1
|
Almeida KH, Andrews ME, Sobol RW. AP endonuclease 1: Biological updates and advances in activity analysis. Methods Enzymol 2024; 705:347-376. [PMID: 39389669 DOI: 10.1016/bs.mie.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1, APEX1, REF1, HAP1) is an abasic site-specific endonuclease holding critical roles in numerous biological functions including base excision repair, the DNA damage response, redox regulation of transcription factors, RNA processing, and gene regulation. Pathologically, APE1 expression and function is linked with numerous human diseases including cancer, highlighting the importance of sensitive and quantitative assays to measure APE1 activity. Here, we summarize biochemical and biological roles for APE1 and expand on the discovery of APE1 inhibitors. Finally, we highlight the development of assays to monitor APE1 activity, detailing a recently improved and stabilized DNA Repair Molecular Beacon assay to analyze APE1 activity. The assay is amenable to analysis of purified protein, to measure changes in APE1 activity in cell lysates, to monitor human patient samples for defects in APE1 function, or the cellular and biochemical response to APE1 inhibitors.
Collapse
Affiliation(s)
- Karen H Almeida
- Physical Sciences Department, Rhode Island College, Providence, RI, United States
| | - Morgan E Andrews
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, United States.
| |
Collapse
|
2
|
Zhang Q, Liu Q, Fu G, Huang F, Tang Y, Qiu Y, Ge A, Hu J, Wang W, Li B, Wang H. Dual-driven AND molecular logic gates for label-free and sensitive ratiometric fluorescence sensing and inhibitors screening. J Colloid Interface Sci 2024; 674:841-851. [PMID: 38955015 DOI: 10.1016/j.jcis.2024.06.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Due to the complexity of regulatory networks of disease-related biomarkers, developing simple, sensitive, and accurate methods has remained challenging for precise diagnosis. Herein, an "AND" logic gates DNA molecular machine (LGDM) was constructed, which was powered by the catalytic hairpin assembly (CHA). It was coupled with dual-emission CdTe quantum dots (QDs)-based cation exchange reaction (CER) for label-free, sensitive, and ratiometric fluorescence detection of APE1 and miRNA biomarkers. Benefiting from synergistic signal amplification strategies and a ratiometric fluorometric output mode, this LGDM enables accurate logic computing with robust and significant output signals from weak inputs. It offers improved sensitivity and selectivity even in cell extracts. Using dual-emission spectra CdTe QDs, with a ratiometric signal output mode, ensured good stability and effectively prevented false-positive signals from intrinsic biological interferences compared to the approach relying on a single signal output mode, which enabled the LGDM to achieve rapid, efficient, and accurate natural drug screening against APE1 inhibitors in vitro and cells. The developed method provides impetus to streamline research related to miRNA and APE1, offering significant promise for widespread application in drug development and clinical analysis.
Collapse
Affiliation(s)
- Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Gang Fu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Yanfu Tang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jinhui Hu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China.
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China.
