1
|
Costa PCQGD, Nogueira PL, Nascimento YMD, Sobral MV, Silvestre GFG, Castro RDD. Bioactive potential of Eugenia luschnathiana essential oil and extract: antifungal activity against Candida species isolated from oncological patients. BRAZ J BIOL 2024; 84:e286419. [PMID: 39292142 DOI: 10.1590/1519-6984.286419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
Immunosuppressed individuals, including those undergoing cancer treatment, are more vulnerable to fungal infections, such as oral candidiasis, impacting their quality of life. Given the limitations of current therapies, the discovery of new antifungal agents, including those of natural origin, is crucial for the proper managing of these infections. We investigated the phytochemical profile and antifungal activity of both the essential oil and crude ethanolic extract (CEE) obtained from Eugenia luschnathiana against reference strains and clinical isolates of Candida from oncology patients. Toxicological characterization was also conducted. Gas chromatography coupled to mass spectrometry (GC-MS) and 1H Nuclear Magnetic Resonance (NMR) were used for phytochemical analysis. Antifungal evaluation was conducted to determine the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC); evaluation of potential mechanisms of action; activity on a fungal biofilm; evaluation of the cytotoxic effect on human keratinocytes of the HaCat lineage by the MTT method; determination of lethality for Artemia salina larvae. GC-MS identified a predominance of sesquiterpenes in the essential oil, notably (E)-Caryophyllene. The 1H NMR spectrum identified aliphatic, osidic, and aromatic compounds in the crude ethanolic extract. The essential oil showed no antifungal activity. However, the CEE exhibited fungicidal activity, with MIC and MFC ranging from 1.95 µg/mL to 3.90 µg/mL. The antifungal effect was affected by sorbitol, indicating a possible mechanism targeting fungal cell wall structures. At low concentration (19.5 µg/mL), the CEE inhibited 62,78% of C. albicans biofilm. The CEE demonstrated a promising toxicity profile, with an LC50 of 142.4 µg/mL against Artemia salina. In conclusion, the CEE from Eugenia luschnathiana exhibited potent antifungal activity, likely through cell wall disruption, biofilm inhibition, and a favorable toxicity profile for further exploration.
Collapse
Affiliation(s)
- P C Q G da Costa
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Departamento de Clínica e Odontologia Social, Programa de Pós-graduação em Odontologia, João Pessoa, PB, Brasil
| | - P L Nogueira
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Departamento de Clínica e Odontologia Social, Programa de Pós-graduação em Odontologia, João Pessoa, PB, Brasil
| | - Y M do Nascimento
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Ciências Farmacêuticas, Programa de Pós-graduação em produtos naturais e sintéticos bioativos, João Pessoa, PB, Brasil
| | - M V Sobral
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Ciências Farmacêuticas, Programa de Pós-graduação em produtos naturais e sintéticos bioativos, João Pessoa, PB, Brasil
| | - G F G Silvestre
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Ciências Farmacêuticas, Programa de Pós-graduação em produtos naturais e sintéticos bioativos, João Pessoa, PB, Brasil
| | - R D de Castro
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Departamento de Clínica e Odontologia Social, Programa de Pós-graduação em Odontologia, João Pessoa, PB, Brasil
| |
Collapse
|
2
|
Araújo GR, da Costa PCQG, Nogueira PL, Alves DDN, Ferreira AR, da Silva PR, de Andrade JC, de Sousa NF, Loureiro PBA, Sobral MV, Sousa DP, Scotti MT, de Castro RD, Scotti L. In Silico and In Vitro Evaluation of the Antifungal Activity of a New Chromone Derivative against Candida spp. BIOTECH 2024; 13:16. [PMID: 38921048 PMCID: PMC11201913 DOI: 10.3390/biotech13020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Candida species are frequently implicated in the development of both superficial and invasive fungal infections, which can impact vital organs. In the quest for novel strategies to combat fungal infections, there has been growing interest in exploring synthetic and semi-synthetic products, particularly chromone derivatives, renowned for their antimicrobial properties. In the analysis of the antifungal activity of the compound (E)-benzylidene-chroman-4-one against Candida, in silico and laboratory tests were performed to predict possible mechanisms of action pathways, and in vitro tests were performed to determine antifungal activity (MIC and MFC), to verify potential modes of action on the fungal cell membrane and wall, and to assess cytotoxicity in human keratinocytes. The tested compound exhibited predicted affinity for all fungal targets, with the highest predicted affinity observed for thymidylate synthase (-102.589 kJ/mol). MIC and CFM values ranged from 264.52 μM (62.5 μg/mL) to 4232.44 μM (1000 μg/mL). The antifungal effect likely occurs due to the action of the compound on the plasma membrane. Therefore, (E)-benzylidene-chroman-4-one showed fungicidal-like activity against Candida spp., possibly targeting the plasma membrane.
