrd RA. Optimization of sortase A ligation for flexible engineering of complex protein systems. J Biol Chem 2020; 295:2664-2675. [PMID: 31974162 DOI: 10.1074/jbc.ra119.012039] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/22/2020] [Indexed: 01/06/2023] Open
Abstract
Engineering and bioconjugation of proteins is a critically valuable tool that can facilitate a wide range of biophysical and structural studies. The ability to orthogonally tag or label a domain within a multidomain protein may be complicated by undesirable side reactions to noninvolved domains. Furthermore, the advantages of segmental (or domain-specific) isotopic labeling for NMR, or deuteration for neutron scattering or diffraction, can be realized by an efficient ligation procedure. Common methods-expressed protein ligation, protein trans-splicing, and native chemical ligation-each have specific limitations. Here, we evaluated the use of different variants of Staphylococcus aureus sortase A for a range of ligation reactions and demonstrate that conditions can readily be optimized to yield high efficiency (i.e. completeness of ligation), ease of purification, and functionality in detergents. These properties may enable joining of single domains into multidomain proteins, lipidation to mimic posttranslational modifications, and formation of cyclic proteins to aid in the development of nanodisc membrane mimetics. We anticipate that the method for ligating separate domains into a single functional multidomain protein reported here may enable many applications in structural biology.
Collapse
Affiliation(s)
- Jess Li
- Structural Biophysics Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702-1201
| | - Yue Zhang
- Structural Biophysics Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702-1201
| | - Olivier Soubias
- Structural Biophysics Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702-1201
| | - Domarin Khago
- Structural Biophysics Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702-1201
| | - Fa-An Chao
- Structural Biophysics Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702-1201
| | - Yifei Li
- Structural Biophysics Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702-1201
| | - Katherine Shaw
- Structural Biophysics Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702-1201
| | - R Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702-1201.
| |
Collapse
|
16
|
Shadrack DM, Swai HS, Hassanali A. A computational study on the role of water and conformational fluctuations in Hsp90 in response to inhibitors. J Mol Graph Model 2019; 96:107510. [PMID: 31877402 DOI: 10.1016/j.jmgm.2019.107510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
Molecular chaperone Heat Shock Protein 90 (Hsp90) represents an interesting chemotherapeutic target for cancer treatments as it plays a role in cancer proliferation. Thus, continued effort to identify novel inhibitors of this target is an important task. Drug design using computational approach has gained significant attention in recent years. This work aims to propose docking protocols to re-purpose FDA-approved drugs targeting Hsp90. Sensitivity of results to different docking protocols such apo, holo and receptor ensembles (relaxed complex) structures, the role of water and conformational changes of Hsp90, are described. We show that the protein conformation and water have effects on drug binding. Holo relaxed complex receptors ensembles improves the binding energy of ligands to the protein. We also compare and contrast structural stability of three drugs namely: ezetimibe, pitavastatin and vilazodon in the Hsp90 protein. The results obtained serves as a possible basis towards developing Hsp90 inhibitors.
Collapse
Affiliation(s)
- Daniel M Shadrack
- Department of Health and Biomedical Sciences, School of Life Science and Bioengieering, The Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Arusha, Tanzania; International Centre for Theoretical Physics, Strada Costiera, 11, 34151, Trieste, Italy; Department of Chemistry, FaNAS, St John's University of Tanzania, P.O.Box 47, Dodoma, Tanzania.
| | - Hulda S Swai
- Department of Health and Biomedical Sciences, School of Life Science and Bioengieering, The Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Arusha, Tanzania
| | - Ali Hassanali
- International Centre for Theoretical Physics, Strada Costiera, 11, 34151, Trieste, Italy.
| |
Collapse
|
17
|
Sen N, Kanitkar TR, Roy AA, Soni N, Amritkar K, Supekar S, Nair S, Singh G, Madhusudhan MS. Predicting and designing therapeutics against the Nipah virus. PLoS Negl Trop Dis 2019; 13:e0007419. [PMID: 31830030 PMCID: PMC6907750 DOI: 10.1371/journal.pntd.0007419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/04/2019] [Indexed: 11/28/2022] Open
Abstract
Despite Nipah virus outbreaks having high mortality rates (>70% in Southeast Asia), there are no licensed drugs against it. In this study, we have considered all 9 Nipah proteins as potential therapeutic targets and computationally identified 4 putative peptide inhibitors (against G, F and M proteins) and 146 small molecule inhibitors (against F, G, M, N, and P proteins). The computations include extensive homology/ab initio modeling, peptide design and small molecule docking. An important contribution of this study is the increased structural characterization of Nipah proteins by approximately 90% of what is deposited in the PDB. In addition, we have carried out molecular dynamics simulations on all the designed protein-peptide complexes and on 13 of the top shortlisted small molecule ligands to check for stability and to estimate binding strengths. Details, including atomic coordinates of all the proteins and their ligand bound complexes, can be accessed at http://cospi.iiserpune.ac.in/Nipah. Our strategy was to tackle the development of therapeutics on a proteome wide scale and the lead compounds identified could be attractive starting points for drug development. To counter the threat of drug resistance, we have analysed the sequences of the viral strains from different outbreaks, to check whether they would be sensitive to the binding of the proposed inhibitors.
