1
|
Aljameeli AM, Alsuwayt B, Bharati D, Gohri V, Mohite P, Singh S, Chidrawar V. Chloride channels and mast cell function: pioneering new frontiers in IBD therapy. Mol Cell Biochem 2025:10.1007/s11010-025-05243-w. [PMID: 40038149 DOI: 10.1007/s11010-025-05243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Emerging evidence indicates that chloride channels (ClCs) significantly affect the pathogenesis of inflammatory bowel disease (IBD) through their regulatory roles in mast cell function and epithelial integrity. IBD, encompassing conditions such as Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract, where channels influence immune responses, fluid balance, and cellular signalling pathways essential for maintaining mucosal homeostasis. This review examines the specific roles of ClC in mast cells, focussing on the regulation of mast cell activation, degranulation, cytokine release, and immune cell recruitment in inflamed tissues. Key channels, including Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and ClC-2, are discussed in detail because of their involvement in maintaining intestinal epithelial barrier function, a critical factor disrupted in IBD. For example, CFTR facilitates chloride ion transport across epithelial cells, which is essential for mucosal hydration and maintenance of the intestinal barrier. Reduced CFTR function can compromise this barrier, permitting microbial antigens to penetrate the underlying tissues and triggering excessive immune responses. ClC-2, another chloride channel expressed in mast cells and epithelial cells, supports tight junction integrity, contributes to barrier function, and reduces intestinal permeability. Dysregulation of these channels is linked to altered mast cell activity and excessive release of pro-inflammatory mediators, exacerbating IBD symptoms, such as diarrhoea, abdominal pain, and tissue damage. Here, we review recent pharmacological strategies targeting ClC, including CFTR potentiators and ClC-2 activators, which show the potential to mitigate inflammatory responses. Additionally, experimental approaches for selective modulation of chloride channels in mast cells have been explored. Although targeting ClC offers promising therapeutic avenues, challenges remain in achieving specificity and minimizing side effects. This review highlights the therapeutic potential of Cl channel modulation in mast cells as a novel approach for IBD treatment, aiming to reduce inflammation and restore intestinal homeostasis in affected patients.
Collapse
Affiliation(s)
- Ahmed M Aljameeli
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Albatin, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Albatin, Saudi Arabia
| | - Deepak Bharati
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India
| | - Vaishnavi Gohri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India.
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vijay Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed-to-University, Green Industrial Park, TSIIC, Polepally, Jadcherla, Hyderabad, Telangana, 509301, India.
| |
Collapse
|
2
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
3
|
Wang JZ, Zheng Y, Ma S, Hu P, Fan Y. Competition of two time scales determines the performance of a voltage-gated potassium channel. Phys Rev E 2025; 111:014409. [PMID: 39972768 DOI: 10.1103/physreve.111.014409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
The dynamics of a voltage-gated potassium channel in real environments represents a crucial bridge between its molecular structure and functions. However, it is still missing due to the mathematical difficulty that arises from the high dimensionality and nonlinear interregulation. Here we present a method for solving the stationary distribution of a hybrid process that contains two negatively interregulating kinetics: channel gating and voltage decay. The results can be summarized as follows: first, the voltage distribution is determined by the competition of their time scales; second, the fluctuation structures in parameter space illustrate that, to perform the voltage-controlling task, the channel gating is elastic while the membrane produces the stabilizing function; third, the power dissipated by the capacitive currents and the internal battery current are calculated and explained. Based on these findings, we examine the manner in which macroscopic functions of potassium channels are manifested. Our methodology provides an accurate characterization of hybrid processes that are pervasive in the life sciences.
Collapse
Affiliation(s)
- Jia-Zeng Wang
- Beijing Technology and Business University, School of Mathematics and Statistics, Beijing 100048, People's Republic of China
| | - YueYing Zheng
- Beijing Technology and Business University, School of Mathematics and Statistics, Beijing 100048, People's Republic of China
| | - Su Ma
- Beijing Technology and Business University, School of Mathematics and Statistics, Beijing 100048, People's Republic of China
| | - PengKun Hu
- Beijing Technology and Business University, School of Mathematics and Statistics, Beijing 100048, People's Republic of China
| | - YanHua Fan
- Beijing Technology and Business University, School of Mathematics and Statistics, Beijing 100048, People's Republic of China
| |
Collapse
|
4
|
Martínez-Hernández L, López-Vera E, Aguilar MB. Peptide Toxins from Marine Conus Snails with Activity on Potassium Channels and/or Currents. Toxins (Basel) 2024; 16:504. [PMID: 39728762 PMCID: PMC11728717 DOI: 10.3390/toxins16120504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Toxins from Conus snails are peptides characterized by a great structural and functional diversity. They have a high affinity for a wide range of membrane proteins such as ion channels, neurotransmitter transporters, and G protein-coupled receptors. Potassium ion channels are integral proteins of cell membranes that play vital roles in physiological processes in muscle and neuron cells, among others, and reports in the literature indicate that perturbation in their function (by mutations or ectopic expression) may result in the development and progression of different ailments in humans. This review aims to gather as much information as possible about Conus toxins (conotoxins) with an effect on potassium channels and/or currents, with a perspective of exploring the possibility of finding or developing a possible drug candidate from these toxins. The research indicates that, among the more than 900 species described for this genus, in only 14 species of the >100 studied to date have such toxins been found (classified according to the most specific evidence for each case), as follows: 17 toxins with activity on two groups of potassium channels (Kv and KCa), 4 toxins with activity on potassium currents, and 5 toxins that are thought to inhibit potassium channels by symptomatology and/or a high sequence similarity.
Collapse
Affiliation(s)
- Luis Martínez-Hernández
- Posgrado en Ciencias Biológicas, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Estuardo López-Vera
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Manuel B. Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico
| |
Collapse
|
5
|
Zhang J, Zhu Y, Zhang M, Yan J, Zheng Y, Yao L, Li Z, Shao Z, Chen Y. Potassium channels in depression: emerging roles and potential targets. Cell Biosci 2024; 14:136. [PMID: 39529121 PMCID: PMC11555980 DOI: 10.1186/s13578-024-01319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Potassium ion channels play a fundamental role in regulating cell membrane repolarization, modulating the frequency and shape of action potentials, and maintaining the resting membrane potential. A growing number of studies have indicated that dysfunction in potassium channels associates with the pathogenesis and treatment of depression. However, the involvement of potassium channels in the onset and treatment of depression has not been thoroughly summarized. In this review, we performed a comprehensive analysis of the association between multiple potassium channels and their roles in depression, and compiles the SNP loci of potassium channels associated with depression, as well as antidepressant drugs that target these channels. We discussed the pivotal role of potassium channels in the treatment of depression, provide valuable insights into new therapeutic targets for antidepressant treatment and critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jiahao Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yao Zhu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ziwei Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zihan Shao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
6
|
Kelleci Çelik F, Doğan S, Karaduman G. Drug-induced torsadogenicity prediction model: An explainable machine learning-driven quantitative structure-toxicity relationship approach. Comput Biol Med 2024; 182:109209. [PMID: 39332120 DOI: 10.1016/j.compbiomed.2024.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Drug-induced Torsade de Pointes (TdP), a life-threatening polymorphic ventricular tachyarrhythmia, emerges due to the cardiotoxic effects of pharmaceuticals. The need for precise mechanisms and clinical biomarkers to detect this adverse effect presents substantial challenges in drug safety assessment. In this study, we propose that analyzing the physicochemical properties of pharmaceuticals can provide valuable insights into their potential for torsadogenic cardiotoxicity. Our research centers on estimating TdP risk based on the molecular structure of drugs. We introduce a novel quantitative structure-toxicity relationship (QSTR) prediction model that leverages an in silico approach developed by adopting the 4R rule in laboratory animals. This approach eliminates the need for animal testing, saves time, and reduces cost. Our algorithm has successfully predicted the torsadogenic risks of various pharmaceutical compounds. To develop this model, we employed Support Vector Machine (SVM) and ensemble techniques, including Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost). We enhanced the model's predictive accuracy through a rigorous two-step feature selection process. Furthermore, we utilized the SHapley Additive exPlanations (SHAP) technique to explain the prediction of torsadogenic risk, particularly within the RF model. This study represents a significant step towards creating a robust QSTR model, which can serve as an early screening tool for assessing the torsadogenic potential of pharmaceutical candidates or existing drugs. By incorporating molecular structure-based insights, we aim to enhance drug safety evaluation and minimize the risks of drug-induced TdP, ultimately benefiting both patients and the pharmaceutical industry.