Collapse
Affiliation(s)
- Gleycyelly Rodrigues Araújo
- Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil;
| | - Palloma Christine Queiroga Gomes da Costa
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Paula Lima Nogueira
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Danielle da Nóbrega Alves
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Alana Rodrigues Ferreira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Pablo R. da Silva
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Jéssica Cabral de Andrade
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Natália F. de Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Paulo Bruno Araujo Loureiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Damião P. Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Ricardo Dias de Castro
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
- Institute of Drugs and Medicines Research, Federal University of Paraíba, Via Ipê Amarelo, S/N, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
3
|
Belyaeva ER, Myasoedova YV, Ishmuratova NM, Ishmuratov GY. Synthesis and Biological Activity of N-Acylhydrazones. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Sa’ad MA, Kavitha R, Fuloria S, Fuloria NK, Ravichandran M, Lalitha P. Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment. Antibiotics (Basel) 2022; 11:antibiotics11020207. [PMID: 35203811 PMCID: PMC8868241 DOI: 10.3390/antibiotics11020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Periodontal disease (PD) is complex polymicrobial disease which destroys tooth-supporting tissue. Although various synthetic inhibitors of periodontitis-triggering pathogens have been recognized, their undesirable side effects limit their application. Hence, the present study intended to perform the synthesis, characterization, antimicrobial evaluation, and cytotoxicity analysis of novel benzamidine analogues (NBA). This study involved the synthesis of novel imino bases of benzamidine (4a–c), by reacting different aromatic aldehydes with 2-(4-carbamimidoylphenoxy) acetohydrazide (3), which was synthesized by the hydrazination of ethyl 2-(4-carbamimidoylphenoxy) acetate (2), the derivative of 4-hydroxybenzene carboximidamide (1). This was followed by characterization using FTIR, 1H, 13C NMR and mass spectrometry. All synthesized compounds were further tested for antimicrobial potential against PD-triggering pathogens by the micro broth dilution method. The cytotoxicity analysis of the NBA against HEK 293 cells was conducted using an MTT assay. The present study resulted in a successful synthesis of NBA and elucidated their structures. The synthesized NBA exhibited significant antimicrobial activity values between 31.25 and 125 µg/mL against tested pathogens. All NBA exhibited weak cytotoxicity against HEK 293 cells at 7.81 µg, equally to chlorhexidine at 0.2%. The significant antimicrobial activity of NBA against PD-triggering pathogens supports their potential application in periodontitis treatment.
Collapse
Affiliation(s)
- Mohammad Auwal Sa’ad
- Department of Biochemistry, Faculty of Medicine, AIMST University, Bedong 08100, Kedah, Malaysia;
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Ramasamy Kavitha
- Department of Biotechnology, Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Shivkanya Fuloria
- Centre of Excellence for Biomaterials Engineering, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, India
- Correspondence: (N.K.F.); (M.R.); (P.L.); Tel.: +60-143-034-057 (N.K.F.)
| | - Manickam Ravichandran
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia
- Correspondence: (N.K.F.); (M.R.); (P.L.); Tel.: +60-143-034-057 (N.K.F.)
| | - Pattabhiraman Lalitha
- Department of Biochemistry, Faculty of Medicine, AIMST University, Bedong 08100, Kedah, Malaysia;
- Correspondence: (N.K.F.); (M.R.); (P.L.); Tel.: +60-143-034-057 (N.K.F.)
