1
|
Tiwari C, Khan H, Grewal AK, Dhankhar S, Chauhan S, Dua K, Gupta G, Singh TG. Opiorphin: an endogenous human peptide with intriguing application in diverse range of pathologies. Inflammopharmacology 2024; 32:3037-3056. [PMID: 39164607 DOI: 10.1007/s10787-024-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Mammalian zinc ectopeptidases have significant functions in deactivating neurological and hormonal peptide signals on the cell surface. The identification of Opiorphin, a physiological inhibitor of zinc ectopeptidases that inactivate enkephalin, has revealed its strong analgesic effects in both chemical and mechanical pain models. Opiorphin achieves this by increasing the transmission of endogenous opioids, which are dependent on the body's own opioid system. The function of opiorphin is closely linked to the rat sialorphin peptide, which inhibits pain perception by enhancing the activity of naturally occurring enkephalinergic pathways that depend on μ- and δ-opioid receptors. Opiorphin is highly intriguing in terms of its physiological implications within the endogenous opioidergic pathways, particularly in its ability to regulate mood-related states and pain perception. Opiorphin can induce antidepressant-like effects by influencing the levels of naturally occurring enkephalin, which are released in response to specific physical and/or psychological stimuli. This effect is achieved through the modulation of delta-opioid receptor-dependent pathways. Furthermore, research has demonstrated that opiorphin's impact on the cardiovascular system is facilitated by the renin-angiotensin system (RAS), sympathetic ganglia, and adrenal medulla, rather than the opioid system. Hence, opiorphin shows great potential as a solitary candidate for the treatment of several illnesses such as neurodegeneration, pain, and mood disorders.
Collapse
Affiliation(s)
- Chanchal Tiwari
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur Grewal
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Sanchit Dhankhar
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Thakur Gurjeet Singh
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
2
|
Decraecker L, Boeckxstaens G, Denadai-Souza A. Inhibition of Serine Proteases as a Novel Therapeutic Strategy for Abdominal Pain in IBS. Front Physiol 2022; 13:880422. [PMID: 35665224 PMCID: PMC9161638 DOI: 10.3389/fphys.2022.880422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Serine proteases are heavily present in the gastrointestinal tract where they are essential in numerous physiological processes. An imbalance in the proteolytic activity is a central mechanism underlying abdominal pain in irritable bowel syndrome (IBS). Therefore, protease inhibitors are emerging as a promising therapeutic tool to manage abdominal pain in this functional gastrointestinal disorder. With this review, we provide an up-to-date overview of the implications of serine proteases in the development of abdominal pain in IBS, along with a critical assessment of the current developments and prospects of protease inhibitors as a therapeutic tool. In particular, we highlight the current knowledge gap concerning the identity of dysregulated serine proteases that are released by the rectal mucosa of IBS patients. Finally, we suggest a workflow with state-of-the-art techniques that will help address the knowledge gap, guiding future research towards the development of more effective and selective protease inhibitors to manage abdominal pain in IBS.
Collapse
|
3
|
De bruyn M, Ceuleers H, Hanning N, Berg M, De Man JG, Hulpiau P, Hermans C, Stenman UH, Koistinen H, Lambeir AM, De Winter BY, De Meester I. Proteolytic Cleavage of Bioactive Peptides and Protease-Activated Receptors in Acute and Post-Colitis. Int J Mol Sci 2021; 22:10711. [PMID: 34639054 PMCID: PMC8509398 DOI: 10.3390/ijms221910711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
The protease activity in inflammatory bowel disease (IBD) and irritable bowel syndrome has been studied extensively using synthetic fluorogenic substrates targeting specific sets of proteases. We explored activities in colonic tissue from a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model by investigating the cleavage of bioactive peptides. Pure trypsin- and elastase-like proteases on the one hand and colonic tissue from rats with TNBS-induced colitis in the acute or post-inflammatory phase on the other, were incubated with relevant peptides to identify their cleavage pattern by mass spectrometry. An increased cleavage of several peptides was observed in the colon from acute colitis rats. The tethered ligand (TL) sequences of peptides mimicking the N-terminus of protease-activated receptors (PAR) 1 and 4 were significantly unmasked by acute colitis samples and these cleavages were positively correlated with thrombin activity. Increased cleavage of β-endorphin and disarming of the TL-sequence of the PAR3-based peptide were observed in acute colitis and linked to chymotrypsin-like activity. Increased processing of the enkephalins points to the involvement of proteases with specificities different from trypsin- or chymotrypsin-like enzymes. In conclusion, our results suggest thrombin, chymotrypsin-like proteases and a set of proteases with different specificities as potential therapeutic targets in IBD.
