1
|
Bai X, Ye C, Liu Z, Zhou Z, Zhang T. Synthesis and Biological Evaluation of Isoaurone Derivatives as Anti-inflammatory Agents. Chem Biodivers 2025; 22:e202402073. [PMID: 39405129 DOI: 10.1002/cbdv.202402073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/15/2024] [Indexed: 11/14/2024]
Abstract
Twenty-eight isoaurone derivatives with 1,2,4-triazole moieties were synthesized using a fragment-based design strategy, and their anti-inflammatory activity was investigated. The anti-inflammatory effect of the most active derivative, 14e (41.82 %), was dose-dependent and higher than the values for celecoxib (31.82 %). Compound 14e was almost non-toxic and inhibited different concentrations of nitric oxide (NO). The western blotting results demonstrated that cyclooxygenase-2 (COX-2) expression was elevated when the macrophages were exclusively treated with LPS. However, compound 14e effectively suppressed the LPS-induced COX-2 upregulation. Subsequent investigation revealed that 14e is a promising compound capable of inhibiting the downstream signaling of COX-2. With the above interesting biological profile, molecular 14e could be a promising lead to develop novel anti-inflammatory agents.
Collapse
Affiliation(s)
- Xueqian Bai
- Jilin Medical University, Jilin, 132013, PR China
| | - Chao Ye
- Jilin Medical University, Jilin, 132013, PR China
| | - Zhe Liu
- Jilin Medical University, Jilin, 132013, PR China
| | | | - Tianyi Zhang
- Jilin Medical University, Jilin, 132013, PR China
| |
Collapse
|
2
|
Bai X, Wang J, Jiao F, Zhang H, Zhang T. Synthesis and biological evaluation of novel aminoguanidine derivatives as potential antibacterial agents. Sci Rep 2024; 14:26896. [PMID: 39506054 PMCID: PMC11541567 DOI: 10.1038/s41598-024-77668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
In an effort to identify novel antibacterial agents, we presented two series of aminoguanidine derivatives that were designed by incorporating 1,2,4-triazol moieties. All compounds exhibited strong in vitro antibacterial activity against a variety of testing strains. Compound 5f was identified as a potent antibacterial agent with a minimum inhibitory concentration (MIC) of 2-8 µg/mL against S. aureus, E. coli, S. epidermidis, B. subtilis, C. albicans, multi-drug resistant Staphylococcus aureus and multi-drug resistant Escherichia coli and low toxicity (Hela > 100 µM). Membrane permeability and transmission electron microscopy (TEM) image studies demonstrated that compound 5f permeabilized bacterial membranes, resulting in irregular cell morphology and the rapid death of bacteria. The results of the present study suggested that aminoguanidine derivatives with 1,2,4-triazol moieties were the intriguing scaffolds for the development of bactericidal agents.
Collapse
Affiliation(s)
- Xueqian Bai
- Jilin Medical University, Jilin, Jilin Province, 132013, People's Republic of China
| | - Jinghan Wang
- Jilin Medical University, Jilin, Jilin Province, 132013, People's Republic of China
| | - Feitong Jiao
- Jilin Medical University, Jilin, Jilin Province, 132013, People's Republic of China
| | - Hongmei Zhang
- Jilin Medical University, Jilin, Jilin Province, 132013, People's Republic of China.
| | - Tianyi Zhang
- Jilin Medical University, Jilin, Jilin Province, 132013, People's Republic of China.