Collapse
Affiliation(s)
- Neeladri Sen
- Indian Institute of Science Education and Research, Pune, India
| | | | | | - Neelesh Soni
- Indian Institute of Science Education and Research, Pune, India
| | | | - Shreyas Supekar
- Indian Institute of Science Education and Research, Pune, India
| | - Sanjana Nair
- Indian Institute of Science Education and Research, Pune, India
| | - Gulzar Singh
- Indian Institute of Science Education and Research, Pune, India
| | | |
Collapse
|
18
|
Nitulescu G, Mihai DP, Nicorescu IM, Olaru OT, Ungurianu A, Zanfirescu A, Nitulescu GM, Margina D. Discovery of natural naphthoquinones as sortase A inhibitors and potential anti-infective solutions against Staphylococcus aureus. Drug Dev Res 2019; 80:1136-1145. [PMID: 31486108 DOI: 10.1002/ddr.21599] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Three natural naphthoquinones were screened to find new anti-virulence agents as inhibitors against sortase A from Staphylococcus aureus (SaSrtA) by quantifying the increase in fluorescence intensity upon substrate cleavage at various concentrations. The 5-hydroxy-1,4-naphthalenedione derivatives, juglone and plumbagin, demonstrated a potent inhibitory effect, with IC50 values of 1.78 μM, respectively, 16.71 μM. The related 2-hydroxy-1,4-naphthalenedione derivative, lawsone, demonstrated the selectivity of the chemical scaffold having no significant effect on SaSrtA. The experimental assay was reinforced by molecular docking experiments, antimicrobial, and toxicological studies. Molecular docking studies and the electrophilic character analysis suggest bonding to the enzyme active cysteine residue by a Michael addition reaction. None of the compounds had a significant effect on the concentration of total thiol proteins in the Daphnia magna toxicological assay after 24 hr exposure. Juglone and plumbagin moderately inhibited biofilm formation with no significant effect on bacterial growth of S. aureus, Enterococcus faecalis, and Staphylococcus epidermidis, indicating a selective anti-virulence profile.
Collapse
Affiliation(s)
| | - Dragos P Mihai
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Octavian T Olaru
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Ungurianu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Zanfirescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Denisa Margina
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
19
|
Craft KM, Nguyen JM, Berg LJ, Townsend SD. Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. MEDCHEMCOMM 2019; 10:1231-1241. [PMID: 31534648 PMCID: PMC6748282 DOI: 10.1039/c9md00044e] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus (S. aureus) is an asymptomatic colonizer of 30% of all human beings. While generally benign, antibiotic resistance contributes to the success of S. aureus as a human pathogen. Resistance is rapidly evolved through a wide portfolio of mechanisms including horizontal gene transfer and chromosomal mutation. In addition to traditional resistance mechanisms, a special feature of S. aureus pathogenesis is its ability to survive on both biotic and abiotic surfaces in the biofilm state. Due to this characteristic, S. aureus is a leading cause of human infection. Methicillin-resistant S. aureus (MRSA) in particular has emerged as a widespread cause of both community- and hospital-acquired infections. Currently, MRSA is responsible for 10-fold more infections than all multi-drug resistant (MDR) Gram-negative pathogens combined. Recently, MRSA was classified by the World Health Organization (WHO) as one of twelve priority pathogens that threaten human health. In this targeted mini-review, we discuss MRSA biofilm production, the relationship of biofilm production to antibiotic resistance, and front-line techniques to defeat the biofilm-resistance system.
Collapse
Affiliation(s)
- Kelly M Craft
- Department of Chemistry , Vanderbilt University , 7300 Stevenson Science Center , Nashville , TN 37235 , USA .
| | - Johny M Nguyen
- Department of Chemistry , Vanderbilt University , 7300 Stevenson Science Center , Nashville , TN 37235 , USA .
| | - Lawrence J Berg
- Department of Chemistry , Vanderbilt University , 7300 Stevenson Science Center , Nashville , TN 37235 , USA .
| | - Steven D Townsend
- Department of Chemistry , Vanderbilt University , 7300 Stevenson Science Center , Nashville , TN 37235 , USA .
| |
Collapse
|
20
|
Kim SS, Aprahamian ML, Lindert S. Improving inverse docking target identification with Z-score selection. Chem Biol Drug Des 2019; 93:1105-1116. [PMID: 30604454 DOI: 10.1111/cbdd.13453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/22/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022]
Abstract
The utilization of inverse docking methods for target identification has been driven by an increasing demand for efficient tools for detecting potential drug side-effects. Despite impressive achievements in the field of inverse docking, identifying true positives from a pool of potential targets still remains challenging. Notably, most of the developed techniques have low accuracies, limit the pool of possible targets that can be investigated or are not easy to use for non-experts due to a lack of available scripts or webserver. Guided by our finding that the absolute docking score was a poor indication of a ligand's protein target, we developed a novel "combined Z-score" method that used a weighted fraction of ligand and receptor-based Z-scores to identify the most likely binding target of a ligand. With our combined Z-score method, an additional 14%, 3.6%, and 6.3% of all ligand-protein pairs of the Astex, DUD, and DUD-E databases, respectively, were correctly predicted compared to a docking score-based selection. The combined Z-score had the highest area under the curve in a ROC curve analysis of all three datasets and the enrichment factor for the top 1% predictions using the combined Z-score analysis was the highest for the Astex and DUD-E datasets. Additionally, we developed a user-friendly python script (compatible with both Python2 and Python3) that enables users to employ the combined Z-score analysis for target identification using a user-defined list of ligands and targets. We are providing this python script and a user tutorial as part of the supplemental information.
