1
|
Zhang Y, Liang Z, Wang S, Qiao R, Li C. Cross-subclass metallo-β-lactamase inhibitors: From structural and catalytic commonalities guiding design. Eur J Med Chem 2025; 289:117479. [PMID: 40056799 DOI: 10.1016/j.ejmech.2025.117479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The emergence of antibiotic resistance mediated by metallo-β-lactamases (MβLs) has become a problem due to its diverse and widespread resistance characteristics. Research on broad-spectrum inhibitors has become an important issue. This review summarized the reported metallo-β-lactamases inhibitors (MβLIs) with cross-class activity, as well as four practical design strategies for developing cross-subclass MβLIs. It provides a detailed analysis of current inhibitors, covering their chemical structures, mechanisms, and cross-class activities. Four design strategies are discussed: i) substrate simulation strategy, ii) combining metal-chelating motifs strategy, iii) covalent inhibition strategy, and iv) metal ion replacement strategy. These strategies offer insights into developing effective cross-subclass MβLIs to combat the increasing prevalence of resistant pathogens.
Collapse
Affiliation(s)
- Yanhong Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Zhenyang Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Shuai Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
2
|
Azman AA, Leow ATC, Noor NDM, Noor SAM, Latip W, Ali MSM. Worldwide trend discovery of structural and functional relationship of metallo-β-lactamase for structure-based drug design: A bibliometric evaluation and patent analysis. Int J Biol Macromol 2024; 256:128230. [PMID: 38013072 DOI: 10.1016/j.ijbiomac.2023.128230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/11/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Metallo-β-lactamase (MBL) is an enzyme produced by clinically important bacteria that can inactivate many commonly used antibiotics, making them a significant concern in treating bacterial infections and the risk of having high antibiotic resistance issues among the community. This review presents a bibliometric and patent analysis of MBL worldwide research trend based on the Scopus and World Intellectual Property Organization databases in 2013-2022. Based on the keywords related to MBL in the article title, abstract, and keywords, 592 research articles were retrieved for further analysis using various tools such as Microsoft Excel to determine the frequency analysis, VOSviewer for bibliometric networks visualization, and Harzing's Publish or Perish for citation metrics analysis. Standard bibliometric parameters were analysed to evaluate the field's research trend, such as the growth of publications, topographical distribution, top subject area, most relevant journal, top cited documents, most relevant authors, and keyword trend analysis. Within 10 years, MBL discovery has shown a steady and continuous growth of interest among the community of researchers. United States of America, China, and the United Kingdom are the top 3 countries contribute high productivity to the field. The patent analysis also shows several impactful filed patents, indicating the significance of development research on the structural and functional relationship of MBL for an effective structure-based drug design (SBDD). Developing new MBL inhibitors using SBDD could help address the research gap and provide new successful therapeutic options for treating MBL-producing bacterial infections.
Collapse
Affiliation(s)
- Ameera Aisyah Azman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Siti Aminah Mohd Noor
- Center for Defence Foundation Studies, National Defence University of Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
3
|
Ezati M, Ahmadi A, Behmard E, Najafi A. Identification of novel metallo-β-lactamases inhibitors using ligand-based pharmacophore modelling and structure-based virtual screening. J Biomol Struct Dyn 2023; 42:10672-10687. [PMID: 37732367 DOI: 10.1080/07391102.2023.2258406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Metallo-β-lactamases (MBLs) are a group of enzymes that hydrolyze the most commonly used β-lactam-based antibiotics, leading to the development of multi-drug resistance. The three main clinically relevant groups of these enzymes are IMP, VIM, and NDM. This study aims to introduce potent novel overlapped candidates from a ZINC database retrieved from the 200,583-member natural library against the active sites of IMP-1, VIM-2, and NDM-1 through a straightforward computational workflow using virtual screening approaches. The screening pipeline started by assessing Lipinski's rule of five (RO5), drug-likeness, and pan-assay interference compounds (PAINS) which were used to generate a pharmacophore model using D-captopril as a standard inhibitor. The process was followed by the consensus docking protocol and molecular dynamic (MD) simulation combined with the molecular mechanics Poisson-Boltzmann Surface Area (MM-PBSA) method to compute the total binding free energy and evaluate the binding characteristics. The absorption, distribution, metabolism, elimination, and toxicity (ADMET) profiles of the compounds were also analyzed, and the search space decreased to the final two inhibitory candidates for B1 subclass MBLs, which fulfilled all criteria for further experimental evaluation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Ezati