Collapse
Affiliation(s)
- Feyza Kelleci Çelik
- Karamanoğlu Mehmetbey University, Vocational School of Health Services, 70200, Karaman, Turkey.
| | - Seyyide Doğan
- Karamanoğlu Mehmetbey University, Faculty of Economics and Administrative Science, 70200, Karaman, Turkey
| | - Gül Karaduman
- Karamanoğlu Mehmetbey University, Department of Mathematics, 70100, Karaman, Turkey
| |
Collapse
|
7
|
Turcio R, Di Matteo F, Capolupo I, Ciaglia T, Musella S, Di Chio C, Stagno C, Campiglia P, Bertamino A, Ostacolo C. Voltage-Gated K + Channel Modulation by Marine Toxins: Pharmacological Innovations and Therapeutic Opportunities. Mar Drugs 2024; 22:350. [PMID: 39195466 DOI: 10.3390/md22080350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Bioactive compounds are abundant in animals originating from marine ecosystems. Ion channels, which include sodium, potassium, calcium, and chloride, together with their numerous variants and subtypes, are the primary molecular targets of the latter. Based on their cellular targets, these venom compounds show a range of potencies and selectivity and may have some therapeutic properties. Due to their potential as medications to treat a range of (human) diseases, including pain, autoimmune disorders, and neurological diseases, marine molecules have been the focus of several studies over the last ten years. The aim of this review is on the various facets of marine (or marine-derived) molecules, ranging from structural characterization and discovery to pharmacology, culminating in the development of some "novel" candidate chemotherapeutic drugs that target potassium channels.
Collapse
Affiliation(s)
- Rita Turcio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | | | - Ilaria Capolupo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, 98166 Messina, Italy
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, 98166 Messina, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
8
|
Sakti DH, Cornish EE, Ali H, Retsas S, Raza M, Saakova N, Carvalho LS, Nash BM, Jamieson RV, Grigg JR. Natural history and biomarkers of KCNV2-associated retinopathy. Clin Exp Ophthalmol 2024; 52:528-544. [PMID: 38443311 DOI: 10.1111/ceo.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND KCNV2-associated retinopathy is an autosomal recessive inherited retinal disease classically named cone dystrophy with supernormal rod response (CDSRR). This study aims to identify the best biomarker for evaluating the condition. METHODS A retrospective review of eight patients from seven families with genetically confirmed KCNV2-associated retinopathy was performed. The best corrected visual acuity (BCVA), full-field electroretinogram (ffERG), pattern ERG (pERG), fundus imaging: retinal photograph and fundus autofluorescence (FAF), and optical coherence tomography (OCT) were analysed. RESULTS There was a disproportionate increase in b-wave amplitude with a relatively small light intensity increase, especially between the two dimmest stimuli of DA 0.002 and 0.01 (-2.7 and -2.0 log cd.s/m2). The a-wave amplitude was normal. The a-wave peak time was delayed in all stimuli. The b-wave peak time was delayed compared to normal, but the gap tightened as intensity increased. The b:a wave ratio was above or at the upper limit for the reference values. FAF bull's eye maculopathy pattern was prominent and variable foveal disruption on OCT was apparent in all patients. Legal blindness was reached before the age of 25. CONCLUSIONS We identified three potential electrophysiology biomarkers to assist in evaluating future therapies: the disproportionate b-wave amplitude jump, delayed a-wave and b-wave peak time, and the higher than normal b:a wave ratio. Any of these biomarkers found with photoreceptor ellipsoid zone foveal-perifoveal disruption should prompt consideration for KCNV2 retinopathy. The BCVA natural history data suggests the probable optimum therapeutic window in the first three decades of life.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, University of Sydney, New South Wales, Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, University of Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Haipha Ali
- Save Sight Institute, University of Sydney, New South Wales, Australia
| | - Stephanie Retsas
- Save Sight Institute, University of Sydney, New South Wales, Australia
| | - Marium Raza
- Save Sight Institute, University of Sydney, New South Wales, Australia
| | - Nonna Saakova
- Save Sight Institute, University of Sydney, New South Wales, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences, Lions Eye Institute, The University of Western Australia, Nedlands, Australia
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Robyn V Jamieson
- Save Sight Institute, University of Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - John R Grigg
- Save Sight Institute, University of Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| |
Collapse
|
9
|
Rodríguez-Rivera NS, Barrera-Oviedo D. Exploring the Pathophysiology of ATP-Dependent Potassium Channels in Insulin Resistance. Int J Mol Sci 2024; 25:4079. [PMID: 38612888 PMCID: PMC11012456 DOI: 10.3390/ijms25074079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Ionic channels are present in eucaryotic plasma and intracellular membranes. They coordinate and control several functions. Potassium channels belong to the most diverse family of ionic channels that includes ATP-dependent potassium (KATP) channels in the potassium rectifier channel subfamily. These channels were initially described in heart muscle and then in other tissues such as pancreatic, skeletal muscle, brain, and vascular and non-vascular smooth muscle tissues. In pancreatic beta cells, KATP channels are primarily responsible for maintaining the membrane potential and for depolarization-mediated insulin release, and their decreased density and activity may be related to insulin resistance. KATP channels' relationship with insulin resistance is beginning to be explored in extra-pancreatic beta tissues like the skeletal muscle, where KATP channels are involved in insulin-dependent glucose recapture and their activation may lead to insulin resistance. In adipose tissues, KATP channels containing Kir6.2 protein subunits could be related to the increase in free fatty acids and insulin resistance; therefore, pathological processes that promote prolonged adipocyte KATP channel inhibition might lead to obesity due to insulin resistance. In the central nervous system, KATP channel activation can regulate peripheric glycemia and lead to brain insulin resistance, an early peripheral alteration that can lead to the development of pathologies such as obesity and Type 2 Diabetes Mellitus (T2DM). In this review, we aim to discuss the characteristics of KATP channels, their relationship with clinical disorders, and their mechanisms and potential associations with peripheral and central insulin resistance.
Collapse
Affiliation(s)
- Nidia Samara Rodríguez-Rivera
- Laboratorio de Farmacología y Bioquímica Clínica, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | | |
Collapse
|
10
|
Lai H, Gao M, Yang H. The potassium channels: Neurobiology and pharmacology of tinnitus. J Neurosci Res 2024; 102:e25281. [PMID: 38284861 DOI: 10.1002/jnr.25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Tinnitus is a widespread public health issue that imposes a significant social burden. The occurrence and maintenance of tinnitus have been shown to be associated with abnormal neuronal activity in the auditory pathway. Based on this view, neurobiological and pharmacological developments in tinnitus focus on ion channels and synaptic neurotransmitter receptors in neurons in the auditory pathway. With major breakthroughs in the pathophysiology and research methodology of tinnitus in recent years, the role of the largest family of ion channels, potassium ion channels, in modulating the excitability of neurons involved in tinnitus has been increasingly demonstrated. More and more potassium channels involved in the neural mechanism of tinnitus have been discovered, and corresponding drugs have been developed. In this article, we review animal (mouse, rat, hamster, and guinea-pig), human, and genetic studies on the different potassium channels involved in tinnitus, analyze the limitations of current clinical research on potassium channels, and propose future prospects. The aim of this review is to promote the understanding of the role of potassium ion channels in tinnitus and to advance the development of drugs targeting potassium ion channels for tinnitus.
Collapse
Affiliation(s)
- Haohong Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minqian Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| |
Collapse
|
11
|
Park EJ, Yang MJ, Kang MS, Jo YM, Yoon C, Lee Y, Kim DW, Lee GH, Kwon IH, Kim JB. Subchronic pulmonary toxicity of ambient particles containing cement production-related elements. Toxicol Rep 2023; 11:116-128. [PMID: 37520773 PMCID: PMC10372185 DOI: 10.1016/j.toxrep.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Chronic respiratory disease is among the most common non-communicable diseases, and particulate materials (PM) are a major risk factor. Meanwhile, evidence of the relationship between the physicochemical characteristics of PM and pulmonary toxicity mechanism is still limited. Here, we collected particles (CPM) from the air of a port city adjacent to a cement factory, and we found that the CPM contained various elements, including heavy metals (such as arsenic, thallium, barium, and zirconium) which are predicted to have originated from a cement plant adjacent to the sampling site. We also delivered the CPM intratracheally to mice for 13 weeks to investigate the pulmonary toxicity of inhaled CPM. CPM-induced chronic inflammatory lesions with an increased total number of cells in the lung of mice. Meanwhile, among inflammatory mediators measured in this study, levels of IL-1β, TNF-α, CXCL-1, and IFN-γ were elevated in the treated group compared with the controls. Considering that the alveolar macrophage (known as dust cell) is a professional phagocyte that is responsible for the clearance of PM from the respiratory surfaces, we also investigated cellular responses following exposure to CPM in MH-S cells, a mouse alveolar macrophage cell line. CPM inhibited cell proliferation and formed autophagosome-like vacuoles. Intracellular calcium accumulation and oxidative stress, and altered expression of pyrimidine metabolism- and olfactory transduction-related genes were observed in CPM-treated cells. More interestingly, type I-LC3B and full-length PARP proteins were not replenished in CPM-treated cells, and cell cycle changes, apoptotic and necrotic cell death, and caspase-3 cleavage were not significantly detected in cells exposed to CPM. Taken together, we conclude that dysfunction of alveolar macrophages may contribute to CPM-induced pulmonary inflammation. In addition, given the possible transformation of heart tissue observed in CPM-treated mice, we suggest that further study is needed to clarify the systemic pathological changes and the molecular mechanisms following chronic exposure to CPM.