| |
Collapse
|
5
|
Upadhaya SD, Kim IH. The Impact of Weaning Stress on Gut Health and the Mechanistic Aspects of Several Feed Additives Contributing to Improved Gut Health Function in Weanling Piglets-A Review. Animals (Basel) 2021; 11:ani11082418. [PMID: 34438875 PMCID: PMC8388735 DOI: 10.3390/ani11082418] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The current review aimed to provide an overview on the problems associated with weaning with a special focus on gut health, and also highlighted the nutritional approach using different kinds of feed additives and their mechanistic aspects in mitigating production inefficiencies and gut health dysfunction in weanling pigs. Abstract Newly weaned pig encounters psychosocial, physical, and nutritional stressors simultaneously when their immune system is not fully developed. These stressors have a cumulative effect on the immune response that contributes to the post-weaning growth lag which is characterized by depression in feed intake, reduced or negative growth rates, and increased susceptibility to pathogens in the first 24 to 48 h post-weaning. Consequently, the intestinal integrity, and digestive and absorptive capacity are impaired, and there is an increase in intestinal oxidative stress. It also causes the shifts in the taxonomic and functional properties of intestinal microbiome abruptly, thereby adversely affecting the health and performance of animals. It has been suggested that the effects of weaning stress on immune functions, intestinal barrier functions, and nervous system function in early weaned pigs extends into adulthood. The inclusion of different types of feed additives into the diet have been reported to alleviate the negative effects of weaning stress. The objective of this paper was to provide an overview on how the weaning stress affects gut health and the impact it has on production efficiencies, as well as the mechanistic aspects of several feed additives applied in reducing the weaning associated gut health problems and performance inefficiencies.
Collapse
Affiliation(s)
| | - In-Ho Kim
- Correspondence: ; Tel.: +82-41-550-3652; Fax: +82-41-565-2949
| |
Collapse
|
6
|
Novel Derivatives of 4-Methyl-1,2,3-Thiadiazole-5-Carboxylic Acid Hydrazide: Synthesis, Lipophilicity, and In Vitro Antimicrobial Activity Screening. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial infections, especially those caused by strains resistant to commonly used antibiotics and chemotherapeutics, are still a current threat to public health. Therefore, the search for new molecules with potential antimicrobial activity is an important research goal. In this article, we present the synthesis and evaluation of the in vitro antimicrobial activity of a series of 15 new derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid. The potential antimicrobial effect of the new compounds was observed mainly against Gram-positive bacteria. Compound 15, with the 5-nitro-2-furoyl moiety, showed the highest bioactivity: minimum inhibitory concentration (MIC) = 1.95–15.62 µg/mL and minimum bactericidal concentration (MBC)/MIC = 1–4 µg/mL.
Collapse
|
7
|
Paruch K, Popiołek Ł, Biernasiuk A, Hordyjewska A, Malm A, Wujec M. Novel 3-Acetyl-2,5-disubstituted-1,3,4-oxadiazolines: Synthesis and Biological Activity. Molecules 2020; 25:E5844. [PMID: 33322054 PMCID: PMC7763531 DOI: 10.3390/molecules25245844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of our study was the two-stage synthesis of 1,3,4-oxadiazole derivatives. The first step was the synthesis of hydrazide-hydrazones from 3-methyl-4-nitrobenzhydrazide and the corresponding substituted aromatic aldehydes. Then, the synthesized hydrazide-hydrazones were cyclized with acetic anhydride to obtain new 3-acetyl-2,3-disubstituted-1,3,4-oxadiazolines. All of obtained compounds were tested in in vitro assays to establish their potential antimicrobial activity and cytotoxicity. Our results indicated that few of the newly synthesized compounds had some antimicrobial activity, mainly compounds 20 and 37 towards all used reference bacterial strains (except Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa) and fungi. These substances showed a strong or powerful bactericidal effect, especially against Staphylococcus spp. belonging to Gram-positive bacteria. Compound 37 was active against Staphylococcus epidermidis at minimal inhibitory concentration (MIC) = 0.48 µg/mL and was characterized by low cytotoxicity. This compound possessed quinolin-4-yl substituent in the second position of 1,3,4-oxadiazole ring and 3-methyl-4-nitrophenyl in position 5. High effectiveness and safety of these derivatives make them promising candidates as antimicrobial agents. Whereas the compound 20 with the 5-iodofurane substituent in position 2 of the 1,3,4-oxadiazole ring showed the greatest activity against S. epidermidis at MIC = 1.95 µg/mL.
Collapse
Affiliation(s)
- Kinga Paruch
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (Ł.P.); (M.W.)
| | - Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (Ł.P.); (M.W.)