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Dhanda G, Acharya Y, Haldar J. Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS OMEGA 2023; 8:10757-10783. [PMID: 37008128 PMCID: PMC10061514 DOI: 10.1021/acsomega.3c00312] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 06/13/2023]
Abstract
The problem of antibiotic resistance is on the rise, with multidrug-resistant strains emerging even to the last resort antibiotics. The drug discovery process is often stalled by stringent cut-offs required for effective drug design. In such a scenario, it is prudent to delve into the varying mechanisms of resistance to existing antibiotics and target them to improve antibiotic efficacy. Nonantibiotic compounds called antibiotic adjuvants which target bacterial resistance can be used in combination with obsolete drugs for an improved therapeutic regime. The field of "antibiotic adjuvants" has gained significant traction in recent years where mechanisms other than β-lactamase inhibition have been explored. This review discusses the multitude of acquired and inherent resistance mechanisms employed by bacteria to resist antibiotic action. The major focus of this review is how to target these resistance mechanisms by the use of antibiotic adjuvants. Different types of direct acting and indirect resistance breakers are discussed including enzyme inhibitors, efflux pump inhibitors, inhibitors of teichoic acid synthesis, and other cellular processes. The multifaceted class of membrane-targeting compounds with poly pharmacological effects and the potential of host immune-modulating compounds have also been reviewed. We conclude with providing insights about the existing challenges preventing clinical translation of different classes of adjuvants, especially membrane-perturbing compounds, and a framework about the possible directions which can be pursued to fill this gap. Antibiotic-adjuvant combinatorial therapy indeed has immense potential to be used as an upcoming orthogonal strategy to conventional antibiotic discovery.
Collapse
Affiliation(s)
- Geetika Dhanda
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Yash Acharya
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
5
|
Dong R, Yang H, Ai C, Duan G, Wang J, Guo F. DeepBLI: A Transferable Multichannel Model for Detecting β-Lactamase-Inhibitor Interaction. J Chem Inf Model 2022; 62:5830-5840. [PMID: 36245217 DOI: 10.1021/acs.jcim.2c01008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogens producing β-lactamase pose a great challenge to antibiotic-resistant infection treatment; thus, it is urgent to discover novel β-lactamase inhibitors for drug development. Conventional high-throughput screening is very costly, and structure-based virtual screening is limited with mechanisms. In this study, we construct a novel multichannel deep neural network (DeepBLI) for β-lactamase inhibitor screening, pretrained with a label reversal KIBA data set and fine-tuned on β-lactamase-inhibitor pairs from BindingDB. First, the pairs of encoders (Conv and Att) fuse the information spatially and sequentially for both enzymes and inhibitors. Then, a co-attention module creates the connection between the inhibitor and enzyme embeddings. Finally, multichannel outputs fuse with an element-wise product and then are fed into 3-layer fully connected networks to predict interactions. Comparing the state-of-the-art methods, DeepBLI yields an AUROC of 0.9240 and an AUPRC of 0.9715, which indicates that it can identify new β-lactamase-inhibitor interactions. To demonstrate its prediction ability, an application of DeepBLI is described to screen potential inhibitor compounds for metallo-β-lactamase AIM-1 and repurpose rottlerin for four classes of β-lactamase targets, showing the possibility of being a broad-spectrum inhibitor. DeepBLI provides an effective way for antibacterial drug development, contributing to antibiotic-resistant therapeutics.
Collapse
Affiliation(s)
- Ruihan Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Hongpeng Yang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Chengwei Ai
- College of Intelligence and Computing, Tianjin University, Tianjin300350, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| |
Collapse
|
6
|
Yu Y, Wang R, Teo RD. Machine Learning Approaches for Metalloproteins. Molecules 2022; 27:1277. [PMID: 35209064 PMCID: PMC8878495 DOI: 10.3390/molecules27041277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/10/2023] Open
Abstract
Metalloproteins are a family of proteins characterized by metal ion binding, whereby the presence of these ions confers key catalytic and ligand-binding properties. Due to their ubiquity among biological systems, researchers have made immense efforts to predict the structural and functional roles of metalloproteins. Ultimately, having a comprehensive understanding of metalloproteins will lead to tangible applications, such as designing potent inhibitors in drug discovery. Recently, there has been an acceleration in the number of studies applying machine learning to predict metalloprotein properties, primarily driven by the advent of more sophisticated machine learning algorithms. This review covers how machine learning tools have consolidated and expanded our comprehension of various aspects of metalloproteins (structure, function, stability, ligand-binding interactions, and inhibitors). Future avenues of exploration are also discussed.