Collapse
Affiliation(s)
- Eun-Jung Park
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea
- Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Min-Sung Kang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
- Department of Biomedical Science and Technology, Graduate school, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young-Min Jo
- Department of Environmental Science and Engineering, Global Campus, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Yunseo Lee
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ik-Hwan Kwon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Jin-Bae Kim
- School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
13
|
Martínez-Hernández L, López-Vera E, Aguilar MB, Rodriguez-Ruiz XC, Ortíz-Arellano MA. κO-SrVIA Conopeptide, a Novel Inhibitor Peptide for Two Members of the Human EAG Potassium Channel Family. Int J Mol Sci 2023; 24:11513. [PMID: 37511269 PMCID: PMC10380377 DOI: 10.3390/ijms241411513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The first conotoxin affecting the voltage-gated potassium channels of the EAG family was identified and characterized from the venom of the vermivorous species Conus spurius from the Gulf of Mexico. This conopeptide, initially named Cs68 and later designated κO-SrVIA, is extremely hydrophobic and comprises 31 amino acid residues, including six Cysteines in the framework VI/VII, and a free C-terminus. It inhibits the currents mediated by two human EAG subtypes, Kv10.1 (IC50 = 1.88 ± 1.08 µM) and Kv11.1 (IC50 = 2.44 ± 1.06 µM), and also the human subtype Kv1.6 (IC50 = 3.6 ± 1.04 µM). Despite its clear effects on potassium channels, it shares a high sequence identity with δ-like-AtVIA and δ-TsVIA. Also, κO-SrVIA is the third conopeptide from the venom of C. spurius with effects on potassium channels, and the seventh conotoxin that blocks Kv1.6 channels.
Collapse
Affiliation(s)
- Luis Martínez-Hernández
- Posgrado en Ciencias Biológicas, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Estuardo López-Vera
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Manuel B. Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico;
| | - Ximena C. Rodriguez-Ruiz
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Mónica A. Ortíz-Arellano
- Laboratorio de Malacología, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán 82000, Mexico;
| |
Collapse
|
14
|
Younes S, Mourad N, Salla M, Rahal M, Hammoudi Halat D. Potassium Ion Channels in Glioma: From Basic Knowledge into Therapeutic Applications. MEMBRANES 2023; 13:434. [PMID: 37103862 PMCID: PMC10144598 DOI: 10.3390/membranes13040434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Ion channels, specifically those controlling the flux of potassium across cell membranes, have recently been shown to exhibit an important role in the pathophysiology of glioma, the most common primary central nervous system tumor with a poor prognosis. Potassium channels are grouped into four subfamilies differing by their domain structure, gating mechanisms, and functions. Pertinent literature indicates the vital functions of potassium channels in many aspects of glioma carcinogenesis, including proliferation, migration, and apoptosis. The dysfunction of potassium channels can result in pro-proliferative signals that are highly related to calcium signaling as well. Moreover, this dysfunction can feed into migration and metastasis, most likely by increasing the osmotic pressure of cells allowing the cells to initiate the "escape" and "invasion" of capillaries. Reducing the expression or channel blockage has shown efficacy in reducing the proliferation and infiltration of glioma cells as well as inducing apoptosis, priming several approaches to target potassium channels in gliomas pharmacologically. This review summarizes the current knowledge on potassium channels, their contribution to oncogenic transformations in glioma, and the existing perspectives on utilizing them as potential targets for therapy.
Collapse
Affiliation(s)
- Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
| | - Nisreen Mourad
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa 146404, Lebanon;
| | - Mohamad Rahal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
- Academic Quality Department, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
15
|
Oz M, Lorke DE, Howarth FC. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport. Med Res Rev 2023. [PMID: 36916676 DOI: 10.1002/med.21945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper that is responsible for its hot pungent taste. Capsaicin is known to exert multiple pharmacological actions, including analgesia, anticancer, anti-inflammatory, antiobesity, and antioxidant effects. The transient receptor potential vanilloid subfamily member 1 (TRPV1) is the main receptor mediating the majority of the capsaicin effects. However, numerous studies suggest that the TRPV1 receptor is not the only target for capsaicin. An increasing number of studies indicates that capsaicin, at low to mid µM ranges, not only indirectly through TRPV1-mediated Ca2+ increases, but also directly modulates the functions of voltage-gated Na+ , K+ , and Ca2+ channels, as well as ligand-gated ion channels and other ion transporters and enzymes involved in cellular excitability. These TRPV1-independent effects are mediated by alterations of the biophysical properties of the lipid membrane and subsequent modulation of the functional properties of ion channels and by direct binding of capsaicin to the channels. The present study, for the first time, systematically categorizes this diverse range of non-TRPV1 targets and discusses cellular and molecular mechanisms mediating TRPV1-independent effects of capsaicin in excitable, as well as nonexcitable cells.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Sarkar S, Alipour Talesh G, Menheniott TR, Sutton P. Targeting Host Sulphonyl Urea Receptor 2 Can Reduce Severity of Helicobacter pylori Associated Gastritis. GASTRO HEP ADVANCES 2023; 2:721-732. [PMID: 39129876 PMCID: PMC11307979 DOI: 10.1016/j.gastha.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/06/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims While most Helicobacter pylori-infected individuals remain asymptomatic throughout their lifetime, in a significant proportion, the resulting severe chronic gastritis drives the development of gastric cancer. In this study, we examine a new therapeutic target, a host potassium channel regulatory subunit, SUR2 (encoded by ABCC9), with potential to protect against H pylori-associated diseases. Methods SUR2 gene (ABCC9) expression in human gastric biopsies was analyzed by quantitative polymerase chain reactions. Helicobacter-infected mice were administered the SUR2-channel agonists, pinacidil and nicorandil, then gastric tissues analyzed by histology, immunohistochemistry and quantitative polymerase chain reaction, and splenic tissues by enzyme-linked immunosorbent assays. In vitro studies were performed on human and mouse macrophages, human gastric epithelial cells and mouse splenocytes. Results ABCC9 expression in human and mouse stomachs is downregulated with H pylori infection. Treatment of Helicobacter-infected mice with SUR2 channel modulators, pinacidil or nicorandil, significantly reduced gastritis severity. In gastric epithelial cells, nicorandil-induced opening of the SUR2 channel increased intracellular K+ and prevented H pylori-mediated Ca2+ influx and downstream pro-inflammatory signaling. Conclusion SUR2 is a novel host factor that regulates Helicobacter pathogenesis. Pharmacological targeting of SUR2 provides a potential approach for reducing the severity of H pylori-associated gastritis, without eradicating infection.
Collapse
Affiliation(s)
- Sohinee Sarkar
- Infection and Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Ghazal Alipour Talesh
- Infection and Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Trevelyan R. Menheniott
- Infection and Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Philip Sutton
- Infection and Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Tanudjaja E, Hoshi N, Yamamoto K, Ihara K, Furuta T, Tsujii M, Ishimaru Y, Uozumi N. Two Trk/Ktr/HKT-type potassium transporters, TrkG and TrkH, perform distinct functions in Escherichia coli K-12. J Biol Chem 2022; 299:102846. [PMID: 36586436 PMCID: PMC9898762 DOI: 10.1016/j.jbc.2022.102846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli K-12 possesses two versions of Trk/Ktr/HKT-type potassium ion (K+) transporters, TrkG and TrkH. The current paradigm is that TrkG and TrkH have largely identical characteristics, and little information is available regarding their functional differences. Here, we show using cation uptake experiments with K+ transporter knockout mutants that TrkG and TrkH have distinct ion transport activities and physiological roles. K+-transport by TrkG required Na+, whereas TrkH-mediated K+ uptake was not affected by Na+. An aspartic acid located five residues away from a critical glycine in the third pore-forming region might be involved in regulation of Na+-dependent activation of TrkG. In addition, we found that TrkG but not TrkH had Na+ uptake activity. Our analysis of K+ transport mutants revealed that TrkH supported cell growth more than TrkG; however, TrkG was able to complement loss of TrkH-mediated K+ uptake in E. coli. Furthermore, we determined that transcription of trkG in E. coli was downregulated but not completely silenced by the xenogeneic silencing factor H-NS (histone-like nucleoid structuring protein or heat-stable nucleoid-structuring protein). Taken together, the transport function of TrkG is clearly distinct from that of TrkH, and TrkG seems to have been accepted by E. coli during evolution as a K+ uptake system that coexists with TrkH.