| |
Collapse
|
3
|
Minko IG, Moellmer SA, Luzadder MM, Tomar R, Stone MP, McCullough AK, Lloyd RS. Interaction of mitoxantrone with abasic sites - DNA strand cleavage and inhibition of apurinic/apyrimidinic endonuclease 1, APE1. DNA Repair (Amst) 2024; 133:103606. [PMID: 38039951 PMCID: PMC11257150 DOI: 10.1016/j.dnarep.2023.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Mitoxantrone (1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino)ethylamino]-anthracene-9,10-dione) is a clinically-relevant synthetic anthracenedione that functions as a topoisomerase II poison by trapping DNA double-strand break intermediates. Mitoxantrone binds to DNA via both stacking interactions with DNA bases and hydrogen bonding with the sugar-phosphate backbone. It has been shown that mitoxantrone inhibits apurinic/apyrimidinic (AP) endonuclease 1 (APE1)-catalyzed incision of DNA containing a tetrahydrofuran (THF) moiety and more recently, that mitoxantrone forms Schiff base conjugates at AP sites in DNA. In this study, mitoxantrone-mediated inhibition of APE1 at THF sites was shown to be consistent with preferential binding to, and thermal stabilization of DNA containing a THF site as compared to non-damaged DNA. Investigations into the properties of mitoxantrone at AP and 3' α,β-unsaturated aldehyde sites demonstrated that in addition to being a potent inhibitor of APE1 at these biologically-relevant substrates (∼ 0.5 μM IC50 on AP site-containing DNA), mitoxantrone also incised AP site-containing DNA by catalyzing β- and β/δ-elimination reactions. The efficiency of these reactions to generate the 3' α,β-unsaturated aldehyde and 3' phosphate products was modulated by DNA structure. Although these cell-free reactions revealed that mitoxantrone can generate 3' phosphates, cells lacking polynucleotide kinase phosphatase did not show increased sensitivity to mitoxantrone treatment. Consistent with its ability to inhibit APE1 activity on DNAs containing either an AP site or a 3' α,β-unsaturated aldehyde, combined exposures to clinically-relevant concentrations of mitoxantrone and a small molecule APE1 inhibitor revealed additive cytotoxicity. These data suggest that in a cellular context, mitoxantrone may interfere with APE1 DNA repair functions.
Collapse
Affiliation(s)
- Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samantha A Moellmer
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael M Luzadder
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rachana Tomar
- Department of Chemistry and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Station B Box 351822, Nashville, TN 37235, USA
| | - Michael P Stone
- Department of Chemistry and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Station B Box 351822, Nashville, TN 37235, USA
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
4
|
Novel Aurora A Kinase Inhibitor Fangchinoline Enhances Cisplatin-DNA Adducts and Cisplatin Therapeutic Efficacy in OVCAR-3 Ovarian Cancer Cells-Derived Xenograft Model. Int J Mol Sci 2022; 23:ijms23031868. [PMID: 35163790 PMCID: PMC8836832 DOI: 10.3390/ijms23031868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Aurora A kinase (Aurora A) is a serine/threonine kinase regulating control of multiple events during cell-cycle progression. Playing roles in promoting proliferation and inhibiting cell death in cancer cells leads Aurora A to become a target for cancer therapy. It is overexpressed and associated with a poor prognosis in ovarian cancer. Improving cisplatin therapy outcomes remains an important issue for advanced-stage ovarian cancer treatment, and Aurora A inhibitors may improve it. In the present study, we identified natural compounds with higher docking scores than the known Aurora A ligand through structure-based virtual screening, including the natural compound fangchinoline, which has been associated with anticancer activities but not yet investigated in ovarian cancer. The binding and inhibition of Aurora A by fangchinoline were verified using cellular thermal shift and enzyme activity assays. Fangchinoline reduced viability and proliferation in ovarian cancer cell lines. Combination fangchinoline and cisplatin treatment enhanced cisplatin-DNA adduct levels, and the combination index revealed synergistic effects on cell viability. An in vivo study showed that fangchinoline significantly enhanced cisplatin therapeutic effects in OVCAR-3 ovarian cancer-bearing mice. Fangchinoline may inhibit tumor growth and enhance cisplatin therapy in ovarian cancer. This study reveals a novel Aurora A inhibitor, fangchinoline, as a potentially viable adjuvant for ovarian cancer therapy.
Collapse
|
5
|
A multiple endpoint approach reveals potential in vitro anticancer properties of thymoquinone in human renal carcinoma cells. Food Chem Toxicol 2019; 136:111076. [PMID: 31883990 DOI: 10.1016/j.fct.2019.111076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022]
Abstract
Thymoquinone (TQ) is a monoterpene isolated from the oil of Nigella sativa seeds. The aim of this work was to evaluate the cytotoxic effects induced by TQ and its impact on the migration and invasion potential of 786-O human renal cancer cells. These cells were exposed to TQ (1-100 μM) for 24 and 48 h and cell viability assessed using the Crystal Violet and MTS assays. TQ treatment clearly decreased cell viability in a concentration- and time-dependent manner. TQ exposure moderately increased intracellular ROS levels and co-incubation with reduced glutathione markedly increased cell viability. Moreover, the effect of TQ in the cell cycle distribution was evaluated using flow cytometry, and an increase in the sub-G1 population was observed, especially at 30 μM, along with an increase in the % of apoptotic cells. TQ did not show genotoxic effects at a non-cytotoxic concentration (1.0 μM). At this concentration level, TQ significantly decreased the collective migration of 786-O cells, whereas it had no effect in chemotactic migration. TQ also decreased the invasiveness potential of 786-O cells, as evaluated by the transwell invasion assay. Overall, these results suggest that TQ presents an anticancer potential in the context of renal cancer, warranting further investigation.
