1
|
Son JJ, Schantell M, Picci G, Wang YP, Stephen JM, Calhoun VD, Doucet GE, Taylor BK, Wilson TW. Altered longitudinal trajectory of default mode network connectivity in healthy youth with subclinical depressive and posttraumatic stress symptoms. Dev Cogn Neurosci 2023; 60:101216. [PMID: 36857850 PMCID: PMC9986502 DOI: 10.1016/j.dcn.2023.101216] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The default mode network (DMN) plays a crucial role in internal self-processing, rumination, and social functions. Disruptions to DMN connectivity have been linked with early adversity and the emergence of psychopathology in adolescence and early adulthood. Herein, we investigate how subclinical psychiatric symptoms can impact DMN functional connectivity during the pubertal transition. Resting-state fMRI data were collected annually from 190 typically-developing youth (9-15 years-old) at three timepoints and within-network DMN connectivity was computed. We used latent growth curve modeling to determine how self-reported depressive and posttraumatic stress symptoms predicted rates of change in DMN connectivity over the three-year period. In the baseline model without predictors, we found no systematic changes in DMN connectivity over time. However, significant modulation emerged after adding psychopathology predictors; greater depressive symptomatology was associated with significant decreases in connectivity over time, whereas posttraumatic stress symptoms were associated with significant increases in connectivity over time. Follow-up analyses revealed that these effects were driven by connectivity changes involving the dorsal medial prefrontal cortex subnetwork. In conclusion, these data suggest that subclinical depressive and posttraumatic symptoms alter the trajectory of DMN connectivity, which may indicate that this network is a nexus of clinical significance in mental health disorders.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of technology, and Emory University, Atlanta, GA, USA
| | - Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
2
|
An exploration of dimensions of early adversity and the development of functional brain network connectivity during adolescence: Implications for trajectories of internalizing symptoms. Dev Psychopathol 2022; 34:557-571. [PMID: 35094729 DOI: 10.1017/s0954579421001814] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Different dimensions of adversity may affect mental health through distinct neurobiological mechanisms, though current supporting evidence consists largely of cross-sectional associations between threat or deprivation and fronto-limbic circuitry. In this exploratory three-wave longitudinal study spanning ages 9-19 years, we examined the associations between experiences of unpredictability, threat, and deprivation with the development of functional connectivity within and between three brain networks implicated in psychopathology: the salience (SAL), default mode (DMN), and fronto-parietal (FPN) networks, and tested whether network trajectories moderated associations between adversity and changes in internalizing symptoms. Connectivity decreased with age on average; these changes differed by dimension of adversity. Whereas family-level deprivation was associated with lower initial levels and more stability across most networks, unpredictability was associated with stability only in SAL connectivity, and threat was associated with stability in FPN and DMN-SAL connectivity. In youth exposed to higher levels of any adversity, lower initial levels and more stability in connectivity were related to smaller increases in internalizing symptoms. Our findings suggest that whereas deprivation is associated with widespread neurodevelopmental differences in cognitive and emotion processing networks, unpredictability is related selectively to salience detection circuitry. Studies with wider developmental windows should examine whether these neurodevelopmental alterations are adaptive or serve to maintain internalizing symptoms.
Collapse
|
3
|
Longitudinal maturation of resting state networks: Relevance to sustained attention and attention deficit/hyperactivity disorder. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1432-1446. [PMID: 35676491 PMCID: PMC9622522 DOI: 10.3758/s13415-022-01017-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 01/27/2023]
Abstract
The transition from childhood to adolescence involves important neural function, cognition, and behavior changes. However, the links between maturing brain function and sustained attention over this period could be better understood. This study examined typical changes in network functional connectivity over childhood to adolescence, developmental differences in attention deficit/hyperactivity disorder (ADHD), and how functional connectivity might underpin variability in sustained attention development in a longitudinal sample. A total of 398 resting state scans were collected from 173 children and adolescents (88 ADHD, 85 control) at up to three timepoints across ages 9-14 years. The effects of age, sex, and diagnostic group on changes in network functional connectivity were assessed, followed by relationships between functional connectivity and sustained attention development using linear mixed effects modelling. The ADHD group displayed greater decreases in functional connectivity between salience and visual networks compared with controls. Lower childhood functional connectivity between the frontoparietal and several brain networks was associated with more rapid sustained attention development, whereas frontoparietal to dorsal attention network connectivity related to attention trajectories in children with ADHD alone. Brain network segregation may increase into adolescence as predicted by key developmental theories; however, participants with ADHD demonstrated altered developmental trajectories between salience and visual networks. The segregation of the frontoparietal network from other brain networks may be a mechanism supporting sustained attention development. Frontoparietal to dorsal attention connectivity can be a focus for further work in ADHD.