Collapse
Affiliation(s)
- Ellen Tanudjaja
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Naomi Hoshi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
18
|
Asrani P, Seebohm G, Stoll R. Potassium viroporins as model systems for understanding eukaryotic ion channel behaviour. Virus Res 2022; 320:198903. [PMID: 36037849 DOI: 10.1016/j.virusres.2022.198903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
Ion channels are membrane proteins essential for a plethora of cellular functions including maintaining cell shape, ion homeostasis, cardiac rhythm and action potential in neurons. The complexity and often extensive structure of eukaryotic membrane proteins makes it difficult to understand their basic biological regulation. Therefore, this article suggests, viroporins - the miniature versions of eukaryotic protein homologs from viruses - might serve as model systems to provide insights into behaviour of eukaryotic ion channels in general. The structural requirements for correct assembly of the channel along with the basic functional properties of a K+ channel exist in the minimal design of the viral K+ channels from two viruses, Chlorella virus (Kcv) and Ectocarpus siliculosus virus (Kesv). These small viral proteins readily assemble into tetramers and they sort in cells to distinct target membranes. When these viruses-encoded channels are expressed into the mammalian cells, they utilise their protein machinery and hence can serve as excellent tools to study the cells protein sorting machinery. This combination of small size and robust function makes viral K+ channels a valuable model system for detection of basic structure-function correlations. It is believed that molecular and physiochemical analyses of these viroporins may serve as basis for the development of inhibitors or modulators to ion channel activity for targeting ion channel diseases - so called channelopathies. Therefore, it may provide a potential different scope for molecular pharmacology studies aiming at novel and innovative therapeutics associated with channel related diseases. This article reviews the structural and functional properties of Kcv and Kesv upon expression in mammalian cells and Xenopus oocytes. The mechanisms behind differential protein sorting in Kcv and Kesv are also thoroughly discussed.
Collapse
Affiliation(s)
- Purva Asrani
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster D-48149, Germany
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany.
| |
Collapse
|
19
|
Boyle Y, Johns TG, Fletcher EV. Potassium Ion Channels in Malignant Central Nervous System Cancers. Cancers (Basel) 2022; 14:cancers14194767. [PMID: 36230692 PMCID: PMC9563970 DOI: 10.3390/cancers14194767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant central nervous system (CNS) cancers are among the most difficult to treat, with low rates of survival and a high likelihood of recurrence. This is primarily due to their location within the CNS, hindering adequate drug delivery and tumour access via surgery. Furthermore, CNS cancer cells are highly plastic, an adaptive property that enables them to bypass targeted treatment strategies and develop drug resistance. Potassium ion channels have long been implicated in the progression of many cancers due to their integral role in several hallmarks of the disease. Here, we will explore this relationship further, with a focus on malignant CNS cancers, including high-grade glioma (HGG). HGG is the most lethal form of primary brain tumour in adults, with the majority of patient mortality attributed to drug-resistant secondary tumours. Hence, targeting proteins that are integral to cellular plasticity could reduce tumour recurrence, improving survival. This review summarises the role of potassium ion channels in malignant CNS cancers, specifically how they contribute to proliferation, invasion, metastasis, angiogenesis, and plasticity. We will also explore how specific modulation of these proteins may provide a novel way to overcome drug resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yasmin Boyle
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
- Correspondence:
| | - Terrance G. Johns
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
20
|
Homma K. The Pathological Mechanisms of Hearing Loss Caused by KCNQ1 and KCNQ4 Variants. Biomedicines 2022; 10:biomedicines10092254. [PMID: 36140355 PMCID: PMC9496569 DOI: 10.3390/biomedicines10092254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Deafness-associated genes KCNQ1 (also associated with heart diseases) and KCNQ4 (only associated with hearing loss) encode the homotetrameric voltage-gated potassium ion channels Kv7.1 and Kv7.4, respectively. To date, over 700 KCNQ1 and over 70 KCNQ4 variants have been identified in patients. The vast majority of these variants are inherited dominantly, and their pathogenicity is often explained by dominant-negative inhibition or haploinsufficiency. Our recent study unexpectedly identified cell-death-inducing cytotoxicity in several Kv7.1 and Kv7.4 variants. Elucidation of this cytotoxicity mechanism and identification of its modifiers (drugs) have great potential for aiding the development of a novel pharmacological strategy against many pathogenic KCNQ variants. The purpose of this review is to disseminate this emerging pathological role of Kv7 variants and to underscore the importance of experimentally characterizing disease-associated variants.
Collapse
Affiliation(s)
- Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; ; Tel.: +1-312-503-5344
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
21
|
Pietrzak D, Kasperek K, Rękawek P, Piątkowska-Chmiel I. The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients 2022; 14:1952. [PMID: 35565918 PMCID: PMC9102882 DOI: 10.3390/nu14091952] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate and adequate-protein diet that has gained popularity in recent years in the context of neurological diseases (NDs). The complexity of the pathogenesis of these diseases means that effective forms of treatment are still lacking. Conventional therapy is often associated with increasing tolerance and/or drug resistance. Consequently, more effective therapeutic strategies are being sought to increase the effectiveness of available forms of therapy and improve the quality of life of patients. For the moment, it seems that KD can provide therapeutic benefits in patients with neurological problems by effectively controlling the balance between pro- and antioxidant processes and pro-excitatory and inhibitory neurotransmitters, and modulating inflammation or changing the composition of the gut microbiome. In this review we evaluated the potential therapeutic efficacy of KD in epilepsy, depression, migraine, Alzheimer's disease and Parkinson's disease. In our opinion, KD should be considered as an adjuvant therapeutic option for some neurological diseases.
Collapse
Affiliation(s)
- Diana Pietrzak
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| | | | | | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| |
Collapse
|
22
|
Rajabian A, Rajabian F, Babaei F, Mirzababaei M, Nassiri-Asl M, Hosseinzadeh H. Interaction of Medicinal Plants and Their Active Constituents With Potassium Ion Channels: A Systematic Review. Front Pharmacol 2022; 13:831963. [PMID: 35273505 PMCID: PMC8902679 DOI: 10.3389/fphar.2022.831963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Potassium ion (K+) channels are pore-forming transmembrane proteins that control the transport of K+ ions. Medicinal plants are widely used as complementary therapies for several disorders. Studies have shown that the modulation of K+ channels is most likely involved in various pharmacological effects of medicinal plants. This review aimed to evaluate the modulatory effects of medicinal plants and their active constituents on K+ channels under pathological conditions. This systematic review was prepared according to the Preferred Reporting Items for the Systematic Reviews and Meta-analyses (PRISMA) 2020 guideline. Four databases, including PubMed, Web of Science, embase, and Scopus, were searched. We identified 687 studies from these databases, from which we selected 13 in vivo studies for the review by using the Population, Intervention, Comparison, Outcomes, Study (PICOS) tool. The results of the 13 selected studies showed a modulatory effect of medicinal plants or their active constituents on ATP-sensitive potassium channels (KATP), and small (SKCa) and large (BKCa) conductance calcium-activated K+ channels in several pathological conditions such as nociception, brain ischemia, seizure, diabetes, gastric ulcer, myocardial ischemia-reperfusion, and hypertension via possible involvement of the nitric oxide/cyclic GMP pathway and protein kinase. K+ channels should be considered as significant therapeutic milestones in the treatment of several diseases. We believe that understanding the mechanism behind the interaction of medicinal plants with K+ channels can facilitate drug development for the treatment of various K+ channel-related disorders.
Collapse
Affiliation(s)
- Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Zhang Q, Fu J, Zhang S, Guo P, Liu S, Shen J, Guo J, Yang H. 'C-type' closed state and gating mechanisms of K2P channels revealed by conformational changes of the TREK-1 channel. J Mol Cell Biol 2022; 14:6504012. [PMID: 35022758 PMCID: PMC9021975 DOI: 10.1093/jmcb/mjac002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
Two-pore domain potassium (K2P) channels gate primarily within the selectivity filter, termed ‘C-type’ gating. Due to the lack of structural insights into the nonconductive (closed) state, ‘C-type’ gating mechanisms remain elusive. Here, molecular dynamics (MD) simulations on TREK-1, a K2P channel, revealed that M4 helix movements induce filter closing in a novel ‘deeper-down’ structure that represents a ‘C-type’ closed state. The ‘down’ structure does not represent the closed state as previously proposed and instead acts as an intermediate state in gating. The study identified the allosteric ‘seesaw’ mechanism of M4 helix movements in modulating filter closing. Finally, guided by this recognition of K2P gating mechanisms, MD simulations revealed that gain-of-function mutations and small-molecule activators activate TREK-1 by perturbing state transitions from open to closed states. Together, we reveal a ‘C-type’ closed state and provide mechanical insights into gating procedures and allosteric regulations for K2P channels.