Collapse
Affiliation(s)
- Stephanie S Kim
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio
| | | | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio
| |
Collapse
|
21
|
Wang X, Chen JL, Otting G, Su XC. Conversion of an amide to a high-energy thioester by Staphylococcus aureus sortase A is powered by variable binding affinity for calcium. Sci Rep 2018; 8:16371. [PMID: 30401805 PMCID: PMC6219580 DOI: 10.1038/s41598-018-34752-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Abstract
Thioesters are key intermediates in biology, which often are generated from less energy-rich amide precursors. Staphylococcus aureus sortase A (SrtA) is an enzyme widely used in biotechnology for peptide ligation. The reaction proceeds in two steps, where the first step involves the conversion of an amide bond of substrate peptide into a thioester intermediate with the enzyme. Here we show that the free energy required for this step is matched by an about 30-fold increase in binding affinity of a calcium ion at the calcium binding site of SrtA, which is remote from the thioester bond. The magnitude of this allosteric effect highlights the importance of calcium for the activity of SrtA. The increase in calcium binding affinity upon binding of substrate not only achieves catalytic formation of an energy-rich intermediate in the absence of nucleotide triphosphates or any tight non-covalent enzyme-substrate interactions, but is also accompanied by accumulation of the labile thioester intermediate, which makes it directly observable in nuclear magnetic resonance (NMR) spectra.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, College of Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, College of Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, College of Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
22
|
Identification of potential inhibitors of sortase A: Binding studies, in-silico docking and protein-protein interaction studies of sortase A from Enterococcus faecalis. Int J Biol Macromol 2018; 120:1906-1916. [PMID: 30268755 DOI: 10.1016/j.ijbiomac.2018.09.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Enterococcus faecalis (Ef) is a Gram positive multidrug resistant (MDR) bacterium contributing about 70% of total enterococcal infections. In Ef, a membrane anchored transpeptidase Sortase A plays a major role in biofilm formation. Therefore, it has been recognized as an ideal drug target against Ef. In this regard to identify the potential inhibitors of Ef Sortase A (EfSrtA∆59), we have cloned, expressed and purified EfSrtA∆59. We have also done the in-silico docking studies to identify lead molecules interacting with EfSrtA∆59. Furthermore, the binding studies of these identified lead molecules were performed with EfSrtA∆59 using fluorescence and CD spectroscopic studies. We also identified the interaction partner of EfSrtA∆59 using STRING. Protein-protein docking studies were also performed. Docking experiment revealed that benzylpenicillin, cefotaxime, pantoprazole and valsartan were bound to same site on the protein with similar interactions. Binding studies using fluorescence spectroscopic studies confirmed the binding of all the ligands to EfSrtA∆59, which was further validated by far and near-UV CD experiments. Thermo stability experiments validate the stability-activity trade-off hypothesis. Sequence based interaction studies identified that EfSrtA∆59 interact with the Ef_1091, Ef_1093 and Ef_2658 proteins. Homology model of Ef_1091 and Ef_1093 was docked with modeled EfSrtA∆59 and their interactions are also discussed.
Collapse
|
23
|
Xie B, Clark JD, Minh DDL. Efficiency of Stratification for Ensemble Docking Using Reduced Ensembles. J Chem Inf Model 2018; 58:1915-1925. [PMID: 30114370 PMCID: PMC6338335 DOI: 10.1021/acs.jcim.8b00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular docking can account for receptor flexibility by combining the docking score over multiple rigid receptor conformations, such as snapshots from a molecular dynamics simulation. Here, we evaluate a number of common snapshot selection strategies using a quality metric from stratified sampling, the efficiency of stratification, which compares the variance of a selection strategy to simple random sampling. We also extend the metric to estimators of exponential averages (which involve an exponential transformation, averaging, and inverse transformation) and minima. For docking sets of over 500 ligands to four different proteins of varying flexibility, we observe that, for estimating ensemble averages and exponential averages, many clustering algorithms have similar performance trends: for a few snapshots (less than 25), medoids are the most efficient, while, for a larger number, optimal (the allocation that minimizes the variance) and proportional (to the size of each cluster) allocation become more efficient. Proportional allocation appears to be the most consistently efficient for estimating minima.
Collapse
Affiliation(s)
- Bing Xie
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - John D. Clark
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
24
|
Hou X, Wang M, Wen Y, Ni T, Guan X, Lan L, Zhang N, Zhang A, Yang CG. Quinone skeleton as a new class of irreversible inhibitors against Staphylococcus aureus sortase A. Bioorg Med Chem Lett 2018; 28:1864-1869. [PMID: 29650293 DOI: 10.1016/j.bmcl.2018.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023]
Abstract
Sortase A (SrtA) anchors surface proteins to the cell wall and aids biofilm formation during infection, which functions as a key virulence factor of important Gram-positive pathogens, such as Staphylococcus aureus. At present researchers need a way in which to validate whether or not SrtA is a druggable target alternative to the conventional antibiotic targets in the mechanism. In this study, we performed a high-throughput screening and identified a new class of potential inhibitors of S. aureus SrtA, which are derived from natural products and contain the quinone skeleton. Compound 283 functions as an irreversible inhibitor that covalently alkylates the active site Cys184 of SrtA. NMR analysis confirms the direct interaction of the small-molecule inhibitor towards SrtA protein. The anchoring of protein A (SpA) to the cell wall and the biofilm formation are significantly attenuated when the S. aureus Newman strain is cultured in the presence of inhibitor. Our study indicates that compound 283 could be a potential hit for the development of new anti-virulence agents against S. aureus infections by covalently targeting SrtA.