Collapse
|
4
|
Kanel D, Vanes LD, Ball G, Hadaya L, Falconer S, Counsell SJ, Edwards AD, Nosarti C. OUP accepted manuscript. Brain Commun 2022; 4:fcac009. [PMID: 35178519 PMCID: PMC8846580 DOI: 10.1093/braincomms/fcac009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Very preterm children are more likely to exhibit difficulties in socio-emotional processing than their term-born peers. Emerging socio-emotional problems may be partly due to alterations in limbic system development associated with infants’ early transition to extrauterine life. The amygdala is a key structure in this system and plays a critical role in various aspects of socio-emotional development, including emotion regulation. The current study tested the hypothesis that amygdala resting-state functional connectivity at term-equivalent age would be associated with socio-emotional outcomes in childhood. Participants were 129 very preterm infants (<33 weeks' gestation) who underwent resting-state functional MRI at term and received a neurodevelopmental assessment at 4–7 years (median = 4.64). Using the left and right amygdalae as seed regions, we investigated associations between whole-brain seed-based functional connectivity and three socio-emotional outcome factors which were derived using exploratory factor analysis (Emotion Moderation, Social Function and Empathy), controlling for sex, neonatal sickness, post-menstrual age at scan and social risk. Childhood Emotion Moderation scores were significantly associated with neonatal resting-state functional connectivity of the right amygdala with right parahippocampal gyrus and right middle occipital gyrus, as well as with functional connectivity of the left amygdala with the right thalamus. No significant associations were found between amygdalar resting-state functional connectivity and either Social Function or Empathy scores. The current findings show that amygdalar functional connectivity assessed at term is associated with later socio-emotional outcomes in very preterm children.
Collapse
Affiliation(s)
- Dana Kanel
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Lucy D. Vanes
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gareth Ball
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Laila Hadaya
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | | | - Chiara Nosarti
- Correspondence to: Chiara Nosarti Centre for the Developing Brain School of Bioengineering and Imaging Sciences King’s College London and Evelina Children’s Hospital London SE1 7EH, UK E-mail:
| |
Collapse
|
5
|
Bryce NV, Flournoy JC, Guassi Moreira JF, Rosen ML, Sambook KA, Mair P, McLaughlin KA. Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity. Neuroimage 2021; 243:118487. [PMID: 34419594 PMCID: PMC8629133 DOI: 10.1016/j.neuroimage.2021.118487] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past decade extensive research has examined the segregation of the human brain into large-scale functional networks. The resulting network maps, i.e. parcellations, are now commonly used for the a priori identification of functional networks. However, the use of these parcellations, particularly in developmental and clinical samples, hinges on four fundamental assumptions: (1) the various parcellations are equally able to recover the networks of interest; (2) adult-derived parcellations well represent the networks in children’s brains; (3) network properties, such as within-network connectivity, are reliably measured across parcellations; and (4) parcellation selection does not impact the results with regard to individual differences in given network properties. In the present study we examined these assumptions using eight common parcellation schemes in two independent developmental samples. We found that the parcellations are equally able to capture networks of interest in both children and adults. However, networks bearing the same name across parcellations (e.g., default network) do not produce reliable within-network measures of functional connectivity. Critically, parcellation selection significantly impacted the magnitude of associations of functional connectivity with age, poverty, and cognitive ability, producing meaningful differences in interpretation of individual differences in functional connectivity based on parcellation choice. Our findings suggest that work employing parcellations may benefit from the use of multiple schemes to confirm the robustness and generalizability of results. Furthermore, researchers looking to gain insight into functional networks may benefit from employing more nuanced network identification approaches such as using densely-sampled data to produce individual-derived network parcellations. A transition towards precision neuroscience will provide new avenues in the characterization of functional brain organization across development and within clinical populations.
Collapse
Affiliation(s)
- Nessa V Bryce
- Department of Psychology, Harvard University, Cambridge, MA 02139, United States.
