1
|
Fabbrizi E, Chernyshov VV, Fiorentino F, Sbardella G, Ragno R, Nawrozkij M, Ivanov R, Rotili D, Mai A. An Amazing 30-Year Journey around the DABO Family: A Medicinal Chemistry Lesson on a Versatile Class of Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. J Med Chem 2025; 68:5993-6026. [PMID: 40053382 PMCID: PMC11956011 DOI: 10.1021/acs.jmedchem.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025]
Abstract
Since the emergence of AIDS, the non-nucleoside HIV-1 RT inhibitors (NNRTIs) have attracted the attention of scientists and clinicians due to their high potency and specificity combined with low toxicity. 3,4-Dihydro-2-alkoxy-6-benzyl-4-oxopyrimidines (DABOs) are a family of NNRTIs described since 1992, and the best members among S-, NH-, and N,N-DABOs showed high anti-HIV-1 potency in both cellular and enzymatic assays. During 30 years of research, the central 4-(3H)-pyrimidinone nucleus has been decorated with 2,6-dihaloaryl or cyclohexyl groups at the methylene at C6, alkyl- or (arylalkyl/aroylalkyl)thio/amino chains at C2, and hydrogen or a small alkyl group at C5. The further introduction of small (i.e., methoxy) groups at the C6 α-benzylic position furnished potency at the sub-nanomolar level against wild-type HIV-1 and at the nanomolar level against HIV-1 mutant strains. Importantly, some compounds of the DABO family exhibited preventative microbicidal activity, valuable in clinical settings where oral adherence rates are low.
Collapse
Affiliation(s)
- Emanuele Fabbrizi
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vladimir V. Chernyshov
- Sirius University
of Science and Technology, Olympic Avenue, 1, 354340, Federal Territory of Sirius, Krasnodar Region Russian Federation
| | - Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Rino Ragno
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maxim Nawrozkij
- Sirius University
of Science and Technology, Olympic Avenue, 1, 354340, Federal Territory of Sirius, Krasnodar Region Russian Federation
| | - Roman Ivanov
- Sirius University
of Science and Technology, Olympic Avenue, 1, 354340, Federal Territory of Sirius, Krasnodar Region Russian Federation
| | - Dante Rotili
- Department
of Science, Roma Tre University of Rome, Viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Khandelwal R, Vasava M, Abhirami RB, Karsharma M. Recent advances in triazole synthesis via click chemistry and their pharmacological applications: A review. Bioorg Med Chem Lett 2024; 112:129927. [PMID: 39153663 DOI: 10.1016/j.bmcl.2024.129927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Click chemistry is a flexible method featuring only the most feasible and efficient chemical reactions. The synthesis of 1,2,3-triazole from azides and terminal acetylenes using copper(I) as a catalyst is an extremely powerful reaction due to the extreme dependability, good selectivity, and biocompatibility of the starting materials. Triazole molecules are more than simple passive linkers; through hydrogen bonding and dipole interactions, they rapidly bind with biological targets. Its applications in drug development are expanding, ranging from target-oriented in situ chemistry and combinatorial mechanisms for lead generation to bioconjugation methods to study proteins and DNA. The click chemistry has frequently been used to speed up drug discovery and optimization processes in the past few years. The click chemistry reaction based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a biochemical process with applications in medicinal chemistry and chemical biology. Thus, click reactions are an essential component of the toolkit for medicinal chemistry and help medicinal chemists overcome the barriers in chemical reactions, increase throughput, and improve the standards of compound libraries. The review highlights the recent advancements in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach for synthesizing biologically important triazole moieties with a greater emphasis on synthesis methodologies and pharmacological applications. Additionally, the triazole-based FDA-approved drugs are also discussed with their mode of action to highlight the importance of the click chemistry approach in synthesizing the bioactive triazole compounds.