Collapse
Affiliation(s)
- Xiaochen Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Meining Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Yi Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Tengfeng Ni
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Xiangna Guan
- Ministry of Education, School of Pharmacy, Fudan University, 826 ZhangHeng Road, Shanghai 201203, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Naixia Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.
| |
Collapse
|
25
|
Luo H, Liang DF, Bao MY, Sun R, Li YY, Li JZ, Wang X, Lu KM, Bao JK. In silico identification of potential inhibitors targeting Streptococcus mutans sortase A. Int J Oral Sci 2018; 9:53-62. [PMID: 28358034 PMCID: PMC5379162 DOI: 10.1038/ijos.2016.58] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2016] [Indexed: 02/08/2023] Open
Abstract
Dental caries is one of the most common chronic diseases and is caused by acid fermentation of bacteria adhered to the teeth. Streptococcus mutans (S. mutans) utilizes sortase A (SrtA) to anchor surface proteins to the cell wall and forms a biofilm to facilitate its adhesion to the tooth surface. Some plant natural products, especially several flavonoids, are effective inhibitors of SrtA. However, given the limited number of inhibitors and the development of drug resistance, the discovery of new inhibitors is urgent. Here, the high-throughput virtual screening approach was performed to identify new potential inhibitors of S. mutans SrtA. Two libraries were used for screening, and nine compounds that had the lowest scores were chosen for further molecular dynamics simulation, binding free energy analysis and absorption, distribution, metabolism, excretion and toxicity (ADMET) properties analysis. The results revealed that several similar compounds composed of benzofuran, thiadiazole and pyrrole, which exhibited good affinities and appropriate pharmacokinetic parameters, were potential inhibitors to impede the catalysis of SrtA. In addition, the carbonyl of these compounds can have a key role in the inhibition mechanism. These findings can provide a new strategy for microbial infection disease therapy.
Collapse
Affiliation(s)
- Hao Luo
- School of Life Sciences and Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu, China
| | - Dan-Feng Liang
- School of Life Sciences and Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu, China
| | - Min-Yue Bao
- School of Life Sciences and Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu, China
| | - Rong Sun
- School of Life Sciences and Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu, China
| | - Yuan-Yuan Li
- School of Life Sciences and Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu, China
| | - Jian-Zong Li
- School of Life Sciences and Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu, China
| | - Xin Wang
- School of Life Sciences and Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu, China
| | - Kai-Min Lu
- School of Life Sciences and Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu, China
| | - Jin-Ku Bao
- School of Life Sciences and Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy/Collaborative Innovation Centre for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Zhang J, Wang M, Tang R, Liu Y, Lei C, Huang Y, Nie Z, Yao S. Transpeptidation-Mediated Assembly of Tripartite Split Green Fluorescent Protein for Label-Free Assay of Sortase Activity. Anal Chem 2018; 90:3245-3252. [DOI: 10.1021/acs.analchem.7b04756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Menglin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
27
|
Ndlovu SNP, Ibrahim H, Bala MD. Sterically Hindered N
-Heterocyclic Salts Utilized as Antimicrobial Agents. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Slindile N. P. Ndlovu
- School of Chemistry and Physics; University of KwaZulu-Natal; Private Bag X54001 Durban 4000 South Africa
| | - Halliru Ibrahim
- School of Chemistry and Physics; University of KwaZulu-Natal; Private Bag X54001 Durban 4000 South Africa
| | - Muhammad D. Bala
- School of Chemistry and Physics; University of KwaZulu-Natal; Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
28
|
Balachandran M, Giannone RJ, Bemis DA, Kania SA. Molecular basis of surface anchored protein A deficiency in the Staphylococcus aureus strain Wood 46. PLoS One 2017; 12:e0183913. [PMID: 28859130 PMCID: PMC5578664 DOI: 10.1371/journal.pone.0183913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022] Open
Abstract
Protein A in Staphylococcus aureus is encoded by the spa (staphylococcal protein A) gene and binds to immunoglobulin (Ig). The S. aureus strain Wood 46 has been variously reported as protein A-deficient and/or spa negative and used as a control in animal models of staphylococcal infections. The results of this study indicate that Wood 46 has normal spa expression but transcribes very low levels of the srtA gene which encodes the sortase A (SrtA) enzyme. This is consistent with unique mutations in the srtA promoter. In this study, a low level of sortase A explains deficient anchoring of proteins with an LPXTG motif, such as protein A, fibrinogen-binding protein and fibronectin-binding proteins A and B on to the peptidoglycan cell wall. The activity of secreted protein A is an important consideration for use of Wood 46 in functional experiments and animal models.
Collapse
Affiliation(s)
- Manasi Balachandran
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Richard J. Giannone
- Chemical Sciences Division, Mass Spectrometry and Laser Spectrometry, Oakridge National Laboratories, Oakridge, Tennessee, United States of America
| | - David A. Bemis
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Stephen A. Kania
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
29
|
Silva LN, Da Hora GCA, Soares TA, Bojer MS, Ingmer H, Macedo AJ, Trentin DS. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Sci Rep 2017; 7:2823. [PMID: 28588273 PMCID: PMC5460262 DOI: 10.1038/s41598-017-02712-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen related to a variety of life-threatening infections but for which antimicrobial resistance is liming the treatment options. We report here that myricetin, but not its glycosylated form, can remarkably decrease the production of several S. aureus virulence factors, including adhesion, biofilm formation, hemolysis and staphyloxanthin production, without interfering with growth. Myricetin affects both surface proteins and secreted proteins which indicate that its action is unrelated to inhibition of the agr quorum sensing system. Analysis of virulence related gene expression and computational simulations of pivotal proteins involved in pathogenesis demonstrate that myricetin downregulates the saeR global regulator and interacts with sortase A and α-hemolysin. Furthermore, Myr confers a significant degree of protection against staphylococcal infection in the Galleria mellonella model. The present findings reveal the potential of Myr as an alternative multi-target antivirulence candidate to control S. aureus pathogenicity.