| |
Collapse
|
3
|
Huang X, Liu Z, Quan ZS, Guo HY, Shen QK. Synthesis and structure-activity relationship studies of fusidic acid derivatives as anti-inflammatory agents for acute lung injury. Bioorg Chem 2023; 141:106885. [PMID: 37804700 DOI: 10.1016/j.bioorg.2023.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
Acute lung injury (ALI) are severe forms of diffuse lung disease that impose a substantial health burden all over the world. In the United States, approximately 190,000 cases per year of ALI each year, with an associated 74,500 deaths per year. Anti-inflammatory therapy has become a reasonable approach for the treatment of patients with ALI. In this study, fusidic acid derivatives were used to design new anti-inflammatory compounds with high pharmacological activity and low toxicity. A total of 30 new fusidic acid derivatives were discovered, synthesized, and screened for their anti-inflammatory activity against lipopolysaccharide (LPS)-treated RAW264.7 cells. Of them, b2 was found to be the most active, with a higher efficiency compared with fusidic acid and celecoxib in 10 μM. In vitro, we further measured b2 inhibited inflammatory factor NO (IC50 = 5.382 ± 0.655 μM), IL-6 (IC50 = 7.767 ± 0.871 μM), and TNF-α (IC50 = 7.089 ± 0.775 μM) and b2 inhibited inflammatory cytokines COX-2 and iNOS, ROS production, NF-κB/MAPK and Bax/Bcl-2 signaling pathway pathway. In vivo,b2 attenuated ALI pathological changes and inhibited inflammatory cytokines COX-2 and iNOS in lung tissue and NF-κB/MAPK and Bax/Bcl-2 signaling pathway. In conclusion, b2 may be a promising anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Zheng Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
4
|
Shang FF, Lu Q, Lin T, Pu M, Xiao R, Liu W, Deng H, Guo H, Quan ZS, Ding C, Shen QK. Discovery of Triazolyl Derivatives of Cucurbitacin B Targeting IGF2BP1 against Non-Small Cell Lung Cancer. J Med Chem 2023; 66:12931-12949. [PMID: 37681508 DOI: 10.1021/acs.jmedchem.3c00872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cucurbitacin B (CuB) is a potent but toxic anticancer natural product. Herein, we designed and synthesized 2-OH- and 16-OH-modified CuB derivatives to improve their antitumor efficacy and reduce toxicity. Among them, derivative A11 had the most potent antiproliferative activity against A549 lung cancer cells (IC50 = 0.009 μM) and was approximately 10-fold more potent than CuB, while the cytotoxicity of A11 toward normal L02 cells was about 10-fold less potent, indicating a much wider therapeutic window than CuB. Derivative A11 directly binds to the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) protein with a KD value of 2.88 nM, which is about 23-fold more potent than CuB, leading to the decreased expression of downstream apoptosis- and cell cycle-related proteins. More importantly, A11 exhibited much more potent anticancer efficacy in an A549 xenograft mouse model with a TGI rate of 80% and a superior in vivo safety profile than that of CuB.
Collapse
Affiliation(s)
- Fan-Fan Shang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tailiang Lin
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miaoxia Pu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Integration Science, Yanbian University, Yanji 133002, China
| | - Ruoxuan Xiao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanmei Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hongyan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
5
|
Huang X, Zhang CH, Deng H, Wu D, Guo HY, Lee JJ, Chen FE, Shen QK, Jin LL, Quan ZS. Synthesis and evaluation of anticancer activity of quillaic acid derivatives: A cell cycle arrest and apoptosis inducer through NF-κB and MAPK pathways. Front Chem 2022; 10:951713. [PMID: 36157038 PMCID: PMC9490060 DOI: 10.3389/fchem.2022.951713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
A series of quillaic acid derivatives with different substituents on the 28-carboxyl group were designed and synthesized. Five human cancer cell lines (HCT116, BEL7402, HepG2, SW620, and MCF-7) were evaluated for their antitumor activity in vitro. Some of the tested derivatives showed improved antiproliferative activity compared to the lead compound, quillaic acid. Among them, compound E (IC50 = 2.46 ± 0.44 μM) showed the strongest antiproliferative activity against HCT116 cells; compared with quillaic acid (IC50 > 10 μM), its efficacy against HCT116 cancer cells was approximately 4-fold higher than that of quillaic acid. Compound E also induces cell cycle arrest and apoptosis by modulating NF-κB and MAPK pathways. Therefore, the development of compound E is certainly valuable for anti-tumor applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li-Li Jin
- *Correspondence: Li-Li Jin, ; Zhe-Shan Quan,
