1
|
Marques DSC, da Silva Lima L, de Oliveira Moraes Miranda JF, Dos Anjos Santos CÁ, da Cruz Filho IJ, de Lima MDCA. Exploring the therapeutic potential of acridines: Synthesis, structure, and biological applications. Bioorg Chem 2025; 155:108096. [PMID: 39756205 DOI: 10.1016/j.bioorg.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
The objective of this review was to explore the trends and chemical characteristics of acridines and their derivatives, analyze their contribution to the scientific literature and international cooperation, identify the most influential authors and articles, and provide an overview of the knowledge produced in elucidating their mechanisms of action. To this end, a bibliometric analysis was performed using RStudio software, along with a systematic review focusing on articles indexed in the "Web of Science" and "Scopus" databases. The keywords used were "acridine$", "Synthesi$", "Structure$", and "Biologic* Application$" for the period from 2020 to 2024. Relevant articles were carefully selected from these databases, and a bibliometric analysis was carried out to comprehensively discuss the most relevant biological activities associated with acridines. The results showed that, during the analyzed period, China and India led in the number of publications, followed by Brazil in third place. However, a decline in the number of publications was observed in the last two years of the period. Keyword analysis revealed that antitumor activity remains the most extensively studied aspect of acridines and their derivatives.
Collapse
Affiliation(s)
- Diego Santa Clara Marques
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Lisandra da Silva Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Josué Filipe de Oliveira Moraes Miranda
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Carolina Ávila Dos Anjos Santos
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Iranildo José da Cruz Filho
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil.
| | - Maria do Carmo Alves de Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| |
Collapse
|
2
|
Varakumar P, Rajagopal K, Aparna B, Raman K, Byran G, Gonçalves Lima CM, Rashid S, Nafady MH, Emran TB, Wybraniec S. Acridine as an Anti-Tumour Agent: A Critical Review. Molecules 2022; 28:193. [PMID: 36615391 PMCID: PMC9822522 DOI: 10.3390/molecules28010193] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
This review summarized the current breakthroughs in the chemistry of acridines as anti-cancer agents, including new structural and biologically active acridine attributes. Acridine derivatives are a class of compounds that are being extensively researched as potential anti-cancer drugs. Acridines are well-known for their high cytotoxic activity; however, their clinical application is restricted or even excluded as a result of side effects. The photocytotoxicity of propyl acridine acts against leukaemia cell lines, with C1748 being a promising anti-tumour drug against UDP-UGT's. CK0403 is reported in breast cancer treatment and is more potent than CK0402 against estrogen receptor-negative HER2. Acridine platinum (Pt) complexes have shown specificity on the evaluated DNA sequences; 9-anilinoacridine core, which intercalates DNA, and a methyl triazene DNA-methylating moiety were also studied. Acridine thiourea gold and acridinone derivatives act against cell lines such as MDA-MB-231, SK-BR-3, and MCF-7. Benzimidazole acridine compounds demonstrated cytotoxic activity against Dual Topo and PARP-1. Quinacrine, thiazacridine, and azacridine are reported as anti-cancer agents, which have been reported in the previous decade and were addressed in this review article.
Collapse
Affiliation(s)
- Potlapati Varakumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Baliwada Aparna
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kannan Raman
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | | | - Salma Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| |
Collapse
|
3
|
Ghemrawi R, Khair M, Hasan S, Aldulaymi R, AlNeyadi SS, Atatreh N, Ghattas MA. The Discovery of Potent SHP2 Inhibitors with Anti-Proliferative Activity in Breast Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23084468. [PMID: 35457286 PMCID: PMC9030381 DOI: 10.3390/ijms23084468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Despite available treatments, breast cancer is the leading cause of cancer-related death. Knowing that the tyrosine phosphatase SHP2 is a regulator in tumorigenesis, developing inhibitors of SHP2 in breast cells is crucial. Our study investigated the effects of new compounds, purchased from NSC, on the phosphatase activity of SHP2 and the modulation of breast cancer cell lines’ proliferation and viability. A combined ligand-based and structure-based virtual screening protocol was validated, then performed, against SHP2 active site. Top ranked compounds were tested via SHP2 enzymatic assay, followed by measuring IC50 values. Subsequently, hits were tested for their anti-breast cancer viability and proliferative activity. Our experiments identified three compounds 13030, 24198, and 57774 as SHP2 inhibitors, with IC50 values in micromolar levels and considerable selectivity over the analogous enzyme SHP1. Long MD simulations of 500 ns showed a very promising binding mode in the SHP2 catalytic pocket. Furthermore, these compounds significantly reduced MCF-7 breast cancer cells’ proliferation and viability. Interestingly, two of our hits can have acridine or phenoxazine cyclic system known to intercalate in ds DNA. Therefore, our novel approach led to the discovery of SHP2 inhibitors, which could act as a starting point in the future for clinically useful anticancer agents.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; (R.G.); (S.H.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates;
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
| | - Shaima Hasan
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; (R.G.); (S.H.)
| | - Raghad Aldulaymi
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates;
| | - Shaikha S. AlNeyadi
- Department of Chemistry, College of Science, UAE University Al-Ain, Abu Dhabi 15551, United Arab Emirates;
| | - Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; (R.G.); (S.H.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates;
- Correspondence: (N.A.); (M.A.G.)
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; (R.G.); (S.H.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates;
- Correspondence: (N.A.); (M.A.G.)
| |
Collapse
|
4
|
Thankarajan E, Walunj D, Bazylevich A, Prasad C, Hesin A, Patsenker L, Gellerman G. A novel, dual action chimera comprising DNA methylating agent and near-IR xanthene-cyanine photosensitizer for combined anticancer therapy. Photodiagnosis Photodyn Ther 2022; 37:102722. [PMID: 35032703 DOI: 10.1016/j.pdpdt.2022.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
A facile synthesis, biological evaluation and photodynamic properties of novel activatable anticancer molecular hybrids (chimeras) Ch and I-Ch are described. The chimeras consist of DNA methylating methyl triazene moiety and fluorogenic xanthene-cyanine (XCy) or iodinated xanthene-cyanine (I-XCy) photosensitizer. These two anticancer core structures are bound by means of a self-immolative 4-aminobenzyl alcohol linker. The hydrolytic cleavage of the carbamate protecting group promotes activation of both DNA methylating monomethyl triazene and phototoxic xanthene-cyanine dye providing, in addition, a near-IR emission signal for detection of the drug activation events. Preliminary antiproliferative assay demonstrates that the developed chimeras exhibit higher antitumor activity in the breast cancer cell line upon near-IR light irradiation compared to their structural constituents, xanthene-cyanine photosensitizer and monomethyl triazene substance.
Collapse
Affiliation(s)
- Ebaston Thankarajan
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Dipak Walunj
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Andrii Bazylevich
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Chandrashekhar Prasad
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Arkadi Hesin
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Leonid Patsenker
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel.
| |
Collapse
|