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Anna Hordyjewska
- Chair and Department of Medicinal Chemistry, Faculty of Medical Dentistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland;
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Monika Wujec
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (Ł.P.); (M.W.)
| |
Collapse
|
8
|
GC-MS-Based Metabolomics Analysis of Prawn Shell Waste Co-Fermentation by Lactobacillus plantarum and Bacillus subtilis. POLYSACCHARIDES 2020. [DOI: 10.3390/polysaccharides1010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GC-MS-based metabolomics were used to investigate metabolic changes in prawn shell waste during fermentation. Microbial strains Lactobacillus plantarum and Bacillus subtilis were co-fermented in a shake flask comprising of 5% (w/v) prawn shell waste and 20% (w/v) glucose as a carbon source. Analysis of the prawn shell waste fermentation showed a total of 376 metabolites detected in the culture supernatant, including 14 amino acids, 106 organic acids, and 90 antimicrobial molecules. Results show that the liquid fraction of the co-fermentation is promising for harvesting valuable metabolites for probiotics application.
Collapse
|
9
|
Popiołek Ł, Gawrońska-Grzywacz M, Berecka-Rycerz A, Paruch K, Piątkowska-Chmiel I, Natorska-Chomicka D, Herbet M, Gumieniczek A, Dudka J, Wujec M. New benzenesulphonohydrazide derivatives as potential antitumour agents. Oncol Lett 2020; 20:136. [PMID: 32934704 DOI: 10.3892/ol.2020.12047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer treatment remains a serious challenge worldwide. Thus, finding novel antitumour agents is of great importance. In the present study, nine new benzenesulphonohydrazide derivatives (1-9) were synthesized, and the chemical structures of the obtained compounds were confirmed by spectral analysis methods, including IR, 1H nuclear magnetic resonance (NMR) and 13C NMR. Experimental lipophilicity values were established using reversed phase-high performance thin layer chromatography. The antiproliferative activity of the synthesized compounds was tested against three tumour cell lines (769-P, HepG2 and NCI-H2170) and one normal cell line (Vero). Among the newly developed molecules, compound 4 exhibited generally the highest cytotoxicity across all tumour cell lines, and it was highly selective. However, higher selectivity towards the tested cancer cell lines was observed using compound 2, when compared with compound 4, which also exhibited significant antiproliferative activity against these tumour cells. In 769-P cells, compounds 5 and 6 were the most selective among all tested compounds. Compound 5 exhibited high cytotoxicity with an estimated IC50 value of 1.94 µM. In the NCI-H2170 cell line, compound 7 was the most cytotoxic and the most selective. In brief, the combination of fluorine and bromine substituents at the phenyl ring showed the most promising results, exerting high cytotoxicity and selectivity towards cancer cells. The renal adenocarcinoma cell line (769-P) appeared to be the most sensitive to the anticancer properties of the novel benzenesulphonohydrazones.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Anna Berecka-Rycerz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kinga Paruch
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Dorota Natorska-Chomicka
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Anna Gumieniczek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jarosław Dudka
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Moussa Z, Al-Mamary M, Al-Juhani S, Ahmed SA. Preparation and biological assessment of some aromatic hydrazones derived from hydrazides of phenolic acids and aromatic aldehydes. Heliyon 2020; 6:e05019. [PMID: 33024857 PMCID: PMC7527643 DOI: 10.1016/j.heliyon.2020.e05019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Accepted: 09/18/2020] [Indexed: 11/23/2022] Open
Abstract
There has been substantial interest over the past many years in the design of novel chemical compounds containing the azomethine group (-NH-N=CH) and exhibiting various medicinal properties such as antibacterial, antiviral, antifungal, and anti-inflammatory activities. Herein, hydrazones were synthesized via the chemical reaction of substituted aromatic hydrazides with various aromatic aldehydes. The obtained products were confirmed using different physical and spectroscopic techniques, such as m.p., IR, 1H-NMR and 13C-NMR. The present study was designed to synthesize different aromatic hydrazones assembled by various combinations of aromatic hydrazides and aromatic benzaldehydes containing different substituents such as hydroxyl and polyhydroxyl groups as key structural features. Thus, incorporating such moieties and simultaneously creating highly-conjugated systems was expected to create novel species to mimic as much as possible natural phenolics, chalcones and stilbenes. Compounds of aromatic hydrazones synthesized in the present study were tested in vitro for their direct and indirect antioxidant activities using different methods such as DPPH, ABTS and FTC. The antioxidant activities of the new compounds ranged from very weak to very high activity. In addition, the inhibition of tyrosinase and cholinesterase by these compounds was tested. The new compounds containing two or three hydroxyl groups attached to aldehyde rings exhibited significantly greater inhibition effects on tyrosinase or cholinesterase activities in comparison to other compounds of the same series containing only one hydroxyl group.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Mohammed Al-Mamary