Collapse
Affiliation(s)
- Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Fu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shaoying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peipei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shijie Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Juwen Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiangtao Guo
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
24
|
Kojima T, Wasano K, Takahashi S, Homma K. Cell death-inducing cytotoxicity in truncated KCNQ4 variants associated with DFNA2 hearing loss. Dis Model Mech 2021; 14:272416. [PMID: 34622280 PMCID: PMC8628632 DOI: 10.1242/dmm.049015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/22/2021] [Indexed: 01/30/2023] Open
Abstract
KCNQ4 encodes the homotetrameric voltage-dependent potassium ion channel Kv7.4, and is the causative gene for autosomal dominant nonsyndromic sensorineural hearing loss, DFNA2. Dominant-negative inhibition accounts for the observed dominant inheritance of many DFNA2-associated KCNQ4 variants. In addition, haploinsufficiency has been presumed as the pathological mechanism for truncated Kv7.4 variants lacking the C-terminal tetramerization region, as they are unlikely to exert a dominant-negative inhibitory effect. Such truncated Kv7.4 variants should result in relatively mild hearing loss when heterozygous; however, this is not always the case. In this study, we characterized Kv7.4Q71fs (c.211delC), Kv7.4W242X (c.725G>A) and Kv7.4A349fs (c.1044_1051del8) in heterologous expression systems and found that expression of these truncated Kv7.4 variants induced cell death. We also found similar cell death-inducing cytotoxic effects in truncated Kv7.1 (KCNQ1) variants, suggesting that the generality of our findings could account for the dominant inheritance of many, if not most, truncated Kv7 variants. Moreover, we found that the application of autophagy inducers can ameliorate the cytotoxicity, providing a novel insight for the development of alternative therapeutic strategies for Kv7.4 variants. Summary: Expression of truncated KCNQ4 variants lacking the C-terminal tetramerization domain results in cell-death inducing cytotoxicity, providing novel insight into the development of alternative therapeutic strategies for DFNA2 hearing loss.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Koichiro Wasano
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
25
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
26
|
Rodríguez AA, Otero-González A, Ghattas M, Ständker L. Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides. Biomedicines 2021; 9:1381. [PMID: 34680498 PMCID: PMC8533436 DOI: 10.3390/biomedicines9101381] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are widespread in multicellular organisms. These structurally diverse molecules are produced as the first line of defense against pathogens such as bacteria, viruses, fungi, and parasites. Also known as host defense peptides in higher eukaryotic organisms, AMPs display immunomodulatory and anticancer activities. During the last 30 years, technological advances have boosted the research on antimicrobial peptides, which have also attracted great interest as an alternative to tackling the antimicrobial resistance scenario mainly provoked by some bacterial and fungal pathogens. However, the introduction of natural AMPs in clinical trials faces challenges such as proteolytic digestion, short half-lives, and cytotoxicity upon systemic and oral application. Therefore, some strategies have been implemented to improve the properties of AMPs aiming to be used as effective therapeutic agents. In the present review, we summarize the discovery path of AMPs, focusing on preclinical development, recent advances in chemical optimization and peptide delivery systems, and their introduction into the market.
Collapse
Affiliation(s)
- Armando A. Rodríguez
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Maretchia Ghattas
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11511, Egypt;
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
27
|
Paul A, Singh S. Identification of a novel calcium activated potassium channel from Leishmania donovani and in silico predictions of its antigenic features. Acta Trop 2021; 220:105922. [PMID: 33878308 DOI: 10.1016/j.actatropica.2021.105922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/08/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022]
Abstract
Visceral Leishmaniasis is a major neglected tropical disease with increasing incidences of drug resistance. This has led to the search for a suitable drug target for chemotherapeutic intervention. Potassium channels are a family of membrane proteins which play a vital role in homeostasis and any perturbation in them alters cell survival which makes them an attractive target. To characterize a calcium-activated potassium channel from Leishmania donovani (LdKCa), a putative ion-channel like protein which showed sequence similarity with other Trypanosoma cruzi putative potassium channels was selected. It was cloned and expressed with a histidine tag. MALDI confirmed that it is a potassium channel. Homology model of LdKCa was generated by I-TASSER. It is a transmembrane protein localized in the plasma membrane as predicted by DeepLoc tool. In silico analyses of the protein showed that it is a small conductance calcium activated potassium channel. Point mutation in conserved signature domain 'TXGYGD' affects the protein function as predicted by heat map analysis. The LdKCa model predicted amino acids S207, T208 and M236 as ligand-binding sites. The sequence HSLRGRSARVIQLAWRLRKARKVGPHAPSLKQKVYTLVLSWLLT was the highest scoring B-cell epitope. The highest scoring T-cell epitope was RLYSVIVYL. This study may provide new insights into antigenicity features of leishmanial calcium-activated potassium channels.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
28
|
Kudryashova KS, Nekrasova OV, Kirpichnikov MP, Feofanov AV. Chimeras of KcsA and Kv1 as a bioengineering tool to study voltage-gated potassium channels and their ligands. Biochem Pharmacol 2021; 190:114646. [PMID: 34090876 DOI: 10.1016/j.bcp.2021.114646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
Chimeric potassium channels KcsA-Kv1, which are among the most intensively studied hybrid membrane proteins to date, were constructed by replacing a part of the pore domain of bacterial potassium channel KcsA (K channel of streptomyces A) with corresponding regions of the mammalian voltage-gated potassium channels belonging to the Kv1 subfamily. In this way, the pore blocker binding site of Kv1 channels was transferred to KcsA, opening up possibility to use the obtained hybrids as receptors of Kv1-channel pore blockers of different origin. In this review the recent progress in KcsA-Kv1 channel design and applications is discussed with a focus on the development of new assays for studying interactions of pore blockers with the channels. A summary of experimental data is presented demonstrating that hybrid channels reproduce the blocker-binding profiles of parental Kv1 channels. It is overviewed how the KcsA-Kv1 chimeras are used to get new insight into the structure of potassium channels, to determine molecular basis for high affinity and selectivity of binding of peptide blockers to Kv1 channels, as well as to identify new peptide ligands.
Collapse
Affiliation(s)
- Ksenia S Kudryashova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| |
Collapse
|
29
|
Micro x-ray fluorescence analysis of trace element distribution in frozen hydrated HeLa cells at the P06 beamline at Petra III. Biointerphases 2021; 16:011004. [PMID: 33706519 DOI: 10.1116/6.0000593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
X-ray fluorescence analysis enables the study of trace element distributions in biological specimens. When this analysis is done under cryogenic conditions, cells are cryofixed as closely as possible to their natural physiological state, and the corresponding intracellular elemental densities can be analyzed. Details about the experimental setup used for analysis at the P06 beamline at Petra III, DESY and the used cryo-transfer system are described in this work. The system was applied to analyze the elemental distribution in single HeLa cells, a cell line frequently used in a wide range of biological applications. Cells adhered to silicon nitride substrates were cryoprotected within an amorphous ice matrix. Using a continuous scanning scheme and a KB x-ray focus, the distribution of elements in the cells was studied. We were able to image the intracellular potassium and zinc levels in HeLa cells as two key elements relevant for the physiology of cells.
Collapse
|
30
|
Abstract
Two-pore domain potassium channels are formed by subunits that each contain two pore-loops moieties. Whether the channels are expressed in yeast or the human central nervous system, two subunits come together to form a single potassium selective pore. TOK1, the first two-domain channel was cloned from Saccharomyces cerevisiae in 1995 and soon thereafter, 15 distinct K2P subunits were identified in the human genome. The human K2P channels are stratified into six K2P subfamilies based on sequence as well as physiological or pharmacological similarities. Functional K2P channels pass background (or "leak") K+ currents that shape the membrane potential and excitability of cells in a broad range of tissues. In the years since they were first described, classical functional assays, latterly coupled with state-of-the-art structural and computational studies have revealed the mechanistic basis of K2P channel gating in response to specific physicochemical or pharmacological stimuli. The growing appreciation that K2P channels can play a pivotal role in the pathophysiology of a growing spectrum of diseases makes a compelling case for K2P channels as targets for drug discovery. Here, we summarize recent advances in unraveling the structure, function, and pharmacology of the K2P channels.
Collapse
Affiliation(s)
- Jordie M Kamuene
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Yu Xu
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
31
|
Anti-Kir4.1 Antibodies in Multiple Sclerosis: Specificity and Pathogenicity. Int J Mol Sci 2020; 21:ijms21249632. [PMID: 33348803 PMCID: PMC7765826 DOI: 10.3390/ijms21249632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
The glial cells in the central nervous system express diverse inward rectifying potassium channels (Kir). They express multiple Kir channel subtypes that are likely to have distinct functional roles related to their differences in conductance, and sensitivity to intracellular and extracellular factors. Dysfunction in a major astrocyte potassium channel, Kir4.1, appears as an early pathological event underlying neuronal phenotypes in several neurological diseases. The autoimmune effects on the potassium channel have not yet been fully described in the literature. However, several research groups have reported that the potassium channels are an immune target in patients with various neurological disorders. In 2012, Srivastava et al. reported about Kir4.1, a new immune target for autoantibodies in patients with multiple sclerosis (MS). Follow-up studies have been conducted by several research groups, but no clear conclusion has been reached. Most follow-up studies, including ours, have reported that the prevalence of Kir4.1-seropositive patients with MS was lower than that in the initial study. Therefore, we extensively review studies on the method of antibody testing, seroprevalence of MS, and other neurological diseases in patients with MS. Finally, based on the role of Kir4.1 in MS, we consider whether it could be an immune target in this disease.