Collapse
Affiliation(s)
- L N Silva
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil
| | - G C A Da Hora
- Departmento de Química Fundamental, Universidade Federal de Pernambuco, Recife-PE, 50670-901, Brazil
| | - T A Soares
- Departmento de Química Fundamental, Universidade Federal de Pernambuco, Recife-PE, 50670-901, Brazil
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - M S Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark
| | - H Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark
| | - A J Macedo
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil.
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil.
| | - D S Trentin
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre-RS, 90050-170, Brazil
| |
Collapse
|
30
|
Chan AH, Yi SW, Weiner EM, Amer BR, Sue CK, Wereszczynski J, Dillen CA, Senese S, Torres JZ, McCammon JA, Miller LS, Jung ME, Clubb RT. NMR structure-based optimization of Staphylococcus aureus sortase A pyridazinone inhibitors. Chem Biol Drug Des 2017; 90:327-344. [PMID: 28160417 DOI: 10.1111/cbdd.12962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus is a leading cause of hospital-acquired infections in the USA and is a major health concern as methicillin-resistant S. aureus and other antibiotic-resistant strains are common. Compounds that inhibit the S. aureus sortase (SrtA) cysteine transpeptidase may function as potent anti-infective agents as this enzyme attaches virulence factors to the bacterial cell wall. While a variety of SrtA inhibitors have been discovered, the vast majority of these small molecules have not been optimized using structure-based approaches. Here we have used NMR spectroscopy to determine the molecular basis through which pyridazinone-based small molecules inhibit SrtA. These inhibitors covalently modify the active cysteine thiol and partially mimic the natural substrate of SrtA by inducing the closure of an active site loop. Computational and synthetic chemistry methods led to second-generation analogues that are ~70-fold more potent than the lead molecule. These optimized molecules exhibit broad-spectrum activity against other types of class A sortases, have reduced cytotoxicity, and impair SrtA-mediated protein display on S. aureus cell surface. Our work shows that pyridazinone analogues are attractive candidates for further development into anti-infective agents, and highlights the utility of employing NMR spectroscopy and solubility-optimized small molecules in structure-based drug discovery.
Collapse
Affiliation(s)
- Albert H Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sung Wook Yi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ethan M Weiner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brendan R Amer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher K Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Carly A Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Silvia Senese
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.,Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
31
|
He W, Zhang Y, Bao J, Deng X, Batara J, Casey S, Guo Q, Jiang F, Fu L. Synthesis, biological evaluation and molecular docking analysis of 2-phenyl-benzofuran-3-carboxamide derivatives as potential inhibitors of Staphylococcus aureus Sortase A. Bioorg Med Chem 2016; 25:1341-1351. [PMID: 28094221 DOI: 10.1016/j.bmc.2016.12.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 11/26/2022]
Abstract
In Gram-positive bacteria, Sortase A (Srt A) is a critical cysteine transpeptidase that is responsible for recognizing and assembling surface virulence proteins through the recognition of a LPXTG (leucine, proline, X, threonine, and glycine, where X is any amino acid) signal. Mutants lacking genes for Srt A attenuate infections without affecting microbial viability. Here a series of 2-phenyl-benzofuran-3-carboxamide derivatives were synthesized and identified as potent Srt A inhibitors. Activity assays revealed that multiple compounds exhibited excellent inhibitory activity against Srt A compared with known Sortase A inhibitor pHMB (IC50=130μM). Structural activity relationships (SARs) demonstrated that the amide group at 3-position was essential for inhibitory activity. Replacement of the hydroxyl group at the 2-phenyl position of benzofuran with other substitutions such as a methoxyl, halogen or nitro group reduced the enzyme inhibitory activity in most cases. The compound Ia-22 was found to be the most potent inhibitor against the enzyme with an IC50 value of 30.8μM. Molecular docking studies showed Ia-22 shared similar binding pattern with substrate LPXTG in the binding pocket of Srt A (PDB: 2KID) including i-butyl stretching, L-shape pattern kinking, and H-bond interaction with Srt A functional site residues Cys184, Trp194 and Arg197.
Collapse
Affiliation(s)
- Wan He
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China
| | - Yong Zhang
- School of Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jian Bao
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China
| | - Xinxian Deng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China
| | - Jennifer Batara
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China
| | - Shawn Casey
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China
| | - Qiuyuan Guo
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China.
| | - Lei Fu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China.