Collapse
|
6
|
Costa JG, Saraiva N, Batinic-Haberle I, Castro M, Oliveira NG, Fernandes AS. The SOD Mimic MnTnHex-2-PyP 5+ Reduces the Viability and Migration of 786-O Human Renal Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8100490. [PMID: 31627290 PMCID: PMC6826590 DOI: 10.3390/antiox8100490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022] Open
Abstract
Clear-cell renal carcinoma (ccRCC) is the most common type of renal cancer. The importance of oxidative stress in the context of this disease has been described, although there is only little information concerning the role of superoxide dismutase (SOD) enzymes. The importance of SOD in different pathological conditions promoted the development of SOD mimics (SODm). As such, manganese(III) porphyrins can mimic the natural SOD enzymes and scavenge different reactive oxygen species (ROS), thus modulating the cellular redox status. In this study, the exposure of 786-O human renal cancer cells to MnTnHex-2-PyP5+ (MnP), a very promising SODm, led to a concentration and time-dependent decrease in cell viability and in the cell proliferation indices, as well as to an increase in apoptosis. No relevant effects in terms of micronuclei formation were observed. Moreover, the exposure to MnP resulted in a concentration-dependent increase in intracellular ROS, presumably due to the generation of H2O2 by the inherent redox mechanisms of MnP, along with the limited ability of cancer cells to detoxify this species. Although the MnP treatment did not result in a reduction in the collective cell migration, a significant decrease in chemotactic migration was observed. Overall, these results suggest that MnP has a beneficial impact on reducing renal cancer cell viability and migration and warrant further studies regarding SODm-based therapeutic strategies against human renal cancer.
Collapse
Affiliation(s)
- João G Costa
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Nuno Saraiva
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Ana S Fernandes
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| |
Collapse
|
7
|
Sun Z, Zhu Y, Aminbuhe, Fan Q, Peng J, Zhang N. Differential expression of APE1 in hepatocellular carcinoma and the effects on proliferation and apoptosis of cancer cells. Biosci Trends 2019; 12:456-462. [PMID: 30473552 DOI: 10.5582/bst.2018.01239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This research aimed to investigate the differential expression of apurinic-apyrimidinic endonuclease 1 (APE1) in hepatocellular carcinoma (HCC) tissues and cells and the effects on proliferation and apoptosis of cancer cells. Immunohistochemical techniques were used to detect the expression of APE1 in 80 cases of HCC and the corresponding paracancerous tissue microarrays; meanwhile, Western blots were used to detect the expression of APE1 in both human HCC BEL-7402, BEL-7405, HCC-9204, Hep3B, HepG2, SMMC-7721 and Huh-7 cells, and normal hepatocyte L-02 cells. The relationship between APE1 expression and clinical pathological characteristics of HCC was statistically analyzed. APE1 shRNA vector was constructed in Hep 3B cells to establish a stably transfected cell line, using Western blots to determine the interference efficiency. Cell proliferation activity was detected with MTT assays, while apoptosis was detected with the Annexin V-FITC/PI double-labeling technique. The expression of APE1 in HCC tissues and cells was significantly up-regulated, and its expression was significantly different from TNM staging and histopathological grading. Down-regulation of APE1 expression significantly reduced the proliferative activity and increased the apoptosis rate of Hep 3B cells. In conclusion, APE1 demonstrates cancer progression potential at the clinical, tissue and cell level. It provides a new idea and theoretical basis for APE1-based clinical diagnosis, prognosis determination and molecular targeted therapy in treatment of HCC.