Collapse
Affiliation(s)
- Yue Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu 215316, China;
- Department of Physics, Duke University, Durham, NC 27708, USA
| | - Ruobing Wang
- Department of Chemistry, Duke University, Durham, NC 27708, USA;
| | - Ruijie D. Teo
- Department of Chemistry, Duke University, Durham, NC 27708, USA;
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Krasavin M, Zhukovsky D, Solovyev I, Barkhatova D, Dar'in D, Frank D, Martinelli G, Weizel L, Proschak A, Rotter M, Kramer JS, Brunst S, Wichelhaus TA, Proschak E. Rh II -Catalyzed De-symmetrization of Ethane-1,2-dithiol and Propane-1,3-dithiol Yields Metallo-β-lactamase Inhibitors. ChemMedChem 2021; 16:3410-3417. [PMID: 34184833 PMCID: PMC9290507 DOI: 10.1002/cmdc.202100344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/07/2022]
Abstract
Diversity-oriented synthesis (DOS) is a rich source for novel lead structures in Medicinal Chemistry. In this study, we present a DOS-compatible method for synthesis of compounds bearing a free thiol moiety. The procedure relies on Rh(II)-catalyzed coupling of dithiols to diazo building blocks. The synthetized library was probed against metallo-β-lactamases (MBLs) NDM-1 and VIM-1. Biochemical and biological evaluation led to identification of novel potent MBL inhibitors with antibiotic adjuvant activity.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Institute of ChemistrySaint Petersburg State University 26 Universitetskii prospectPeterhof198905Russia
| | - Daniil Zhukovsky
- Institute of ChemistrySaint Petersburg State University 26 Universitetskii prospectPeterhof198905Russia
| | - Igor Solovyev
- Institute of ChemistrySaint Petersburg State University 26 Universitetskii prospectPeterhof198905Russia
| | - Darina Barkhatova
- Institute of ChemistrySaint Petersburg State University 26 Universitetskii prospectPeterhof198905Russia
| | - Dmitry Dar'in
- Institute of ChemistrySaint Petersburg State University 26 Universitetskii prospectPeterhof198905Russia
| | - Denia Frank
- Institute of Medical Microbiology and Infection ControlUniversity Hospital FrankfurtPaul-Ehrlich-Straße 4060596FrankfurtGermany
| | - Giada Martinelli
- Institute of Medical Microbiology and Infection ControlUniversity Hospital FrankfurtPaul-Ehrlich-Straße 4060596FrankfurtGermany
| | - Lilia Weizel
- Institute of Pharmaceutical ChemistryGoethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt a.M.Germany
| | - Anna Proschak
- Institute of Pharmaceutical ChemistryGoethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt a.M.Germany
| | - Marco Rotter
- Institute of Pharmaceutical ChemistryGoethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt a.M.Germany
| | - Jan S. Kramer
- Institute of Pharmaceutical ChemistryGoethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt a.M.Germany
| | - Steffen Brunst
- Institute of Pharmaceutical ChemistryGoethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt a.M.Germany
| | - Thomas A. Wichelhaus
- Institute of Medical Microbiology and Infection ControlUniversity Hospital FrankfurtPaul-Ehrlich-Straße 4060596FrankfurtGermany
| | - Ewgenij Proschak
- Institute of Pharmaceutical ChemistryGoethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt a.M.Germany
| |
Collapse
|
8
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
9
|
Activity of β-Lactam Antibiotics against Metallo-β-Lactamase-Producing Enterobacterales in Animal Infection Models: a Current State of Affairs. Antimicrob Agents Chemother 2021; 65:AAC.02271-20. [PMID: 33782001 DOI: 10.1128/aac.02271-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) result in resistance to nearly all β-lactam antimicrobial agents, as determined by currently employed susceptibility testing methods. However, recently reported data demonstrate that variable and supraphysiologic zinc concentrations in conventional susceptibility testing media compared with physiologic (bioactive) zinc concentrations may be mediating discordant in vitro-in vivo MBL resistance. While treatment outcomes in patients appear suggestive of this discordance, these limited data are confounded by comorbidities and combination therapy. To that end, the goal of this review is to evaluate the extent of β-lactam activity against MBL-harboring Enterobacterales in published animal infection model studies and provide contemporary considerations to facilitate the optimization of current antimicrobials and development of novel therapeutics.
Collapse
|
10
|
Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. Antibiotics (Basel) 2020; 9:antibiotics9090632. [PMID: 32971809 PMCID: PMC7558339 DOI: 10.3390/antibiotics9090632] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022] Open
Abstract
The rising incidence of bloodstream infections (BSI) due to Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) has been recognized as a global emergency. The aim of this review is to provide a comprehensive assessment of the mechanisms of antibiotic resistance, epidemiology and treatment options for BSI caused by GNB with DTR, namely extended-spectrum Beta-lactamase-producing Enterobacteriales; carbapenem-resistant Enterobacteriales; DTR Pseudomonas aeruginosa; and DTR Acinetobacter baumannii.