Collapse
Affiliation(s)
- Riya Khandelwal
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Mahesh Vasava
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - R B Abhirami
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Manaswini Karsharma
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
Zhao R, Zhu J, Jiang X, Bai R. Click chemistry-aided drug discovery: A retrospective and prospective outlook. Eur J Med Chem 2024; 264:116037. [PMID: 38101038 DOI: 10.1016/j.ejmech.2023.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Click chemistry has emerged as a valuable tool for rapid compound synthesis, presenting notable advantages and convenience in the exploration of potential drug candidates. In particular, in situ click chemistry capitalizes on enzymes as reaction templates, leveraging their favorable conformation to selectively link individual building blocks and generate novel hits. This review comprehensively outlines and introduces the extensive use of click chemistry in compound library construction, and hit and lead discovery, supported by specific research examples. Additionally, it discusses the limitations and precautions associated with the application of click chemistry in drug discovery. Our intention for this review is to contribute to the development of a modular synthetic approach for the rapid identification of drug candidates.
Collapse
Affiliation(s)
- Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
4
|
Yu L, Li JH, Zhu J, Wang YD, Yan ZW, Zhang LY, Li S. Discovery of novel 2,3,4,5-tetrahydrospiro[benzo[c]azepine-1,1'-cyclohexan]-5-ol derivatives as PARP-1 inhibitors. BMC Chem 2023; 17:147. [PMID: 37891641 PMCID: PMC10612255 DOI: 10.1186/s13065-023-01060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
As an essential marker of cancer treatment, PARP-1 inhibitors could effectively kill tumor cells through a mechanism known as synthetic lethality and are used to treat a variety of cancers. In order to explore novel PARP-1 inhibitors, a series of 22 novel erythrina derivatives were reported and preliminarily explored their mechanism of action. The antitumor activities against four human cancer cell lines including A549, OVCAR-3, HCT-116, and MCF-7 were evaluated, and the preliminary SARs were summarized. Among them, compound 11b exhibited better anti-proliferative effects against A549 cells (IC50 = 1.95 µM). The SI results showed that compound 11b had low toxicity. Moreover, compound 11b displayed excellent PARP-1 inhibitory activities with IC50 values of 19.24 nM. In addition, molecular docking studies provided the rational binding modes of compound 11b in complexes with PARP-1. The flow cytometry assays revealed that compound 11b could induce apoptosis of A549 cells (P < 0.001). Simultaneously, compound 11b could effectively reduce the formation of PAR (P < 0.001). The ADMET prediction results indicated compound 11b had similar properties to rucaparib. Collectively, compound 11b has potential research value for further investigation.
Collapse
Affiliation(s)
- Ling Yu
- Department of Pharmacy, Anorectal Hospital of Chengde Medical University, Chengde, 067000, P. R. China
| | - Jian-Hui Li
- Department of Preventive Medicine, Chengde Medical University, Chengde, 067000, P. R. China
| | - Ju Zhu
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - You-de Wang
- Key Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Hebei Key Laboratory of Nerve Injury and Repair, Institute of Traditional Chinese Medicine, Chengde Medical University, Anyuan Road, Chengde, 067000, P. R. China
| | - Zhi-Wei Yan
- Key Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Hebei Key Laboratory of Nerve Injury and Repair, Institute of Traditional Chinese Medicine, Chengde Medical University, Anyuan Road, Chengde, 067000, P. R. China
| | - Li-Ying Zhang
- Key Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Hebei Key Laboratory of Nerve Injury and Repair, Institute of Traditional Chinese Medicine, Chengde Medical University, Anyuan Road, Chengde, 067000, P. R. China
| | - Shuai Li
- Key Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Hebei Key Laboratory of Nerve Injury and Repair, Institute of Traditional Chinese Medicine, Chengde Medical University, Anyuan Road, Chengde, 067000, P. R. China.