| | | |
Collapse
|
6
|
Wen X, Zhou Y, Zeng J, Liu X. Recent Development of 1,2,4-triazole-containing Compounds as Anticancer Agents. Curr Top Med Chem 2020; 20:1441-1460. [DOI: 10.2174/1568026620666200128143230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/15/2019] [Accepted: 12/25/2019] [Indexed: 12/16/2022]
Abstract
1,2,4-Triazole derivatives possess promising in vitro and in vivo anticancer activity, and many
anticancer agents such as fluconazole, tebuconazole, triadimefon, and ribavirin bear a 1,2,4-triazole
moiety, revealing their potential in the development of novel anticancer agents. This review emphasizes
the recent advances in 1,2,4-triazole-containing compounds with anticancer potential, and the structureactivity
relationships as well as mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Xiaoyue Wen
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Yongqin Zhou
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Junhao Zeng
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Xinyue Liu
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| |
Collapse
|
7
|
Wei ZY, Chi KQ, Wang KS, Wu J, Liu LP, Piao HR. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg Med Chem Lett 2018; 28:1797-1803. [PMID: 29678461 DOI: 10.1016/j.bmcl.2018.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/14/2023]
Abstract
Ursolic acid derivatives containing oxadiazole, triazolone, and piperazine moieties were synthesized in an attempt to develop potent anti-inflammatory agents. Structures of the synthesized compounds were elucidated by 1H NMR, 13C NMR, and HRMS. Most of the synthesized compounds showed pronounced anti-inflammatory effects at 100 mg/kg. In particular, compound 11b, which displayed the most potent anti-inflammatory activity of all of the compounds prepared, with 69.76% inhibition after intraperitoneal administration, was more potent than the reference drugs indomethacin and ibuprofen. The cytotoxicity of the compounds was also assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and no compounds showed any appreciable cytotoxic activity (IC50 >100 μmol/L). Furthermore, molecular docking studies of the synthesized compounds were performed to rationalize the obtained biological results. Overall, the results indicate that compound 11b could be a therapeutic candidate for the treatment of inflammation.
Collapse
Affiliation(s)
- Zhi-Yu Wei
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Ke-Qiang Chi
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Ke-Si Wang
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Jie Wu
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China
| | - Li-Ping Liu
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China.
| | - Hu-Ri Piao
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China.
| |
Collapse
|
8
|
Chi KQ, Wei ZY, Wang KS, Wu J, Chen WQ, Jin XJ, Piao HR. Design, synthesis, and evaluation of novel ursolic acid derivatives as HIF-1α inhibitors with anticancer potential. Bioorg Chem 2017; 75:157-169. [PMID: 28950243 DOI: 10.1016/j.bioorg.2017.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α), a key mediator in tumor metastasis and angiogenesis, is associated with poor patient prognosis and has been recognized as an important cancer drug target. In this work, four novel series of ursolic acid derivatives containing oxadiazole, triazolone, and piperazine moieties were designed, synthesized, and evaluated for anti-tumor activity as HIF-1α inhibitors. The majority of the compounds showed an excellent ability to inhibit the expression of HIF-1α. In particular, 11b inhibited HIF-1α transcriptional activity under hypoxic conditions with IC50=36.9μM. The cytotoxicity of these compounds was also assessed in human colon cancer cell HCT116 cells by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and no compounds showed any appreciable cytotoxic activity (IC50>100μmol/L), which was lower than that of ursolic acid (IC50=23.8μmol/L). The mechanism of action of the representative compound 11b was also investigated.
Collapse
Affiliation(s)
- Ke-Qiang Chi
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China; Medical College of Dalian University, Dalian 116622, China
| | - Zhi-Yu Wei
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China; Medical College of Dalian University, Dalian 116622, China
| | - Ke-Si Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China; Medical College of Dalian University, Dalian 116622, China
| | - Jie Wu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China
| | - Wei-Qiang Chen
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China
| | - Xue-Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China.
| | - Hu-Ri Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China.
| |
Collapse
|