- Chemistry Department, Faculty of Science, Taibah University, PO Box 30002, Code, 14177, Al Madinah Al Almunawarrah, Saudi Arabia
| | - Sultan Al-Juhani
- Chemistry Department, Faculty of Science, Taibah University, PO Box 30002, Code, 14177, Al Madinah Al Almunawarrah, Saudi Arabia
| | - Saleh A. Ahmed
- Chemistry Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| |
Collapse
|
11
|
Dang-I AY, Huang T, Mehwish N, Dou XQ, Yang L, Mukwaya V, Xing C, Lin S, Feng CL. Antimicrobial Activity with Enhanced Mechanical Properties in Phenylalanine-Based Chiral Coassembled Hydrogels: The Influence of Pyridine Hydrazide Derivatives. ACS APPLIED BIO MATERIALS 2020; 3:2295-2304. [PMID: 35025281 DOI: 10.1021/acsabm.0c00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrazide derivatives are known to display a wide range of biological properties including antimicrobial activities, hence making them desirable candidates for soft biomaterials. Herein, we report chiral supramolecular coassembled hydrogels obtained from two phenylalanine gelators (L/DPF and B2L/D) and two dicarbohydrazide molecules (pyridine-2,6-dicarbohydrazide (PDH) and (2,2'-bipyridine)-5,5'-dicarbohydrazide (BDH)) that exhibited enhanced mechanical properties, chirality modulation, and antimicrobial activity. Four lines of coassembled hydrogels were obtained (i.e., L/DPF-PDH, L/DPF-BDH, B2L/D-PDH, and B2L/D-BDH) through hydrogen bonding and π-π stacking with some level of an interpenetrating network, as revealed by the structural characterization analysis. Mechanical properties were significantly improved, especially in the case of hybrid gels involving BDH, with improved average elastic modulus (G') values of 3430 and 3167 Pa for DPF-BDH and B2D-BDH (1:3, molar concentration) over 140 and 1680 Pa for DPF and B2D gelators, respectively. This was attributed to the improved π-π stacking and interpenetrating network due to the bipyridine group and its ease to form fibrous precipitates in the process of heating and cooling to room temperature. PDH, on the other hand, was able to modulate chirality in the L/DPF gelator due to its more planar and less bulky nature and showed antimicrobial activity against Pseudomonas aeruginosa (Gram-negative). Interestingly, when PDH was coassembled with the B2L/D gelator, the hybrid gels exhibited antimicrobial activity against Staphylococcus aureus (Gram-positive) and P. aeruginosa (Gram-negative) by virtue of a synergistic effect of the gelator and the azomethine group of PHD. Hence, by moving from bipyridine (BDH) to pyridine (PDH) as a core structure in the hydrazide molecules, the resulting hybrid hydrogels exhibited desirable properties of antimicrobial activity and improved mechanical attributes.
Collapse
Affiliation(s)
- Auphedeous Y Dang-I
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Tingting Huang
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Nabila Mehwish
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Xiao-Qiu Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Li Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Chao Xing
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Shuangjun Lin
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Chuan-Liang Feng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| |
Collapse
|
12
|
Gómez-García M, Sol C, de Nova PJG, Puyalto M, Mesas L, Puente H, Mencía-Ares Ó, Miranda R, Argüello H, Rubio P, Carvajal A. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porcine Health Manag 2019; 5:32. [PMID: 31890256 PMCID: PMC6935073 DOI: 10.1186/s40813-019-0139-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/05/2019] [Indexed: 11/10/2022] Open
Abstract
Background Accurate screening of new alternative antimicrobial compounds is essential for their use to control pathogens in swine production due to the replacement of antibiotics and zinc oxide. Most in vitro studies have separately reported the antimicrobial activity of organic acids and essential oils (EOs) using diverse methods for susceptibility testing. In addition, in vitro outcomes can help in the selection of the suitable antimicrobial compound and effective combinations of these compounds in the control of pathogens of interest in pork production. Therefore, the aim of this study is to determinate the antibacterial activity of six organic acids and six EOs against Escherichia coli, Salmonella spp. and Clostridium perfringens isolates, some of them multi-resistant to antibiotics, from swine origin. The synergistic effects between the products with higher activity for each bacteria were also calculated. Results All products tested showed activity against at least one bacterial species, except for black pepper EO. The results showed that formic acid with the shortest chain length was the most effective against E. coli and Salmonella spp., while the sodium salt of coconut fatty acid distillates with long chain acids was the most effective against C. perfringens. The susceptibility of isolates tested to EOs was similar, a result that demonstrates a similar activity of these products against phylogenetically unrelated pathogens. In addition, an additive effect was shown for carvacrol-oregano EO for E. coli, formic acid-carvacrol and formic acid-thymol for Salmonella spp. and carvacrol-cinamaldehyde for C. perfringens. Conclusions The susceptibility of isolates to EOs was similar, a result that demonstrates a similar activity of these products against phylogenetically unrelated pathogens in contrast to organic acids. In addition, an additive effect was shown for several combinations of these compounds.