| |
Collapse
|
5
|
Feng LS, Zheng MJ, Zhao F, Liu D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Arch Pharm (Weinheim) 2020; 354:e2000163. [PMID: 32960467 DOI: 10.1002/ardp.202000163] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) is the major etiological agent responsible for the acquired immunodeficiency syndrome (AIDS), which is a serious infectious disease and remains one of the most prevalent problems at present. Currently, combined antiretroviral therapy is the primary modality for the treatment and management of HIV/AIDS, but the long-term use can result in major drawbacks such as the development of multidrug-resistant viruses and multiple side effects. 1,2,3-Triazole is the common framework in the development of new drugs, and its derivatives have the potential to inhibit various HIV-1 enzymes such as reverse transcriptase, integrase, and protease, consequently possessing a potential anti-HIV-1 activity. This review covers the recent advances regarding the 1,2,3-triazole hybrids with potential anti-HIV-1 activity; it focuses on the chemical structures, structure-activity relationship, and mechanisms of action, covering articles published from 2010 to 2020.
Collapse
Affiliation(s)
| | | | | | - Duan Liu
- WuXi AppTec Co., Ltd., Wuhan, China
| |
Collapse
|
6
|
Li S, Li XY, Zhang TJ, Zhu J, Xue WH, Qian XH, Meng FH. Design, synthesis and biological evaluation of erythrina derivatives bearing a 1,2,3-triazole moiety as PARP-1 inhibitors. Bioorg Chem 2020; 96:103575. [DOI: 10.1016/j.bioorg.2020.103575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022]
|
7
|
Design, synthesis and biological evaluation of homoerythrina alkaloid derivatives bearing a triazole moiety as PARP-1 inhibitors and as potential antitumor drugs. Bioorg Chem 2020; 94:103385. [DOI: 10.1016/j.bioorg.2019.103385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022]
|
8
|
Lu GQ, Li XY, Mohamed O K, Wang D, Meng FH. Design, synthesis and biological evaluation of novel uracil derivatives bearing 1, 2, 3-triazole moiety as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. Eur J Med Chem 2019; 171:282-296. [DOI: 10.1016/j.ejmech.2019.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
9
|
Jiang X, Hao X, Jing L, Wu G, Kang D, Liu X, Zhan P. Recent applications of click chemistry in drug discovery. Expert Opin Drug Discov 2019; 14:779-789. [PMID: 31094231 DOI: 10.1080/17460441.2019.1614910] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Click chemistry has been exploited widely in the past to expedite lead discovery and optimization. Indeed, Copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry is a bioorthogonal reaction of widespread utility throughout medicinal chemistry and chemical biology. Areas covered: The authors review recent applications of CuAAC click chemistry to drug discovery based on the literature published since 2013. Furthermore, the authors provide the reader with their expert perspectives on the area including their outlook on future developments. Expert opinion: Click chemistry reactions are an important part of the medicinal chemistry toolbox and offer substantial advantages to medicinal chemists in terms of overcoming the limitations of useful chemical synthesis, increasing throughput, and improving the quality of compound libraries. To explore new chemical spaces for drug-like molecules containing a high degree of structural diversity, it may be useful to merge the diversity-oriented synthesis and 'privileged' substructure-based strategy with bioorthogonal reactions using sophisticated automation and flow systems to improve productivity. Large compound libraries obtained in this way should be of great value for the discovery of bioactive compounds and therapeutic agents.
