1
|
Liu K, Ji Y, Xie Y, Wang C, Zhou J, Wei Z, Wang X, Zheng X, Cen Y, Zhang F, Xu B. Discovery of Isobenzofuran-1(3 H)-one Derivatives as Selective TREK-1 Inhibitors with In Vitro and In Vivo Neuroprotective Effects. J Med Chem 2025; 68:5804-5823. [PMID: 40040241 DOI: 10.1021/acs.jmedchem.4c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
TREK-1 regulates neuronal excitability and neuronal cell apoptosis, and inhibition of TREK-1 is a potential strategy to prevent cell death and achieve neuroprotection in an ischemic stroke. In this work, a series of novel isobenzofuran-1(3H)-one derivatives were designed and synthesized as TREK-1 inhibitors, and extensive structure-activity relationships led to the discovery of potent and selective TREK-1 inhibitors having IC50 values of a low micromolar level. Among them, Cpd8l potently and selectively inhibited TREK-1 (IC50 = 0.81 μM, selectivity >30 fold over other K+, Na+, and TRP channels). Cpd8l remarkably reduced the neuron death in the OGD/R-induced cortical neuronal injury model, while adenovirus silencing TREK-1 reduced its neuroprotective effect. Furthermore, Cpd8l could effectively ameliorate brain injury in MCAO/R model mice. Collectively, this work demonstrates that Cpd8l may serve as a novel lead compound to develop a highly potent and selective TREK-1 inhibitor for ischemic stroke treatment.
Collapse
Affiliation(s)
- Kaiyue Liu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yunyun Ji
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Yiming Xie
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Chengyan Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ziyi Wei
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaotong Zheng
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Fan Zhang
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin 541004, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Bedoya M, Rinné S, Kiper AK, Decher N, González W, Ramírez D. TASK Channels Pharmacology: New Challenges in Drug Design. J Med Chem 2019; 62:10044-10058. [PMID: 31260312 DOI: 10.1021/acs.jmedchem.9b00248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rational drug design targeting ion channels is an exciting and always evolving research field. New medicinal chemistry strategies are being implemented to explore the wild chemical space and unravel the molecular basis of the ion channels modulators binding mechanisms. TASK channels belong to the two-pore domain potassium channel family and are modulated by extracellular acidosis. They are extensively distributed along the cardiovascular and central nervous systems, and their expression is up- and downregulated in different cancer types, which makes them an attractive therapeutic target. However, TASK channels remain unexplored, and drugs designed to target these channels are poorly selective. Here, we review TASK channels properties and their known blockers and activators, considering the new challenges in ion channels drug design and focusing on the implementation of computational methodologies in the drug discovery process.
Collapse
Affiliation(s)
- Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular (CBSM) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular (CBSM) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud , Universidad Autónoma de Chile , El Llano Subercaseaux 2801, Piso 6 , 8900000 Santiago , Chile
| |
Collapse
|
3
|
Şterbuleac D. Molecular determinants of chemical modulation of two-pore domain potassium channels. Chem Biol Drug Des 2019; 94:1596-1614. [PMID: 31124599 DOI: 10.1111/cbdd.13571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
The K+ ion channels comprising the two-pore domain (K2P) family have specific biophysical roles in generating the critical regulatory K+ current. Ion flow through K2P channels and, implicitly, channel regulation is mediated by diverse metabolic and physical inputs such as mechanical stimulation, interaction with lipids or endogenous regulators, intra- or extracellular pH, and phosphorylation, while their function can be finely tuned by chemical compounds. In the latter category, some drug-channel interactions can lead to side effects or have clinical action, while identifying novel chemical modulators of K2Ps is an area of intense research. Due to their cellular and therapeutic importance, much attention was turned to these channels in recent years and several experimental approaches have pinpointed the molecular determinants of K2P chemical modulation. Given their unique structural features and properties, chemical modulators act on K2P channels in multiple and diverse ways. In this review, the particularities of K2P modulation by chemical compounds, such as binding modality, affinity, or position, are identified, synthesized, and linked to structural and functional properties in order to refer to how activators and blockers modify channel function and vice versa, focusing on specificity related to protein structure (and its modification) and cross-linking information among different subfamilies.
Collapse
Affiliation(s)
- Daniel Şterbuleac
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| |
Collapse
|