Collapse
|
32
|
Cosme D, Estevinho MM, Rieder F, Magro F. Potassium channels in intestinal epithelial cells and their pharmacological modulation: a systematic review. Am J Physiol Cell Physiol 2020; 320:C520-C546. [PMID: 33326312 DOI: 10.1152/ajpcell.00393.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several potassium channels (KCs) have been described throughout the gastrointestinal tract. Notwithstanding, their contribution to both physiologic and pathophysiologic conditions, as inflammatory bowel disease (IBD), remains underexplored. Therefore, we aim to systematically review, for the first time, the evidence on the characteristics and modulation of KCs in intestinal epithelial cells (IECs). PubMed, Scopus, and Web of Science were searched to identify studies focusing on KCs and their modulation in IECs. The included studies were assessed using a reporting inclusiveness checklist. From the 745 identified records, 73 met the inclusion criteria; their reporting inclusiveness was moderate-high. Some studies described the physiological role of KCs, while others explored their importance in pathological settings. Globally, in IBD animal models, apical KCa1.1 channels, responsible for luminal secretion, were upregulated. In human colonocytes, basolateral KCa3.1 channels were downregulated. The pharmacological inhibition of K2P and Kv influenced intestinal barrier function, promoting inflammation. Evidence suggests a strong association between KCs expression and secretory mechanisms in human and animal IECs. Further research is warranted to explore the usefulness of KC pharmacological modulation as a therapeutic target.
Collapse
Affiliation(s)
- Dina Cosme
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases, and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal
| |
Collapse
|
33
|
Wang Z, Detomasi TC, Chang CJ. A dual-fluorophore sensor approach for ratiometric fluorescence imaging of potassium in living cells. Chem Sci 2020; 12:1720-1729. [PMID: 34163931 PMCID: PMC8179100 DOI: 10.1039/d0sc03844j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
Potassium is the most abundant intracellular metal in the body, playing vital roles in regulating intracellular fluid volume, nutrient transport, and cell-to-cell communication through nerve and muscle contraction. On the other hand, aberrant alterations in K+ homeostasis contribute to a diverse array of diseases spanning cardiovascular and neurological disorders to diabetes to kidney disease to cancer. There is an unmet need for studies of K+ physiology and pathology owing to the large differences in intracellular versus extracellular K+ concentrations ([K+]intra = 150 mM, [K+]extra = 3-5 mM). With a relative dearth of methods to reliably measure dynamic changes in intracellular K+ in biological specimens that meet the dual challenges of low affinity and high selectivity for K+, particularly over Na+, currently available fluorescent K+ sensors are largely optimized with high-affinity receptors that are more amenable for extracellular K+ detection. We report the design, synthesis, and biological evaluation of Ratiometric Potassium Sensor 1 (RPS-1), a dual-fluorophore sensor that enables ratiometric fluorescence imaging of intracellular potassium in living systems. RPS-1 links a potassium-responsive fluorescent sensor fragment (PS525) with a low-affinity, high-selectivity crown ether receptor for K+ to a potassium-insensitive reference fluorophore (Coumarin 343) as an internal calibration standard through ester bonds. Upon intracellular delivery, esterase-directed cleavage splits these two dyes into separate fragments to enable ratiometric detection of K+. RPS-1 responds to K+ in aqueous buffer with high selectivity over competing metal ions and is sensitive to potassium ions at steady-state intracellular levels and can respond to decreases or increases from that basal set point. Moreover, RPS-1 was applied for comparative screening of K+ pools across a panel of different cancer cell lines, revealing elevations in basal intracellular K+ in metastatic breast cancer cell lines vs. normal breast cells. This work provides a unique chemical tool for the study of intracellular potassium dynamics and a starting point for the design of other ratiometric fluorescent sensors based on two-fluorophore approaches that do not rely on FRET or related energy transfer designs.
Collapse
Affiliation(s)
- Zeming Wang
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Tyler C Detomasi
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720 USA
| |
Collapse
|
34
|
Wu T, Yin N, Chen X, Huang H, Liao Y. Functional coupling between BKCa and SOC channels. Tissue Cell 2020; 66:101394. [DOI: 10.1016/j.tice.2020.101394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 01/13/2023]
|
35
|
Role of potassium channels in female reproductive system. Obstet Gynecol Sci 2020; 63:565-576. [PMID: 32838485 PMCID: PMC7494774 DOI: 10.5468/ogs.20064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
Potassium channels are widely expressed in most types of cells in living organisms and regulate the functions of a variety of organs, including kidneys, neurons, cardiovascular organs, and pancreas among others. However, the functional roles of potassium channels in the reproductive system is less understood. This mini-review provides information about the localization and functions of potassium channels in the female reproductive system. Five types of potassium channels, which include inward-rectifying (Kir), voltage-gated (Kv), calcium-activated (KCa), 2-pore domain (K2P), and rapidly-gating sodium-activated (Slo) potassium channels are expressed in the hypothalamus, ovaries, and uterus. Their functions include the regulation of hormone release and feedback by Kir6.1 and Kir6.2, which are expressed in the luteal granulosa cells and gonadotropin-releasing hormone neurons respectively, and regulate the functioning of the hypothalamus–pituitary–ovarian axis and the production of progesterone. Both channels are regulated by subtypes of the sulfonylurea receptor (SUR), Kir6.1/SUR2B and Kir6.2/SUR1. Kv and Slo2.1 affect the transition from uterine quiescence in late pregnancy to the state of strong myometrial contractions in labor. Intermediate- and small-conductance KCa modulate the vasodilatation of the placental chorionic plate resistance arteries via the secretion of nitric oxide and endothelium-derived hyperpolarizing factors. Treatment with specific channel activators and inhibitors provides information relevant for clinical use that could help alter the functions of the female reproductive system.
Collapse
|
36
|
Lu C, Ma Z, Cheng X, Wu H, Tuo B, Liu X, Li T. Pathological role of ion channels and transporters in the development and progression of triple-negative breast cancer. Cancer Cell Int 2020; 20:377. [PMID: 32782435 PMCID: PMC7409684 DOI: 10.1186/s12935-020-01464-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a common malignancy in women. Among breast cancer types, triple-negative breast cancer (TNBC) tends to affect younger women, is prone to axillary lymph node, lung, and bone metastases; and has a high recurrence rate. Due to a lack of classic biomarkers, the currently available treatments are surgery and chemotherapy; no targeted standard treatment options are available. Therefore, it is urgent to find a novel and effective therapeutic target. As alteration of ion channels and transporters in normal mammary cells may affect cell growth, resulting in the development and progression of TNBC, ion channels and transporters may be promising new therapeutic targets for TNBC. This review summarizes ion channels and transporters related to TNBC and may provide new tumor biomarkers and help in the development of novel targeted therapies.
Collapse
Affiliation(s)
- Chengli Lu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Huichao Wu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| |
Collapse
|
37
|
Liu J, Qu C, Han C, Chen MM, An LJ, Zou W. Potassium channels and their role in glioma: A mini review. Mol Membr Biol 2020; 35:76-85. [PMID: 32067536 DOI: 10.1080/09687688.2020.1729428] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
K+ channels regulate a multitude of biological processes and play important roles in a variety of diseases by controlling potassium flow across cell membranes. They are widely expressed in the central and peripheral nervous system. As a malignant tumor derived from nerve epithelium, glioma has the characteristics of high incidence, high recurrence rate, high mortality rate, and low cure rate. Since glioma cells show invasive growth, current surgical methods cannot completely remove tumors. Adjuvant chemotherapy is still needed after surgery. Because the blood-brain barrier and other factors lead to a lower effective concentration of chemotherapeutic drugs in the tumor, the recurrence rate of residual lesions is extremely high. Therefore, new therapeutic methods are needed. Numerous studies have shown that different K+ channel subtypes are differentially expressed in glioma cells and are involved in the regulation of the cell cycle of glioma cells to arrest them at different stages of the cell cycle. Increasing evidence suggests that K+ channels express in glioma cells and regulate glioma cell behaviors such as cell cycle, proliferation and apoptosis. This review article aims to summarize the current knowledge on the function of K+ channels in glioma, suggests K+ channels participating in the development of glioma.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science, Technology, Dalian University of Technology, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Chao Han
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meng-Meng Chen
- Company of Qingdao Re-Store Life Sciences, Qingdao, China
| | - Li-Jia An
- School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science, Technology, Dalian University of Technology, Dalian, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, China.,Company of Qingdao Re-Store Life Sciences, Qingdao, China
| |
Collapse
|
38
|
Díaz-García A, Varela D. Voltage-Gated K +/Na + Channels and Scorpion Venom Toxins in Cancer. Front Pharmacol 2020; 11:913. [PMID: 32655396 PMCID: PMC7325878 DOI: 10.3389/fphar.2020.00913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Ion channels have recently been recognized as novel therapeutic targets in cancer research since they are overexpressed in different histological tissues, and their activity is linked to proliferation, tumor progression, angiogenesis, metastasis, and apoptosis. Voltage gated-potassium channels (VGKC) are involved in cell proliferation, cancer progression, cell cycle transition, and apoptosis. Moreover, voltage-dependent sodium channels (VGSC) contribute to decreases in extracellular pH, which, in turn, promotes cancer cell migration and invasion. Furthermore, VGSC and VGKC modulate voltage-sensitive Ca2+ channel activity by controlling the membrane potential and regulating Ca2+ influx, which functions as a second messenger in processes related to proliferation, invasion, migration, and metastasis. The subgroup of these types of channels that have shown a high oncogenic potential have become known as "oncochannels", and the evidence has highlighted them as key potential therapeutic targets. Scorpion venoms contain a high proportion of peptide toxins that act by modulating voltage-gated Na+/K+ channel activity. Increasing scientific data have pointed out that scorpion venoms and their toxins can affect the activity of oncochannels, thus showing their potential for anticancer therapy. In this review, we provide an update of the most relevant voltage-gated Na+\K+ ion channels as cellular targets and discuss the possibility of using scorpion venom and toxins for anticancer therapy.