| |
Collapse
|
32
|
Chen JL, Wang X, Yang F, Cao C, Otting G, Su XC. 3D Structure Determination of an Unstable Transient Enzyme Intermediate by Paramagnetic NMR Spectroscopy. Angew Chem Int Ed Engl 2016; 55:13744-13748. [DOI: 10.1002/anie.201606223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/15/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Gottfried Otting
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| |
Collapse
|
33
|
Chen JL, Wang X, Yang F, Cao C, Otting G, Su XC. 3D Structure Determination of an Unstable Transient Enzyme Intermediate by Paramagnetic NMR Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Gottfried Otting
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| |
Collapse
|
34
|
Disorder-to-Order Transition of an Active-Site Loop Mediates the Allosteric Activation of Sortase A. Biophys J 2016; 109:1706-15. [PMID: 26488662 DOI: 10.1016/j.bpj.2015.08.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/21/2022] Open
Abstract
Intrinsically disordered proteins and intrinsically disordered regions are implicated in many biological functions and associated with many diseases, but their conformational characterizations are challenging. The disordered β6/β7 loop of Staphylococcus aureus sortase A is involved in the binding of both sorting signals and calcium. Calcium binding allosterically activates the enzyme, but the detailed mechanism has been unclear. Here we adapted the replica exchange with solute tempering method to sample the conformations of the β6/β7 loop, in apo form and in three liganded forms (bound with a sorting signal or calcium or both). The extensive molecular dynamics simulations yield atomic details of the disordered-to-order transition of the loop and suggest a mechanism for allosteric activation: calcium binding results in partial closure and ordering of the loop, thereby leading to preorganization of the binding pocket for the sorting signal. The approach has general applicability to the study of intrinsically disordered regions.
Collapse
|
35
|
Shrestha P, Wereszczynski J. Discerning the catalytic mechanism of Staphylococcus aureus sortase A with QM/MM free energy calculations. J Mol Graph Model 2016; 67:33-43. [PMID: 27172839 DOI: 10.1016/j.jmgm.2016.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
Abstract
Sortases are key virulence factors in Gram-positive bacteria. These enzymes embed surface proteins in the cell wall through a transpeptidation reaction that involves recognizing a penta-peptide "sorting signal" in a target protein, cleaving it, and covalently attaching it to a second substrate that is later inserted into the cell wall. Although well studied, several aspects of the mechanism by which sortases perform these functions remains unclear. In particular, experiments have revealed two potential sorting signal binding motifs: a "Threonine-Out" (Thr-Out) structure in which the catalytically critical threonine residues protrudes into solution, and a "Threonine-In" (Thr-In) configuration in which this residue inserts into the binding site. To determine which of these is the biologically relevant state, we have performed a series of conventional and hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations of the Staphylococcus aureus sortase A (SrtA) enzyme bound to a sorting signal substrate. Through the use of multi-dimensional metadynamics, our simulations were able to both map the acylation mechanism of SrtA in the Thr-In and Thr-Out states, as well as determine the free energy minima and barriers along these reactions. Results indicate that in both states the catalytic mechanisms are similar, however the free energy barriers are lower in the Thr-In configuration, suggesting that Thr-In is the catalytically relevant state. This has important implications for advancing our understanding of the mechanisms of sortase enzymes, as well we for future structure based drug design efforts aimed at inhibiting sortase function in vivo.
Collapse
Affiliation(s)
- Pooja Shrestha
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 3440 S Dearborn St., Chicago, IL 60616, USA
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 3440 S Dearborn St., Chicago, IL 60616, USA.
| |
Collapse
|
36
|
Exploration of multiple Sortase A protein conformations in virtual screening. Sci Rep 2016; 6:20413. [PMID: 26846342 PMCID: PMC4742773 DOI: 10.1038/srep20413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/04/2016] [Indexed: 02/08/2023] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) has become a major health concern which has brought about an urgent need for new therapeutic agents. As the S. aureus Sortase A (SrtA) enzyme contributes to the adherence of the bacteria to the host cells, inhibition thereof by small molecules could be employed as potential antivirulence agents, also towards resistant strains. Albeit several virtual docking SrtA campaigns have been reported, no strongly inhibitatory non-covalent binders have as yet emerged therefrom. In order to better understand the binding modes of small molecules, and the effect of different receptor structures employed in the screening, we herein report on an exploratory study employing 10 known binders and 500 decoys on 100 SrtA structures generated from regular or steered molecular dynamics simulations on four different SrtA crystal/NMR structures. The results suggest a correlation between the protein structural flexibility and the virtual screening performance, and confirm the noted immobilization of the β6/β7 loop upon substrate binding. The NMR structures reported appear to perform slightly better than the Xray-crystal structures, but the binding modes fluctuate tremendously, and it might be suspected that the catalytic site is not necessarily the preferred site of binding for some of the reported active compounds.
Collapse
|
37
|
Abstract
The practice of medicine was profoundly transformed by the introduction of the antibiotics (compounds isolated from Nature) and the antibacterials (compounds prepared by synthesis) for the control of bacterial infection. As a result of the extraordinary success of these compounds over decades of time, a timeless biological activity for these compounds has been presumed. This presumption is no longer. The inexorable acquisition of resistance mechanisms by bacteria is retransforming medical practice. Credible answers to this dilemma are far better recognized than they are being implemented. In this perspective we examine (and in key respects, reiterate) the chemical and biological strategies being used to address the challenge of bacterial resistance.