| | - John C Flournoy
- Department of Psychology, Harvard University, Cambridge, MA 02139, United States
| | - João F Guassi Moreira
- Department of Psychology, University of California, Los Angeles, CA 90095, United States
| | - Maya L Rosen
- Department of Psychology, Harvard University, Cambridge, MA 02139, United States
| | - Kelly A Sambook
- Department of Psychology, Harvard University, Cambridge, MA 02139, United States
| | - Patrick Mair
- Department of Psychology, Harvard University, Cambridge, MA 02139, United States
| | - Katie A McLaughlin
- Department of Psychology, Harvard University, Cambridge, MA 02139, United States
| |
Collapse
|
6
|
Norman LJ, Sudre G, Bouyssi-Kobar M, Sharp W, Shaw P. A Longitudinal Study of Resting-State Connectivity and Response to Psychostimulant Treatment in ADHD. Am J Psychiatry 2021; 178:744-751. [PMID: 34086483 PMCID: PMC8528221 DOI: 10.1176/appi.ajp.2021.20091342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Psychostimulants are first-line pharmacological treatments for attention deficit hyperactivity disorder (ADHD), although symptom reduction varies widely between patients and these individual differences in treatment response are poorly understood. The authors sought to examine whether the resting-state functional connectivity within and between cingulo-opercular, striato-thalamic, and default mode networks was associated with treatment response to psychostimulant medication, and whether this relationship changed with development. METHODS Patients with ADHD (N=110; 196 observations; mean age at first observation, 10.83 years, SD=2.2) and typically developing control subjects (N=142; 330 observations; mean age at first observation, 10.49 years, SD=2.81) underwent functional neuroimaging on up to five occasions during development (age range, 6-17 years). For patients, symptoms were assessed on and off psychostimulant medication (methylphenidate-based treatments: N=132 observations, 67%; amphetamine-based treatments: N=64 observations, 33%) using the Diagnostic Interview for Children and Adolescents for parents. Linear mixed-effects models examined whether resting-state connectivity was associated with treatment response and its interaction with age. Comparisons with typically developing control subjects were performed to contextualize any significant associations. RESULTS Resting-state connectivity within the cingulo-opercular network was associated with a significant interaction between treatment response and age. Specifically, worse responses to treatment compared with better responses to treatment among patients and compared with typically developing control subjects were associated with an atypical increase in cingulo-opercular connectivity with increasing age from childhood to adolescence. CONCLUSIONS This work delineates how resting-state connectivity may be associated over development with response to psychostimulants in ADHD. Functioning and development within the cingulo-opercular network may warrant further investigation as a contributor to differential response to psychostimulants.
Collapse
Affiliation(s)
- Luke J Norman
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, Md. (Norman, Sudre, Bouyssi-Kobar, Sharp, Shaw); Office of the Clinical Director, NIMH, Bethesda, Md. (Sharp, Shaw)
| | - Gustavo Sudre
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, Md. (Norman, Sudre, Bouyssi-Kobar, Sharp, Shaw); Office of the Clinical Director, NIMH, Bethesda, Md. (Sharp, Shaw)
| | - Marine Bouyssi-Kobar
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, Md. (Norman, Sudre, Bouyssi-Kobar, Sharp, Shaw); Office of the Clinical Director, NIMH, Bethesda, Md. (Sharp, Shaw)
| | - Wendy Sharp
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, Md. (Norman, Sudre, Bouyssi-Kobar, Sharp, Shaw); Office of the Clinical Director, NIMH, Bethesda, Md. (Sharp, Shaw)
| | - Philip Shaw
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, Md. (Norman, Sudre, Bouyssi-Kobar, Sharp, Shaw); Office of the Clinical Director, NIMH, Bethesda, Md. (Sharp, Shaw)
| |
Collapse
|
7
|
Zacharek SJ, Kribakaran S, Kitt ER, Gee DG. Leveraging big data to map neurodevelopmental trajectories in pediatric anxiety. Dev Cogn Neurosci 2021; 50:100974. [PMID: 34147988 PMCID: PMC8225701 DOI: 10.1016/j.dcn.2021.100974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
Anxiety disorders are the most prevalent psychiatric condition among youth, with symptoms commonly emerging prior to or during adolescence. Delineating neurodevelopmental trajectories associated with anxiety disorders is important for understanding the pathophysiology of pediatric anxiety and for early risk identification. While a growing literature has yielded valuable insights into the nature of brain structure and function in pediatric anxiety, progress has been limited by inconsistent findings and challenges common to neuroimaging research. In this review, we first discuss these challenges and the promise of ‘big data’ to map neurodevelopmental trajectories in pediatric anxiety. Next, we review evidence of age-related differences in neural structure and function among anxious youth, with a focus on anxiety-relevant processes such as threat and safety learning. We then highlight large-scale cross-sectional and longitudinal studies that assess anxiety and are well positioned to inform our understanding of neurodevelopment in pediatric anxiety. Finally, we detail relevant challenges of ‘big data’ and propose future directions through which large publicly available datasets can advance knowledge of deviations from normative brain development in anxiety. Leveraging ‘big data’ will be essential for continued progress in understanding the neurobiology of pediatric anxiety, with implications for identifying markers of risk and novel treatment targets.