Collapse
|
11
|
Probing the mechanisms of inhibition for various inhibitors of metallo-β-lactamases VIM-2 and NDM-1. J Inorg Biochem 2020; 210:111123. [PMID: 32622213 DOI: 10.1016/j.jinorgbio.2020.111123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
To probe the mechanism of inhibition of several previously-published metallo-β-lactamase (MBL) inhibitors for the clinically-important MBL Verona integron-encoded metallo-β-lactamase 2 (VIM-2), equilibrium dialyses with metal analyses, native state electrospray ionization mass spectrometry (ESI-MS), and UV-Vis spectrophotometry were utilized. The mechanisms of inhibition were analyzed for ethylenediaminetetraacetic acid (EDTA); dipicolinic acid (DPA) and DPA analogs 6-(1H-tetrazol-5-yl)picolinic acid (1T5PA) and 4-(3-aminophenyl)pyridine-2,6-dicarboxylic acid (3AP-DPA); thiol-containing compounds, 2,3-dimercaprol, thiorphan, captopril, and tiopronin; and 5-(pyridine-3-sulfonamido)-1,3-thiazole-4-carboxylic acid (ANT-431). UV-Vis spectroscopy and native-state ESI-MS results showed the formation of ternary complexes between VIM-2 and 1T5PA, ANT-431, thiorphan, captopril, and tiopronin, while a metal stripping mechanism was shown with VIM-2 and EDTA and DPA. The same approaches were used to show the formation of a ternary complex between New Delhi Metallo-β-lactamase (NDM-1) and ANT-431. The studies presented herein show that most of the inhibitors utilize a similar mechanism of inhibition as previously reported for NDM-1. These studies also demonstrate that native mass spectrometry can be used to probe the mechanism of inhibition at lower enzyme/inhibitor concentrations than has previously been achieved.
Collapse
|
12
|
Palacios AR, Rossi MA, Mahler GS, Vila AJ. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules 2020; 10:E854. [PMID: 32503337 PMCID: PMC7356002 DOI: 10.3390/biom10060854] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
β-Lactam antibiotics are the most widely prescribed antibacterial drugs due to their low toxicity and broad spectrum. Their action is counteracted by different resistance mechanisms developed by bacteria. Among them, the most common strategy is the expression of β-lactamases, enzymes that hydrolyze the amide bond present in all β-lactam compounds. There are several inhibitors against serine-β-lactamases (SBLs). Metallo-β-lactamases (MBLs) are Zn(II)-dependent enzymes able to hydrolyze most β-lactam antibiotics, and no clinically useful inhibitors against them have yet been approved. Despite their large structural diversity, MBLs have a common catalytic mechanism with similar reaction species. Here, we describe a number of MBL inhibitors that mimic different species formed during the hydrolysis process: substrate, transition state, intermediate, or product. Recent advances in the development of boron-based and thiol-based inhibitors are discussed in the light of the mechanism of MBLs. We also discuss the use of chelators as a possible strategy, since Zn(II) ions are essential for substrate binding and catalysis.
Collapse
Affiliation(s)
- Antonela R. Palacios
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - María-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - Graciela S. Mahler
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad de la Republica (UdelaR), Montevideo 11800, Uruguay;
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| |
Collapse
|
13
|
Shi C, Dong F, Zhao G, Zhu N, Lao X, Zheng H. Applications of machine-learning methods for the discovery of NDM-1 inhibitors. Chem Biol Drug Des 2020; 96:1232-1243. [PMID: 32418370 DOI: 10.1111/cbdd.13708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
The emergence of New Delhi metal beta-lactamase (NDM-1)-producing bacteria and their worldwide spread pose great challenges for the treatment of drug-resistant bacterial infections. These bacteria can hydrolyze most β-lactam antibacterials. Unfortunately, there are no clinically useful NDM-1 inhibitors. In the current work, we manually collected NDM-1 inhibitors reported in the past decade and established the first NDM-1 inhibitor database. Four machine-learning models were constructed using the structural and property characteristics of the collected compounds as input training set to discover potential NDM-1 inhibitors. In order to distinguish between high active inhibitors and putative positive drugs, a three-classification strategy was introduced in our study. In detail, the commonly used positive and negative divisions are converted into strongly active, weakly active, and inactive. The accuracy of the best prediction model designed based on this strategy reached 90.5%, compared with 69.14% achieved by the traditional docking-based virtual screening method. Consequently, the best model was used to virtually screen a natural product library. The safety of the selected compounds was analyzed by the ADMET prediction model based on machine learning. Seven novel NDM-1 inhibitors were identified, which will provide valuable clues for the discovery of NDM-1 inhibitors.