Collapse
Affiliation(s)
- Alexis Díaz-García
- LifEscozul Chile SpA, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
39
|
Freeland J, Zhang L, Wang ST, Ruiz M, Wang Y. Bent DNA Bows as Sensing Amplifiers for Detecting DNA-Interacting Salts and Molecules. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3112. [PMID: 32486417 PMCID: PMC7309149 DOI: 10.3390/s20113112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 01/20/2023]
Abstract
Due to the central role of DNA, its interactions with inorganic salts and small organic molecules are important. For example, such interactions play important roles in various fundamental cellular processes in living systems and are involved in many DNA-damage related diseases. Strategies to improve the sensitivity of existing techniques for studying DNA interactions with other molecules would be appreciated in situations where the interactions are too weak. Here we report our development and demonstration of bent DNA bows for amplifying, sensing, and detecting the interactions of 14 inorganic salts and small organic molecules with DNA. With the bent DNA bows, these interactions were easily visualized and quantified in gel electrophoresis, which were difficult to measure without bending. In addition, the strength of the interactions of DNA with the various salts/molecules were quantified using the modified Hill equation. This work highlights the amplification effects of the bending elastic energy stored in the DNA bows and the potential use of the DNA bows for quantitatively measuring DNA interactions with small molecules as simple economic methods; it may also pave the way for exploiting the bent DNA bows for other applications such as screening DNA-interacting molecules and drugs.
Collapse
Affiliation(s)
- Jack Freeland
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (L.Z.); (S.-T.W.)
| | - Shih-Ting Wang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (L.Z.); (S.-T.W.)
| | - Mason Ruiz
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Department of Biology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Microelectronics-Photonics Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
40
|
Guimaraes TACD, Georgiou M, Robson AG, Michaelides M. KCNV2 retinopathy: clinical features, molecular genetics and directions for future therapy. Ophthalmic Genet 2020; 41:208-215. [PMID: 32441199 PMCID: PMC7446039 DOI: 10.1080/13816810.2020.1766087] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
-associated retinopathy or “cone dystrophy with supernormal rod responses” is an
autosomal recessive cone-rod dystrophy with pathognomonic ERG findings. This gene
encodes Kv8.2, a voltage-gated potassium channel subunit that acts as a modulator by
shifting the activation range of the K+ channels in photoreceptor inner
segments. Currently, no treatment is available for the condition. However, there is a
lack of prospective long-term data in large molecularly confirmed cohorts, which is a
prerequisite for accurate patient counselling/prognostication, to identify an optimal
window for intervention and outcome measures, and ultimately to design future therapy
trials. Herein we provide a detailed review of the clinical features, retinal imaging,
electrophysiology and psychophysical studies, molecular genetics, and briefly discuss
future prospects for therapy trials.
Collapse
Affiliation(s)
- Thales A C De Guimaraes
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| |
Collapse
|
41
|
Mahtani T, Treanor B. Beyond the CRAC: Diversification of ion signaling in B cells. Immunol Rev 2020; 291:104-122. [PMID: 31402507 PMCID: PMC6851625 DOI: 10.1111/imr.12770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Although calcium signaling and the important role of calcium release–activated calcium channels is well recognized in the context of immune cell signaling, there is a vast diversity of ion channels and transporters that regulate the entry of ions beyond calcium, including magnesium, zinc, potassium, sodium, and chloride. These ions play a critical role in numerous metabolic and cellular processes. The importance of ions in human health and disease is illustrated by the identification of primary immunodeficiencies in patients with mutations in genes encoding ion channels and transporters, as well as the immunological defects observed in individuals with nutritional ion deficiencies. Despite progress in identifying the important role of ions in immune cell development and activation, we are still in the early stages of exploring the diversity of ion channels and transporters and mechanistically understanding the role of these ions in immune cell biology. Here, we review the biology of ion signaling in B cells and the identification of critical ion channels and transporters in B‐cell development, activation, and differentiation into effector cells. Elucidating the role of ion channels and transporters in immune cell signaling is critical for expanding the repertoire of potential therapeutics for the treatment of immune disorders. Moreover, increased understanding of the role of ions in immune cell function will enhance our understanding of the potentially serious consequences of ion deficiencies in human health and disease.
Collapse
Affiliation(s)
- Trisha Mahtani
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bebhinn Treanor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Selvaraj C, Selvaraj G, Kaliamurthi S, Cho WC, Wei DQ, Singh SK. Ion Channels as Therapeutic Targets for Type 1 Diabetes Mellitus. Curr Drug Targets 2020; 21:132-147. [PMID: 31538892 DOI: 10.2174/1389450119666190920152249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Ion channels are integral proteins expressed in almost all living cells and are involved in muscle contraction and nutrient transport. They play a critical role in the normal functioning of the excitable tissues of the nervous system and regulate the action potential and contraction events. Dysfunction of genes encodes ion channel proteins, which disrupt the channel function and lead to a number of diseases, among which is type 1 diabetes mellitus (T1DM). Therefore, understanding the complex mechanism of ion channel receptors is necessary to facilitate the diagnosis and management of treatment. In this review, we summarize the mechanism of important ion channels and their potential role in the regulation of insulin secretion along with the limitations of ion channels as therapeutic targets. Furthermore, we discuss the recent investigations of the mechanism regulating the ion channels in pancreatic beta cells, which suggest that ion channels are active participants in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Dong-Qing Wei
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
- Department of Bioinformatics, The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| |
Collapse
|
43
|
Rickert V, Kramer D, Schubert AL, Sommer C, Wischmeyer E, Üçeyler N. Globotriaosylceramide-induced reduction of K Ca1.1 channel activity and activation of the Notch1 signaling pathway in skin fibroblasts of male Fabry patients with pain. Exp Neurol 2019; 324:113134. [PMID: 31778662 DOI: 10.1016/j.expneurol.2019.113134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 11/24/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Fabry disease (FD) is an X-linked lysosomal storage disorder that leads to cellular globotriaosylceramide (Gb3) accumulation due to mutations in the gene encoding α-galactosidase A. Trigger-induced acral burning pain is an early FD symptom of unknown pathophysiology. We aimed at investigating the potential role of skin fibroblasts in nociceptor sensitization. PATIENTS AND METHODS We enrolled 40 adult FD patients and ten healthy controls, who underwent a 6-mm skin punch biopsy at the lower leg. Dermal fibroblasts were cultivated and analyzed for Gb3 load. Fibroblast electrical activity was assessed using patch-clamp analysis at baseline and upon incubation with agalsidase-α for 24 h. We investigated gene expression of CC motif chemokine ligand 2 (CCL2), Ca2+activated K+-channel 1.1 (KCa1.1), interferone-γ (IFN-γ), transforming growth factor-β1 (TGF-β1), and transmembrane receptor notch homolog 1 (Notch1) using quantitative real-time-PCR, and protein levels of KCa1.1 by ELISA. Gene expression was determined at baseline and after fibroblast stimulation with tumor necrosis factor-α (TNF), modeling inflammation as a common pain trigger in FD. RESULTS Total Gb3 load was higher in FD fibroblasts than in control fibroblasts (p < .01). Upon increase of intracellular Ca2+ concentrations, we detected differential electrical activity of KCa1.1 in fibroblasts obtained from patients with FD. Gene expression (p < .05) and protein levels of KCa1.1 (p < .05) were higher in fibroblasts from FD patients compared to control fibroblasts, whereas electric channel activity was lower in FD fibroblasts. After incubation with agalsidase-α, we observed an over-proportionate increase of KCa1.1 activity in FD fibroblasts reaching 7-fold the currents of control cells (p < .01). Gene expression studies revealed higher mRNA levels of CCL2, INF-γ, and Notch1 in FD fibroblasts compared to controls at baseline and after TNF incubation (p < .05 each), while TGF-β1 was higher in FD fibroblasts only after incubation with TNF (p < .05). CONCLUSIONS Gb3 deposition in skin fibroblasts may impair KCa1.1 activity and activate the Notch1 signaling pathway. The resulting increase in pro-inflammatory mediator expression may contribute to cutaneous nociceptor sensitization as a potential mechanism of FD-associated pain.