Collapse
Affiliation(s)
- Jed F. Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46556–5670, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46556–5670, USA
| |
Collapse
|
38
|
Xu W, Lim J, Goh CY, Suen JY, Jiang Y, Yau MK, Wu KC, Liu L, Fairlie DP. Repurposing Registered Drugs as Antagonists for Protease-Activated Receptor 2. J Chem Inf Model 2015; 55:2079-84. [DOI: 10.1021/acs.jcim.5b00500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Weijun Xu
- Division
of Chemistry and
Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Division
of Chemistry and
Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chai-Yeen Goh
- Division
of Chemistry and
Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jacky Y. Suen
- Division
of Chemistry and
Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yuhong Jiang
- Division
of Chemistry and
Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mei-Kwan Yau
- Division
of Chemistry and
Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kai-Chen Wu
- Division
of Chemistry and
Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ligong Liu
- Division
of Chemistry and
Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division
of Chemistry and
Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
39
|
Heras B, Scanlon MJ, Martin JL. Targeting virulence not viability in the search for future antibacterials. Br J Clin Pharmacol 2015; 79:208-15. [PMID: 24552512 DOI: 10.1111/bcp.12356] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/09/2013] [Indexed: 01/01/2023] Open
Abstract
New antibacterials need new approaches to overcome the problem of rapid antibiotic resistance. Here we review the development of potential new antibacterial drugs that do not kill bacteria or inhibit their growth, but combat disease instead by targeting bacterial virulence.
Collapse
Affiliation(s)
- Begoña Heras
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic
| | | | | |
Collapse
|
40
|
Cascioferro S, Raffa D, Maggio B, Raimondi MV, Schillaci D, Daidone G. Sortase A Inhibitors: Recent Advances and Future Perspectives. J Med Chem 2015; 58:9108-23. [DOI: 10.1021/acs.jmedchem.5b00779] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Stella Cascioferro
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione
di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
- IEMEST, Istituto Euromediterraneo di Scienza e Tecnologia, Via Emerico Amari, 123, 90139 Palermo, Italy
| | - Demetrio Raffa
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione
di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Benedetta Maggio
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione
di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Valeria Raimondi
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione
di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Domenico Schillaci
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione
di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppe Daidone
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione
di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
41
|
Microwave-Assisted Synthesis of Novel Perimidinium Salts as N-Heterocyclic Carbene Precursors: Involvement in Palladium-Catalyzed Cross-Coupling Reactions. Chem Heterocycl Compd (N Y) 2015. [DOI: 10.1007/s10593-015-1732-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Raj KK, Ganesh Kumar V, Leela Madhuri C, Mathi P, Durga Lakshmi R, Ravi M, Sri Ramudu B, Venkata Rao SV, Ramachandran D. Designing of potential inhibitors against Staphylococcus aureus sortase A: Combined analogue and structure based approach with in vitro validation. J Mol Graph Model 2015; 60:89-97. [PMID: 26119984 DOI: 10.1016/j.jmgm.2015.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus sortase A is an attractive target of Gram-positive bacteria that plays a crucial role in anchoring of surface proteins to peptidoglycan present in bacterial cell wall. Inhibiting sortase A is an elementary and essential effort in preventing the pathogenesis. In this context, in silico virtual screening of in-house database was performed using ligand based pharmacophore model as a filter. The developed pharmacophore model AAHR 11 consists of two acceptors, one hydrophobic and one ring aromatic feature. Top ranked molecule KKR1 was docked into the active site of the target. After profound analysis, it was analyzed and optimized based on the observations from its binding pose orientation. Upgraded version of KKR1 was KKR2 and has improved docking score, binding interactions and best fit in the binding pocket. KKR1 along with KKR2 were further validated using 100 ns molecular dynamic studies. Both KKR1 and KKR2 contain Indole-thiazolidine moiety and were synthesized. The disk diffusion assay has good initial results (ZI of KKR1, KKR2 were 24, 38 mm at 10 μg/mL and ZI of Ampicillin was 22 at 10 μg/mL) and calculated MICs of the molecules (KKR1 5.56±0.28 μg/mL, KKR2 1.32±0.12 μg/mL, Ampicillin 8±1.1 μg/mL) were in good agreement with standard drug Ampicillin. KKR1 has shown IC50 of 1.23±0.14 μM whereas the optimized lead molecule KKR2 show IC50 of 0.008±0.07 μM. Results from in silico were validated by in vitro studies and proved that indole-thiazolidine molecules would be useful for future development as lead molecules against S. aureus sortase A.
Collapse
Affiliation(s)
- K Kranthi Raj
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India
| | - Veeramachaneni Ganesh Kumar
- Department of Biotechnology, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - Chalasani Leela Madhuri
- Department of Biotechnology, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - Pardhasaradhi Mathi
- Department of Biotechnology, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - Ravulapati Durga Lakshmi
- Department of Electronics and Computer Engineering, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - M Ravi
- Bioinformatics Division, Environmental Microbiology Lab, Department of Botany, Osmania University, Hyderabad 500 007, India
| | - B Sri Ramudu
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India
| | - S V Venkata Rao
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies, Nuzvid 521 201 AP, India
| | - D Ramachandran
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India.