Collapse
Affiliation(s)
- Michelle De bruyn
- Laboratory of Medical Biochemistry, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (A.-M.L.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| | - Hannah Ceuleers
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
| | - Nikita Hanning
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
| | - Maya Berg
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| | - Joris G. De Man
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
| | - Paco Hulpiau
- Bioinformatics Knowledge Center (BiKC), Howest University of Applied Sciences, 8000 Bruges, Belgium; (P.H.); (C.H.)
| | - Cedric Hermans
- Bioinformatics Knowledge Center (BiKC), Howest University of Applied Sciences, 8000 Bruges, Belgium; (P.H.); (C.H.)
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (U.-H.S.); (H.K.)
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (U.-H.S.); (H.K.)
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (A.-M.L.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| | - Benedicte Y. De Winter
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (A.-M.L.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| |
Collapse
|
4
|
Lashgari NA, Roudsari NM, Zandi N, Pazoki B, Rezaei A, Hashemi M, Momtaz S, Rahimi R, Shayan M, Dehpour AR, Abdolghaffari AH. Current overview of opioids in progression of inflammatory bowel disease; pharmacological and clinical considerations. Mol Biol Rep 2021; 48:855-874. [PMID: 33394234 DOI: 10.1007/s11033-020-06095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023]
Abstract
Inflammatory bowel diseases (IBD) belong to a subgroup of persistent, long-term, progressive, and relapsing inflammatory conditions. IBD may spontaneously develop in the colon, resulting in tumor lesions in inflamed regions of the intestine, such as invasive carcinoma. The benefit of opioids for IBD treatment is still questionable, thereby we investigated databases to provide an overview in this context. This review demonstrates the controversial role of opioids in IBD therapy, their physiological and pharmacological functions in attenuating the IBD symptoms, and in improving inflammatory, oxidative stress, and the quality of life factors in IBD subjects. Data were extracted from clinical, in vitro, and in vivo studies in English, between 1995 and 2019, from PubMed, Google Scholar, Scopus, and Cochrane library. Based on recent reports, there are promising opportunities to target the opioid system and control the IBD symptoms. This study suggests a novel approach for future treatment of functional and inflammatory disorders such as IBD.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nadia Zandi
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Atiyeh Rezaei
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnoosh Hashemi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
6
|
Carbone SE, Poole DP. Inflammation without pain: Immune-derived opioids hold the key. Neurogastroenterol Motil 2020; 32:e13787. [PMID: 31999404 DOI: 10.1111/nmo.13787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/11/2023]
Abstract
Visceral pain is commonly associated with acute or remitting inflammatory bowel disease (IBD). In marked contrast, chronic IBD is often painless, even in the presence of active inflammation. This suggests that inflammation in itself is insufficient to sustain altered nociceptive signaling and raises the possibility that there is an endogenous analgesic system in effect in chronic disease. A new study by Basso et al. published in this issue of Neurogastroenterology & Motility provides additional support for an immune-mediated mechanism that suppresses visceral hypersensitivity. The authors examined visceral pain in the IL-10-piroxicam model of chronic colitis, which differs from other experimental IBD models in that it involves immune suppression. During active inflammation, responses by these mice to graded increases in colorectal distension were equivalent to healthy controls, consistent with normal afferent signaling. However, treatment with a peripherally restricted opioid receptor antagonist resulted in marked visceral hypersensitivity to the same stimuli. This effect was attributed to the production of endogenous opioids by colitogenic CD4+ T cells present in the mucosa. This mini-review provides a brief overview of analgesia by immune-derived opioids under inflammatory conditions and highlights how the work of Basso et al. contributes to this area of research. Potential pharmacological approaches to harness or mimic this system are provided. These strategies may prove to be an effective means through which targeted and sustained relief of IBD pain may be achieved.