Collapse
Affiliation(s)
- Zhipeng Sun
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| | - Yubing Zhu
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| | - Aminbuhe
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| | - Qing Fan
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| | - Jirun Peng
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| | - Nengwei Zhang
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| |
Collapse
|
8
|
Slater O, Kontoyianni M. The compromise of virtual screening and its impact on drug discovery. Expert Opin Drug Discov 2019; 14:619-637. [PMID: 31025886 DOI: 10.1080/17460441.2019.1604677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Docking and structure-based virtual screening (VS) have been standard approaches in structure-based design for over two decades. However, our understanding of the limitations, potential, and strength of these techniques has enhanced, raising expectations. Areas covered: Based on a survey of reports in the past five years, we assess whether VS: (1) predicts binding poses in agreement with crystallographic data (when available); (2) is a superior screening tool, as often claimed; (3) is successful in identifying chemical scaffolds that can be starting points for subsequent lead optimization cycles. Data shows that knowledge of the target and its chemotypes in postprocessing lead to viable hits in early drug discovery endeavors. Expert opinion: VS is capable of accurate placements in the pocket for the most part, but does not consistently score screening collections accurately. What matters is capitalization on available resources to get closer to a viable lead or optimizable series. Integration of approaches, subjective hit selection guided by knowledge of the receptor or endogenous ligand, libraries driven by experimental guides, validation studies to identify the best docking/scoring that reproduces experimental findings, constraints regarding receptor-ligand interactions, thoroughly designed methodologies, and predefined cutoff scoring criteria strengthen VS's position in pharmaceutical research.
Collapse
Affiliation(s)
- Olivia Slater
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| | - Maria Kontoyianni
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| |
Collapse
|
9
|
Zhou M, Qin S, Feng Z, Song C, Zhang H, Li W, Wang Q, Liu J, Huang J, Yang X, Wang K. A simple and sensitive assay for apurinic/apyrimidinic endonuclease 1 activity based on host-guest interaction of β-cyclodextrin polymer and pyrene. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Guerreiro PS, Corvacho E, Costa JG, Saraiva N, Fernandes AS, Castro M, Miranda JP, Oliveira NG. The APE1 redox inhibitor E3330 reduces collective cell migration of human breast cancer cells and decreases chemoinvasion and colony formation when combined with docetaxel. Chem Biol Drug Des 2017; 90:561-571. [DOI: 10.1111/cbdd.12979] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Patrícia S. Guerreiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Eduardo Corvacho
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - João G. Costa
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Nuno Saraiva
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Ana S. Fernandes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
11
|
Laev SS, Salakhutdinov NF, Lavrik OI. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1). Bioorg Med Chem 2017; 25:2531-2544. [PMID: 28161249 DOI: 10.1016/j.bmc.2017.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 01/15/2023]
Abstract
Human apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein which is essential in the base excision repair (BER) pathway of DNA lesions caused by oxidation and alkylation. This protein hydrolyzes DNA adjacent to the 5'-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3'-hydroxyl group and a 5'-deoxyribose phosphate moiety or activates the DNA-binding activity of certain transcription factors through its redox function. Studies have indicated a role for APE1/Ref-1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs. Thus, this protein has potential as a target in cancer treatment. As a result, major efforts have been directed to identify small molecule inhibitors against APE1/Ref-1 activities. These agents have the potential to become anticancer drugs. The aim of this review is to present recent progress in studies of all published small molecule APE1/Ref-1 inhibitors. The structures and activities of APE1/Ref-1 inhibitors, that target both DNA repair and redox activities, are presented and discussed. To date, there is an urgent need for further development of the design and synthesis of APE1/Ref-1 inhibitors due to high importance of this protein target.
Collapse
Affiliation(s)
- Sergey S Laev
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation.
| | - Nariman F Salakhutdinov
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Olga I Lavrik
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation; Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 8, Novosibirsk 630090, Russian Federation
| |
Collapse
|