Collapse
Affiliation(s)
- Manuel Gómez-García
- 1Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, Campus de Vegazana, s/n, 24007 León, Spain
| | - Cinta Sol
- Norel SA, Calle Jesús Aprendiz n° 19, 28007 Madrid, Spain
| | - Pedro J G de Nova
- 1Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, Campus de Vegazana, s/n, 24007 León, Spain
| | - Mónica Puyalto
- Norel SA, Calle Jesús Aprendiz n° 19, 28007 Madrid, Spain
| | - Luis Mesas
- Norel SA, Calle Jesús Aprendiz n° 19, 28007 Madrid, Spain
| | - Héctor Puente
- 1Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, Campus de Vegazana, s/n, 24007 León, Spain
| | - Óscar Mencía-Ares
- 1Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, Campus de Vegazana, s/n, 24007 León, Spain
| | - Rubén Miranda
- 1Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, Campus de Vegazana, s/n, 24007 León, Spain
| | - Héctor Argüello
- 1Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, Campus de Vegazana, s/n, 24007 León, Spain
| | - Pedro Rubio
- 1Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, Campus de Vegazana, s/n, 24007 León, Spain
| | - Ana Carvajal
- 1Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, Campus de Vegazana, s/n, 24007 León, Spain
| |
Collapse
|
13
|
Popiołek Ł, Rysz B, Biernasiuk A, Wujec M. Synthesis of promising antimicrobial agents: hydrazide‐hydrazones of 5‐nitrofuran‐2‐carboxylic acid. Chem Biol Drug Des 2019; 95:260-269. [DOI: 10.1111/cbdd.13639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/08/2019] [Accepted: 09/21/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Łukasz Popiołek
- Department of Organic Chemistry Faculty of Pharmacy with Medical Analytics Division Medical University of Lublin Lublin Poland
| | - Bernadetta Rysz
- Department of Organic Chemistry Faculty of Pharmacy with Medical Analytics Division Medical University of Lublin Lublin Poland
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology Faculty of Pharmacy with Medical Analytics Division Medical University of Lublin Lublin Poland
| | - Monika Wujec
- Department of Organic Chemistry Faculty of Pharmacy with Medical Analytics Division Medical University of Lublin Lublin Poland
| |
Collapse
|
14
|
Popiołek Ł, Biernasiuk A, Paruch K, Malm A, Wujec M. Synthesis and in Vitro Antimicrobial Activity Screening of New 3-Acetyl-2,5-disubstituted-1,3,4-oxadiazoline Derivatives. Chem Biodivers 2019; 16:e1900082. [PMID: 31050208 DOI: 10.1002/cbdv.201900082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/29/2019] [Indexed: 01/18/2023]
Abstract
Thirteen new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives were synthesized from corresponding hydrazide-hydrazones of isonicotinic acid in the reaction with acetic anhydride. The obtained compounds were identified with the use of spectral methods (IR, 1 H-NMR, 13 C-NMR, MS). In vitro antimicrobial activity screening of synthesized compounds against a panel of bacteria and fungi revealed interesting antibacterial and antifungal activity of tested 1,3,4-oxadiazoline derivatives, which is comparable to that of commonly used antimicrobial agents.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland
| | - Kinga Paruch
- Chair and Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland
| | - Monika Wujec
- Chair and Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| |
Collapse
|
15
|
Popiołek Ł, Biernasiuk A, Berecka A, Gumieniczek A, Malm A, Wujec M. New hydrazide-hydrazones of isonicotinic acid: synthesis, lipophilicity and in vitro antimicrobial screening. Chem Biol Drug Des 2018; 91:915-923. [PMID: 29220872 DOI: 10.1111/cbdd.13158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Abstract
This study describes the synthesis, lipophilicity and in vitro antimicrobial assays of 15 new hydrazide-hydrazones of isonicotinic acid. New derivatives were obtained on the basis of the condensation reaction of isonicotinic acid hydrazide with different aromatic aldehydes. The chemical structure of synthesized compounds was confirmed by spectral methods. Experimental lipophilicity of new isonicotinic acid derivatives was determined using reversed-phase thin-layer chromatography. All synthesized compounds were subjected to in vitro antimicrobial assays against reference strains of Gram-positive bacteria, Gram-negative bacteria and fungi belonging to Candida spp. Some of the synthesized hydrazide-hydrazones proved to be significant antibacterial compounds and more potent than commonly used chemotherapeutic agents.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Anna Berecka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Anna Gumieniczek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