Collapse
Affiliation(s)
- Cheng Shi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fanyi Dong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Guiling Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ning Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Theuretzbacher U, Outterson K, Engel A, Karlén A. The global preclinical antibacterial pipeline. Nat Rev Microbiol 2020; 18:275-285. [PMID: 31745331 PMCID: PMC7223541 DOI: 10.1038/s41579-019-0288-0] [Citation(s) in RCA: 448] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/31/2022]
Abstract
Antibacterial resistance is a great concern and requires global action. A critical question is whether enough new antibacterial drugs are being discovered and developed. A review of the clinical antibacterial drug pipeline was recently published, but comprehensive information about the global preclinical pipeline is unavailable. This Review focuses on discovery and preclinical development projects and has found, as of 1 May 2019, 407 antibacterial projects from 314 institutions. The focus is on Gram-negative pathogens, particularly bacteria on the WHO priority bacteria list. The preclinical pipeline is characterized by high levels of diversity and interesting scientific concepts, with 135 projects on direct-acting small molecules that represent new classes, new targets or new mechanisms of action. There is also a strong trend towards non-traditional approaches, including diverse antivirulence approaches, microbiome-modifying strategies, and engineered phages and probiotics. The high number of pathogen-specific and adjunctive approaches is unprecedented in antibiotic history. Translational hurdles are not adequately addressed yet, especially development pathways to show clinical impact of non-traditional approaches. The innovative potential of the preclinical pipeline compared with the clinical pipeline is encouraging but fragile. Much more work, focus and funding are needed for the novel approaches to result in effective antibacterial therapies to sustainably combat antibacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Anders Karlén
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
MBLinhibitors.com, a Website Resource Offering Information and Expertise for the Continued Development of Metallo--Lactamase Inhibitors. Biomolecules 2020; 10:biom10030459. [PMID: 32188106 PMCID: PMC7175331 DOI: 10.3390/biom10030459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/29/2022] Open
Abstract
In an effort to facilitate the discovery of new, improved inhibitors of the metallo-β-lactamases (MBLs), a new, interactive website called MBLinhibitors.com was developed. Despite considerable efforts from the science community, there are no clinical inhibitors of the MBLs, which are now produced by human pathogens. The website, MBLinhibitors.com, contains a searchable database of known MBL inhibitors, and inhibitors can be searched by chemical name, chemical formula, chemical structure, Simplified Molecular-Input Line-Entry System (SMILES) format, and by the MBL on which studies were conducted. The site will also highlight a “MBL Inhibitor of the Month”, and researchers are invited to submit compounds for this feature. Importantly, MBLinhibitors.com was designed to encourage collaboration, and researchers are invited to submit their new compounds, using the “Submit” function on the site, as well as their expertise using the “Collaboration” function. The intention is for this site to be interactive, and the site will be improved in the future as researchers use the site and suggest improvements. It is hoped that MBLinhibitors.com will serve as the one-stop site for any important information on MBL inhibitors and will aid in the discovery of a clinically useful MBL inhibitor.
Collapse
|
16
|
Khalili Arjomandi O, Kavoosi M, Adibi H. Synthesis and investigation of inhibitory activities of imidazole derivatives against the metallo-β-lactamase IMP-1. Bioorg Chem 2019; 92:103277. [PMID: 31539743 DOI: 10.1016/j.bioorg.2019.103277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022]
Abstract
Mutations in bacteria can result in antibiotic resistance due to the overuse or abuse of β-lactam antibiotics. One strategy which bacteria can become resistance toward antibiotics is secreting of metallo β-lactamase enzymes that can open the lactam ring of the β-lactam antibiotic and inactivate them. This issue is a threat for human health and one strategy to overcome this situation is co-administration of β-lactam antibiotics with an inhibitor. So far, no clinically available inhibitors of metallo β-lactamases (MBLs) reported and the clinically inhibitors of serine β-lactamase are useless for MBLs. Accordingly, finding a potent inhibitor of the MBLs being very important. In this study, imidazole derivatives primarily were synthesized and their inhibitory activity were measured. Later in silico binding model was used to predict the configuration and conformation of the ligands into the active site of enzyme. Two molecules demonstrated with IC50 of 39 µM and 46 µM against MBL (IMP-1).
Collapse
Affiliation(s)
- Omid Khalili Arjomandi
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Qld 4072, Australia; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mahboubeh Kavoosi
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|