| |
Collapse
|
43
|
Bradshaw WJ, Davies AH, Chambers CJ, Roberts AK, Shone CC, Acharya KR. Molecular features of the sortase enzyme family. FEBS J 2015; 282:2097-114. [PMID: 25845800 DOI: 10.1111/febs.13288] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/28/2015] [Indexed: 01/31/2023]
Abstract
Bacteria possess complex and varying cell walls with many surface exposed proteins. Sortases are responsible for the covalent attachment of specific proteins to the peptidoglycan of the cell wall of Gram-positive bacteria. Sortase A of Staphylococcus aureus, which is seen as the archetypal sortase, has been shown to be essential for pathogenesis and has therefore received much attention as a potential target for novel therapeutics. Being widely present in Gram-positive bacteria, it is likely that other Gram-positive pathogens also require sortases for their pathogenesis. Sortases have also been shown to be of significant use in a range of industrial applications. We review current knowledge of the sortase family in terms of their structures, functions and mechanisms and summarize work towards their use as antibacterial targets and microbiological tools.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Porton Down, Salisbury, UK
| | | | - Christopher J Chambers
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Porton Down, Salisbury, UK
| | | | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
44
|
Quercitrin, an inhibitor of Sortase A, interferes with the adhesion of Staphylococcal aureus. Molecules 2015; 20:6533-43. [PMID: 25871372 PMCID: PMC6272417 DOI: 10.3390/molecules20046533] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 11/16/2022] Open
Abstract
Sortase A (SrtA) is a cysteine transpeptidase of most Gram-positive bacteria that is responsible for the anchorage of many surface protein virulence factors to the cell wall layer. SrtA mutants are unable to display surface proteins and are defective in the establishment of infections without affecting microbial viability. In this study, we report that quercitrin (QEN), a natural compound that does not affect Staphylococcus aureus growth, can inhibit the catalytic activity of SrtA in fibrinogen (Fg) cell-clumping and immobilized fibronectin (Fn) adhesion assays. Molecular dynamics simulations and mutagenesis assays suggest that QEN binds to the binding sites of the SrtA G167A and V193A mutants. These findings indicate that QEN is a potential lead compound for the development of new anti-virulence agents against S. aureus infections.
Collapse
|
45
|
Yuriev E, Holien J, Ramsland PA. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J Mol Recognit 2015; 28:581-604. [PMID: 25808539 DOI: 10.1002/jmr.2471] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/16/2015] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
Molecular docking is a computational method for predicting the placement of ligands in the binding sites of their receptor(s). In this review, we discuss the methodological developments that occurred in the docking field in 2012 and 2013, with a particular focus on the more difficult aspects of this computational discipline. The main challenges and therefore focal points for developments in docking, covered in this review, are receptor flexibility, solvation, scoring, and virtual screening. We specifically deal with such aspects of molecular docking and its applications as selection criteria for constructing receptor ensembles, target dependence of scoring functions, integration of higher-level theory into scoring, implicit and explicit handling of solvation in the binding process, and comparison and evaluation of docking and scoring methods.
Collapse
Affiliation(s)
- Elizabeth Yuriev
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jessica Holien
- ACRF Rational Drug Discovery Centre and Structural Biology Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Paul A Ramsland
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia.,Department of Surgery Austin Health, University of Melbourne, Melbourne, Victoria, 3084, Australia.,Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, 3004, Australia.,School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia, 6845, Australia
| |
Collapse
|
46
|
Zhao H, Caflisch A. Molecular dynamics in drug design. Eur J Med Chem 2015; 91:4-14. [DOI: 10.1016/j.ejmech.2014.08.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/31/2014] [Accepted: 08/03/2014] [Indexed: 11/30/2022]
|
47
|
Abstract
Resistance of important bacterial pathogens to common antimicrobial therapies and the emergence of multidrug-resistant bacteria are increasing at an alarming rate and constitute one of our greatest challenges in the combat of bacterial infection and accompanied diseases. The current shortage of effective drugs, lack of successful prevention measures and only a few new antibiotics in the clinical pipeline demand the development of novel treatment options and alternative antimicrobial therapies. Our increasing understanding of bacterial virulence strategies and the induced molecular pathways of the infectious disease provides novel opportunities to target and interfere with crucial pathogenicity factors or virulence-associated traits of the bacteria while bypassing the evolutionary pressure on the bacterium to develop resistance. In the past decade, numerous new bacterial targets for anti-virulence therapies have been identified, and structure-based tailoring of intervention strategies and screening assays for small-molecule inhibitors of such pathways were successfully established. In this chapter, we will take a closer look at the bacterial virulence-related factors and processes that present promising targets for anti-virulence therapies, recently discovered inhibitory substances and their promises and discuss the challenges, and problems that have to be faced.
Collapse
|
48
|
Cascioferro S, Totsika M, Schillaci D. Sortase A: An ideal target for anti-virulence drug development. Microb Pathog 2014; 77:105-12. [DOI: 10.1016/j.micpath.2014.10.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
49
|
Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc Natl Acad Sci U S A 2014; 111:13517-22. [PMID: 25197057 DOI: 10.1073/pnas.1408601111] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the most frequent cause of hospital-acquired infection, which manifests as surgical site infections, bacteremia, and sepsis. Due to drug-resistance, prophylaxis of MRSA infection with antibiotics frequently fails or incites nosocomial diseases such as Clostridium difficile infection. Sortase A is a transpeptidase that anchors surface proteins in the envelope of S. aureus, and sortase mutants are unable to cause bacteremia or sepsis in mice. Here we used virtual screening and optimization of inhibitor structure to identify 3-(4-pyridinyl)-6-(2-sodiumsulfonatephenyl)[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole and related compounds, which block sortase activity in vitro and in vivo. Sortase inhibitors do not affect in vitro staphylococcal growth yet protect mice against lethal S. aureus bacteremia. Thus, sortase inhibitors may be useful as antiinfective therapy to prevent hospital-acquired S. aureus infection in high-risk patients without the side effects of antibiotics.
Collapse
|
50
|
Selvaraj C, Bharathi Priya R, Singh SK. Communication of γ Phage Lysin plyG Enzymes Binding toward SrtA for Inhibition ofBacillus Anthracis: Protein–Protein Interaction and Molecular Dynamics Study. ACTA ACUST UNITED AC 2014; 21:257-65. [DOI: 10.3109/15419061.2014.927444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|