16
|
Popiołek Ł, Biernasiuk A, Paruch K, Patrejko P, Wujec M. Synthesis and evaluation of antimicrobial properties of new Mannich bases of 4,5-disubstituted-1,2,4-triazole-3-thiones. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1290629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Łukasz Popiołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Kinga Paruch
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Paweł Patrejko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
17
|
Popiołek Ł, Biernasiuk A. New Hydrazides and Hydrazide-Hydrazones of 2,3-Dihalogen Substituted Propionic Acids: Synthesis and in vitro Antimicrobial Activity Evaluation. Chem Biodivers 2017; 14. [PMID: 28444991 DOI: 10.1002/cbdv.201700075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/24/2017] [Indexed: 11/11/2022]
Abstract
The main aim of this research was the synthesis, spectral identification and in vitro antimicrobial evaluation of new hydrazides and hydrazide-hydrazones of 2,3-dihalogen substituted propionic acids. New hydrazides were obtained by the substitution reaction of appropriate ethyl esters of 2,3-dihalogen substituted propionic acids with hydrazine hydrate. Then obtained hydrazides were subjected to condensation reaction with various aldehydes which yielded with new hydrazide-hydrazone derivatives. All obtained compounds were identified on the basis of spectral methods (1 H-NMR, 13 C-NMR) and in vitro screened against a panel of bacterial and fungal strains according to EUCAST and CLSI guidelines.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, PL-20-093, Lublin
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, PL-20-093, Lublin
| |
Collapse
|
18
|
Popiołek Ł, Biernasiuk A. Synthesis and investigation of antimicrobial activities of nitrofurazone analogues containing hydrazide-hydrazone moiety. Saudi Pharm J 2017; 25:1097-1102. [PMID: 29158722 PMCID: PMC5681330 DOI: 10.1016/j.jsps.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/24/2017] [Indexed: 11/29/2022] Open
Abstract
In this research we synthesized and tested for in vitro antimicrobial activity 21 nitrofurazone analogues. The compounds we obtained were identified on the basis of 1H NMR and 13C NMR spectroscopy. The in vitro screening of antimicrobial properties of synthesized compounds revealed a wide spectrum of antimicrobial activity. Compounds 28, 29, 32–43, and 45–48 showed very high bactericidal effect towards Staphylococcus spp. ATTC and Bacillus spp. ATTC (MIC = 0.002–7.81 µg/ml and MBC = 0.002–31.25 µg/ml). The levels of activity of several compounds were far better than those of nitrofurantoin, ciprofloxacin or cefuroxime.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
19
|
Hydrazide-hydrazones as potential antimicrobial agents: overview of the literature since 2010. Med Chem Res 2016; 26:287-301. [PMID: 28163562 PMCID: PMC5250660 DOI: 10.1007/s00044-016-1756-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/17/2016] [Indexed: 10/25/2022]
Abstract
Hydrazide-hydrazone derivatives are present in many bioactive molecules and display a wide variety of biological activities, such as antibacterial, antitubercular, antifungal, anticancer, anti-inflammatory, anticonvulsant, antiviral, and antiprotozoal action. Therefore, many medicinal chemists synthesize various hydrazide-hydrazones and evaluate them for biological activities. Among biological properties of this class of compounds, antimicrobial activity is the most frequently encountered in scientific literature. This paper is focused on the overview of the literature findings of the last six years (2010-2016) covering the research on antimicrobial activity of hydrazide-hydrazone derivatives. This review may also serve as a useful guide for the development of new hydrazide-hydrazones as potential antimicrobial agents.
Collapse
|