Collapse
Affiliation(s)
- Xiangyi Jiang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Xia Hao
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Lanlan Jing
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Gaochan Wu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Dongwei Kang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| |
Collapse
|
10
|
Gao F, Wang T, Gao M, Zhang X, Liu Z, Zhao S, Lv Z, Xiao J. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. Eur J Med Chem 2019; 165:323-331. [DOI: 10.1016/j.ejmech.2019.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
|
11
|
Ouyang T, Liu X, Ouyang H, Ren L. Recent trends in click chemistry as a promising technology for virus-related research. Virus Res 2018; 256:21-28. [PMID: 30081058 PMCID: PMC7173221 DOI: 10.1016/j.virusres.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
Click chemistry involves reactions that were originally introduced and used in organic chemistry to generate substances by joining small units together with heteroatom linkages (C-X-C). Over the last few decades, click chemistry has been widely used in virus-related research. Using click chemistry, the virus particle as well as viral protein and nucleic acids can be labeled. Subsequently, the labeled virions or molecules can be tracked in real time. Here, we reviewed the recent applications of click reactions in virus-related research, including viral tracking, the design of antiviral agents, the diagnosis of viral infection, and virus-based delivery systems. This review provides an overview of the general principles and applications of click chemistry in virus-related research.
Collapse
Affiliation(s)
- Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Xiaohui Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China.
| |
Collapse
|
12
|
Wang L, Liu X, Duan Y, Li X, Zhao B, Wang C, Xiao Z, Zheng P, Tang Q, Zhu W. Discovery of novel pyrrolopyrimidine/pyrazolopyrimidine derivatives bearing 1,2,3-triazole moiety as c-Met kinase inhibitors. Chem Biol Drug Des 2018; 92:1301-1314. [PMID: 29575727 DOI: 10.1111/cbdd.13192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/20/2017] [Accepted: 02/10/2018] [Indexed: 12/16/2022]
Abstract
Six series of pyrrolo[2,3-d]pyrimidine and pyrazolo[3,4-d]pyrimidine derivatives bearing 1,2,3-triazole moiety were designed and synthesized, and some bio-evaluation was also carried out. As a result, four points can be summarized: Firstly, some of compounds exhibited excellent cytotoxicity activity and selectivity with the IC50 values in single-digit μm level. In particular, the most promising compound 16d showed equal activity to lead compound foretinib against A549, HepG2, and MCF-7 cell lines, with the IC50 values of 4.79 ± 0.82, 2.03 ± 0.39, and 2.90 ± 0.43 μm, respectively. Secondly, the SARs and docking studies indicated that the in vitro antitumor activity of pyrrolo[2,3-d]pyrimidine derivatives bearing 1,2,3-triazole moiety was superior to the pyrazolo[3,4-d]pyrimidine derivatives bearing 1,2,3-triazole moiety. Thirdly, three selected compounds (16d, 18d, and 20d) were further evaluated for inhibitory activity against the c-Met kinase, and the 16d could inhibit the c-Met kinase selectively by experiments of enzyme-based selectivity. What is more, 16d could induce apoptosis of HepG2 cells and inhibitor the cell cycle of HepG2 on G2/M phase by acridine orange staining and cell cycle experiments, respectively.
Collapse
Affiliation(s)
- Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaobo Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yongli Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojing Li
- College of Service, Naval University of Academy of PLA, Tianjin, China
| | - Bingbing Zhao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Caolin Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhen Xiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
13
|
Tian Y, Liu Z, Liu J, Huang B, Kang D, Zhang H, De Clercq E, Daelemans D, Pannecouque C, Lee KH, Chen CH, Zhan P, Liu X. Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. Eur J Med Chem 2018; 151:339-350. [PMID: 29635166 DOI: 10.1016/j.ejmech.2018.03.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Inspired by our previous efforts on the modifications of diarylpyrimidines as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) and reported crystallography study, novel diarylnicotinamide derivatives were designed with a "triazole tail" occupying the entrance channel in the NNRTI binding pocket of the reverse transcriptase to afford additional interactions. The newly designed compounds were then synthesized and evaluated for their anti-HIV activities in MT-4 cells. All the compounds showed excellent to good activity against wild-type HIV-1 strain with EC50 of 0.02-1.77 μM. Evaluations of selected compounds against more drug-resistant strains showed these compounds had advantage of inhibiting E138K mutant virus which is a key drug-resistant mutant to the new generation of NNRTIs. Among this series, propionitrile (3b2, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.015 μM, CC50 = 40.15 μM), pyrrolidin-1-ylmethanone (3b8, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.014 μM, CC50 = 58.09 μM) and morpholinomethanone (3b9, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.027 μM, CC50 = 180.90 μM) derivatives are the three most promising compounds which are equally potent to the marketed drug Etravirine against E138K mutant strain but with much lower cytotoxicity. Furthermore, detailed SAR, inhibitory activity against RT and docking study of the representative compounds are also discussed.