Collapse
Affiliation(s)
- Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia.,ARC CoE in Convergent Bio-Nano Science & Technology, Parkville, Vic, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia.,ARC CoE in Convergent Bio-Nano Science & Technology, Parkville, Vic, Australia
| |
Collapse
|
7
|
1-Substituted sialorphin analogues-synthesis, molecular modelling and in vitro effect on enkephalins degradation by NEP. Amino Acids 2019; 51:1201-1207. [PMID: 31302778 DOI: 10.1007/s00726-019-02760-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
Rat sialorphin (Gln-His-Asn-Pro-Arg) is a natural blocker of neprilysin (NEP) that belongs to the family of endogenous opioid peptide-degrading enzymes. Studies have confirmed the efficiency of sialorphin in blocking the activity of NEP, both in vitro and in vivo. It has been demonstrated that this inhibitor has a strong analgesic, anti-inflammatory, immunological and metabolic effect either directly or indirectly by affecting the level of Met/Leu-enkephalins. In this work, sialorphin and their 12 analogues were synthesised using the solid-phase method. The effect of the peptides on the degradation of Met-enkephalin by NEP and metabolic degradation in human plasma was investigated in vitro. We show that the change in the N-terminal amino acid configuration from L to D in almost all peptides, except D-Arg-His-Asn-Pro-Arg (peptide XI), led to the abolition of their inhibitory activity. With molecular modelling technique we explained the structural properties of the L and D-arginine located on the N-terminal part of the peptide. The detailed analysis of the protein binding pocket allowed us to explain why D-arginine is so unique among all D residues. Peptide XI showed the highest stability among the tested peptides in human plasma. For instance sialorphin after a 2-hour incubation in human plasma was almost completely decomposed, while the level of peptide XI dropped to 45% after 48 h under these conditions.
Collapse
|
8
|
Szymaszkiewicz A, Storr M, Fichna J, Zielinska M. Enkephalinase inhibitors, potential therapeutics for the future treatment of diarrhea predominant functional gastrointestinal disorders. Neurogastroenterol Motil 2019; 31:e13526. [PMID: 30549162 DOI: 10.1111/nmo.13526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/20/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023]
Abstract
The endogenous opioid system (EOS) is considered being a crucial element involved in the pathophysiology of irritable bowel syndrome (IBS) as it regulates gastrointestinal (GI) homeostasis through modulation of motility and water and ion secretion/absorption. Along with opioid receptors (ORs), the following components of EOS can be distinguished: 1. endogenous opioid peptides (EOPs), namely enkephalins, endorphins, endomorphins and dynorphins, and 2. peptidases, which regulate the metabolism (synthesis and degradation) of EOPs. Enkephalins, which are δ-opioid receptors agonists, induce significant effects in the GI tract as they act as potent pro-absorptive neurotransmitters. The action of enkephalins and other EOPs is limited, since EOPs are easily and rapidly inactivated by a natural metalloendopeptidase (enkephalinase/neprilysin) and aminopeptidase N. Studies show that the activity of EOPs can be enhanced by inhibition of these enzymes. In this review, we discuss the antidiarrheal and antinociceptive potential of enkephalinase inhibitors. Furthermore, our review is to answer the question whether enkephalinase inhibitors may be helpful in the future treatment of diarrhea predominant functional GI disorders.
Collapse
Affiliation(s)
- Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Martin Storr
- Department of Medicine, Ludwig Maximilians University Munich, Munich, Germany.,Center of Endoscopy, Starnberg, Germany
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielinska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|