Collapse
Affiliation(s)
| | - Daniela Kramer
- Department of Neurology, University of Würzburg, Germany
| | | | - Claudia Sommer
- Department of Neurology, University of Würzburg, Germany; Fabry Center for Interdisciplinary Therapy Würzburg (FAZIT), University of Würzburg, Germany
| | - Erhard Wischmeyer
- Molecular Electrophysiology, Institute of Physiology, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Germany; Fabry Center for Interdisciplinary Therapy Würzburg (FAZIT), University of Würzburg, Germany.
| |
Collapse
|
44
|
Jayanthi S, Torres OV, Ladenheim B, Cadet JL. A Single Prior Injection of Methamphetamine Enhances Methamphetamine Self-Administration (SA) and Blocks SA-Induced Changes in DNA Methylation and mRNA Expression of Potassium Channels in the Rat Nucleus Accumbens. Mol Neurobiol 2019; 57:1459-1472. [PMID: 31758400 PMCID: PMC7060962 DOI: 10.1007/s12035-019-01830-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
The transition from occasional to escalated psychostimulant use is accelerated by prior drug exposure. These behavioral observations may be related to long-lasting transcriptional and/or epigenetic changes induced by the drug pre-exposure. Herein, we investigated if a single methamphetamine (METH) injection would enhance METH self-administration (SA) and impact any METH SA-induced epigenetic or transcriptional alterations. We thus injected a single METH dose (10 mg/kg) or saline to rats before training them to self-administer METH or saline. There were three experimental groups in SA experiments: (1) a single saline injection followed by saline SA (SS); (2) a single saline injection followed by METH SA (SM); and (3) a single METH injection followed by METH SA (MM). METH-pretreated rats escalated METH SA earlier and took more METH than saline-pretreated animals. Both groups showed similar incubation of cue-induced METH craving. Because compulsive METH takers and METH-abstinent rats show differences in potassium (K+) channel mRNA levels in their nucleus accumbens (NAc), we wondered if K+ channel expression might also help to distinguish between SM and MM groups. We found increases in mRNA and protein expression of shaker-related voltage-gated K+ channels (Kv1: Kcna1, Kcna3, and Kcna6) and calcium-activated K+ channels (Kcnn1) in the SM compared to MM rats. SM rats also showed decreased DNA methylation at the CpG-rich sites near the promoter region of Kcna1, Kcna3 and Kcnn1 genes in comparison to MM rats. Together, these results provide additional evidence for potentially using K+ channels as therapeutic targets against METH use disorder.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Oscar V Torres
- Department of Behavioral Sciences, San Diego Mesa College, San Diego, CA, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
45
|
Bozic I, Savic D, Milosevic A, Janjic M, Laketa D, Tesovic K, Bjelobaba I, Jakovljevic M, Nedeljkovic N, Pekovic S, Lavrnja I. The Potassium Channel Kv1.5 Expression Alters During Experimental Autoimmune Encephalomyelitis. Neurochem Res 2019; 44:2733-2745. [PMID: 31624998 DOI: 10.1007/s11064-019-02892-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, neurodegenerative disease with an autoimmune component. It was suggested that potassium channels, which are involved in crucial biological functions may have a role in different diseases, including MS and its animal model, experimental autoimmune encephalomyelitis (EAE). It was shown that voltage-gated potassium channels Kv1.5 are responsible for fine-tuning in the immune physiology and influence proliferation and differentiation in microglia and astrocytes. Here, we explored the cellular distribution of the Kv1.5 channel, together with its transcript and protein expression in the male rat spinal cord during different stages of EAE. Our results reveal a decrease of Kv1.5 transcript and protein level at the peak of disease, where massive infiltration of myeloid cells occurs, together with reactive astrogliosis and demyelination. Also, we revealed that the presence of this channel is not found in infiltrating macrophages/microglia during EAE. It is interesting to note that Kv1.5 channel is expressed only in resting microglia in the naïve animals. Predominant expression of Kv1.5 channel was found in the astrocytes in all experimental groups, while some vimentin+ cells, resembling macrophages, are devoid of Kv1.5 expression. Our results point to the possible link between Kv1.5 channel and the pathophysiological processes in EAE.
Collapse
Affiliation(s)
- I Bozic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - D Savic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - A Milosevic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - M Janjic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - D Laketa
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - K Tesovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - I Bjelobaba
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - M Jakovljevic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - N Nedeljkovic
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - S Pekovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - I Lavrnja
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
46
|
BK ablation attenuates osteoblast bone formation via integrin pathway. Cell Death Dis 2019; 10:738. [PMID: 31570694 PMCID: PMC6769012 DOI: 10.1038/s41419-019-1972-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/09/2022]
Abstract
Impaired bone formation is one of the major causes of low bone mass and skeletal fragility that occurs in osteoporosis. However, the mechanisms underlying the defects in bone formation are not well understood. Here, we report that big conductance calcium-activated potassium channels (BKs) are required for bone formation and osteoblast function both in vivo and in vitro. By 15 weeks of age, BK knockout (BKO) mice exhibited a decline in bone mineral density and trabecular bone volume of the tibiae and lumbar vertebrae, which were associated with impaired bone formation and osteoblast activity. Mechanistically, BK ablation in bone and bone marrow mesenchymal stem cells (BMSCs) of BKO mice inhibited integrin signaling. Furthermore, the binding of α subunit of BK with integrin β1 protein in osteoblasts was confirmed, and FAK-ERK1/2 signaling was proved to be involved by genetic modification of KCNMA1 (which encodes the α subunit of BK) in ROS17/2.8 osteoblast cells. These findings indicated that BK regulates bone formation by promoting osteoblast differentiation via integrin pathway, which provided novel insight into ion transporter crosstalk with the extracellular matrix in osteoblast regulation and revealed a new potential strategy for intervention in correcting bone formation defects.
Collapse
|
47
|
Hermanns H, Hollmann MW, Stevens MF, Lirk P, Brandenburger T, Piegeler T, Werdehausen R. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review. Br J Anaesth 2019; 123:335-349. [DOI: 10.1016/j.bja.2019.06.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
|
48
|
Vyas VK, Parikh P, Ramani J, Ghate M. Medicinal Chemistry of Potassium Channel Modulators: An Update of Recent Progress (2011-2017). Curr Med Chem 2019; 26:2062-2084. [PMID: 29714134 DOI: 10.2174/0929867325666180430152023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/22/2017] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Potassium (K+) channels participate in many physiological processes, cardiac function, cell proliferation, neuronal signaling, muscle contractility, immune function, hormone secretion, osmotic pressure, changes in gene expression, and are involved in critical biological functions, and in a variety of diseases. Potassium channels represent a large family of tetrameric membrane proteins. Potassium channels activation reduces excitability, whereas channel inhibition increases excitability. OBJECTIVE Small molecule K+ channel activators and inhibitors interact with voltage-gated, inward rectifying, and two-pore tandem potassium channels. Due to their involvement in biological functions, and in a variety of diseases, small molecules as potassium channel modulators have received great scientific attention. METHODS In this review, we have compiled the literature, patents and patent applications (2011 to 2017) related to different chemical classes of potassium channel openers and blockers as therapeutic agents for the treatment of various diseases. Many different chemical classes of selective small molecule have emerged as potassium channel modulators over the past years. CONCLUSION This review discussed the current understanding of medicinal chemistry research in the field of potassium channel modulators to update the key advances in this field.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Palak Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Jonali Ramani
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Manjunath Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| |
Collapse
|
49
|
Yang H, Shan W, Zhu F, Wu J, Wang Q. Ketone Bodies in Neurological Diseases: Focus on Neuroprotection and Underlying Mechanisms. Front Neurol 2019; 10:585. [PMID: 31244753 PMCID: PMC6581710 DOI: 10.3389/fneur.2019.00585] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
There is growing evidence that ketone bodies, which are derived from fatty acid oxidation and usually produced in fasting state or on high-fat diets have broad neuroprotective effects. Although the mechanisms underlying the neuroprotective effects of ketone bodies have not yet been fully elucidated, studies in recent years provided abundant shreds of evidence that ketone bodies exert neuroprotective effects through possible mechanisms of anti-oxidative stress, maintaining energy supply, modulating the activity of deacetylation and inflammatory responses. Based on the neuroprotective effects, the ketogenic diet has been used in the treatment of several neurological diseases such as refractory epilepsy, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. The ketogenic diet has great potential clinically, which should be further explored in future studies. It is necessary to specify the roles of components in ketone bodies and their therapeutic targets and related pathways to optimize the strategy and efficacy of ketogenic diet therapy in the future.
Collapse
Affiliation(s)
- Huajun Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fei Zhu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Antispasmodic Effect of Essential Oils and Their Constituents: A Review. Molecules 2019; 24:molecules24091675. [PMID: 31035694 PMCID: PMC6539827 DOI: 10.3390/molecules24091675] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
The antispasmodic effect of drugs is used for the symptomatic treatment of cramping and discomfort affecting smooth muscles from the gastrointestinal, billiary or genitourinary tract in a variety of clinical situations.The existing synthetic antispasmodic drugs may cause a series of unpleasant side effects, and therefore the discovery of new molecules of natural origin is an important goal for the pharmaceutical industry. This review describes a series of recent studies investigating the antispasmodic effect of essential oils from 39 plant species belonging to 12 families. The pharmacological models used in the studies together with the mechanistic discussions and the chemical composition of the essential oils are also detailed. The data clearly demonstrate the antispasmodic effect of the essential oils from the aromatic plant species studied. Further research is needed in order to ascertain the therapeutic importance of these findings.
Collapse
|