Collapse
Affiliation(s)
- Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Zhaoqiang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jinghan Liu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, 210009, Nanjing, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599-7568, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
14
|
V PK, J R, C T FS, K T A, S. Keri R, Varughese S, Balappa Somappa S. Antibacterial and antitubercular evaluation of dihydronaphthalenone-indole hybrid analogs. Chem Biol Drug Des 2017; 90:703-708. [DOI: 10.1111/cbdd.12990] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Praveen Kumar V
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| | - Renjitha J
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| | - Fathimath Salfeena C T
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| | - Ashitha K T
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| | - Rangappa S. Keri
- Centre for Nano and Material Sciences; Jain University; Bangalore India
| | - Sunil Varughese
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| | - Sasidhar Balappa Somappa
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| |
Collapse
|
15
|
Zhao F, Tian WH, Luo F, Cheng HL, Jiang YB, Chen Z. Pd-catalyzed ligand-free C(5)–H arylation of 1,4-disubstituted 1,2,3-triazoles promoted by microwaves. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1222441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fen Zhao
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Wen-Hai Tian
- Department of Architectural Engineering, Huaibei Vocational and Technical College, Huaibei, China
| | - Fang Luo
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Hui-Ling Cheng
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Yu-Bo Jiang
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Zhen Chen
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
16
|
Gao P, Sun L, Zhou J, Li X, Zhan P, Liu X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opin Drug Discov 2016; 11:857-71. [PMID: 27400283 DOI: 10.1080/17460441.2016.1210125] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In recent years, a variety of new synthetic methodologies and concepts have been proposed in the search for new pharmaceutical lead structures and optimization. Notably, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach has drawn great attention and has become a powerful tool for the generation of privileged medicinal skeletons in the discovery of anti-HIV agents. This is due to the high degree of reliability, complete specificity (chemoselectivity and regioselectivity), mild conditions, and the biocompatibility of the reactants. AREAS COVERED Herein, the authors describe the progress thus far on the discovery of novel anti-HIV agents via the CuAAC click chemistry-based approach. EXPERT OPINION CuAAC click chemistry is a proven protocol for synthesizing triazole products which could serve as basic pharmacophores, act as replacements of traditional scaffold or substituent modification, be a linker of dual-target or dual-site inhibitors and more for the discovery of novel anti-HIV agents. What's more, it also provides convenience and feasibility for dynamic combinatorial chemistry and in situ screening. It is envisioned that click chemistry will draw more attention and make more contributions in anti-HIV drug discovery in the future.
Collapse
Affiliation(s)
- Ping Gao
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Lin Sun
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Junsu Zhou
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xiao Li
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| |
Collapse
|
17
|
Li W, Huang B, Kang D, De Clercq E, Daelemans D, Pannecouque C, Zhan P, Liu X. Design, synthesis, and biological evaluation of novel 5-Alkyl-6-Adamantylmethylpyrimidin-4(3H)-ones as HIV-1 non-nucleoside reverse-transcriptase inhibitors. Chem Biol Drug Des 2016; 88:380-5. [DOI: 10.1111/cbdd.12765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Wenxin Li
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Ji'nan Shandong China
| | - Boshi Huang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Ji'nan Shandong China
| | - Dongwei Kang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Ji'nan Shandong China
| | - Erik De Clercq
- Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | | | - Peng Zhan
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Ji'nan Shandong China
| | - Xinyong Liu
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Ji'nan Shandong China
| |
Collapse
|