Collapse
Affiliation(s)
- Sadie J Zacharek
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge, MA, 02139, United States; Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Sahana Kribakaran
- Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Elizabeth R Kitt
- Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Dylan G Gee
- Yale University, Department of Psychology, New Haven, CT, 06511, United States.
| |
Collapse
|
8
|
Wu CL, Lin TJ, Chiou GL, Lee CY, Luan H, Tsai MJ, Potvin P, Tsai CC. A Systematic Review of MRI Neuroimaging for Education Research. Front Psychol 2021; 12:617599. [PMID: 34093308 PMCID: PMC8174785 DOI: 10.3389/fpsyg.2021.617599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
This study aims to disclose how the magnetic resonance imaging (MRI) neuroimaging approach has been applied in education studies, and what kind of learning themes has been investigated in the reviewed MRI neuroimaging research. Based on the keywords “brain or neuroimaging or neuroscience” and “MRI or diffusion tensor imaging (DTI) or white matter or gray matter or resting-state,” a total of 25 papers were selected from the subject areas “Educational Psychology” and “Education and Educational Research” from the Web of Science and Scopus from 2000 to 2019. Content analysis showed that MRI neuroimaging and learning were studied under the following three major topics and nine subtopics: cognitive function (language, creativity, music, physical activity), science education (mathematical learning, biology learning, physics learning), and brain development (parenting, personality development). As for the type of MRI neuroimaging research, the most frequently used approaches were functional MRI, followed by structural MRI and DTI, although the choice of approach was often motivated by the specific research question. Research development trends show that the neural plasticity theme has become more prominent recently. This study concludes that in educational research, the MRI neuroimaging approach provides objective and empirical evidence to connect learning processes, outcomes, and brain mechanisms.
Collapse
Affiliation(s)
- Ching-Lin Wu
- Program of Learning Sciences, School of Learning Informatics, National Taiwan Normal University, Taipei, Taiwan.,Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Tzung-Jin Lin
- Program of Learning Sciences, School of Learning Informatics, National Taiwan Normal University, Taipei, Taiwan.,Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Guo-Li Chiou
- Program of Learning Sciences, School of Learning Informatics, National Taiwan Normal University, Taipei, Taiwan.,Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Ying Lee
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Institute of Linguistics, Academia Sinica, Taipei, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan.,Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan
| | - Hui Luan
- Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Meng-Jung Tsai
- Program of Learning Sciences, School of Learning Informatics, National Taiwan Normal University, Taipei, Taiwan.,Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Patrice Potvin
- Département de Didactique, Université du Québec à Montréal, Montréal, QC, Canada
| | - Chin-Chung Tsai
- Program of Learning Sciences, School of Learning Informatics, National Taiwan Normal University, Taipei, Taiwan.,Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
9
|
Pozzi E, Vijayakumar N, Byrne ML, Bray KO, Seal M, Richmond S, Zalesky A, Whittle SL. Maternal parenting behavior and functional connectivity development in children: A longitudinal fMRI study. Dev Cogn Neurosci 2021; 48:100946. [PMID: 33780733 PMCID: PMC8039548 DOI: 10.1016/j.dcn.2021.100946] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
Parenting behavior is associated with internalizing symptoms in children, and cross-sectional research suggests that this association may be mediated by the influence of parenting on the development of frontoamygdala circuitry. However, longitudinal studies are lacking. Moreover, there is a paucity of studies that have investigated parenting and large-scale networks implicated in affective functioning. In this longitudinal study, data from 95 (52 female) children and their mothers were included. Children underwent magnetic resonance imaging that included a 6 min resting state sequence at wave 1 (mean age = 8.4 years) and wave 2 (mean age = 9.9 years). At wave 1, observational measures of positive and negative maternal behavior were collected during mother-child interactions. Region-of-interest analysis of the amygdala, and independent component and dual-regression analyses of the Default Mode Network (DMN), Executive Control Network (ECN) and the Salience Network (SN) were carried out. We identified developmental effects as a function of parenting: positive parenting was associated with decreased coactivation of the superior parietal lobule with the ECN at wave 2 compared to wave 1. Thus our findings provide preliminary longitudinal evidence that positive maternal behavior is associated with maturation of the connectivity between higher-order control networks.
Collapse
Affiliation(s)
- Elena Pozzi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia.
| | | | - Michelle L Byrne
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Katherine O Bray
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Marc Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Sally Richmond
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia; Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Sarah L Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Sudre G, Bouyssi-Kobar M, Norman L, Sharp W, Choudhury S, Shaw P. Estimating the Heritability of Developmental Change in Neural Connectivity, and Its Association With Changing Symptoms of Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 2021; 89:443-450. [PMID: 32800380 PMCID: PMC7736233 DOI: 10.1016/j.biopsych.2020.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Twin studies show that age-related change in symptoms of attention-deficit/hyperactivity disorder (ADHD) is heritable. However, we do not know the heritability of the development of the neural substrates underlying the disorder. Here, we estimated the heritability of developmental change in white matter tracts and the brain's intrinsic functional connectivity using longitudinal data. We further determined associations with change in ADHD symptoms. METHODS The study reports on 288 children, which included 127 siblings, 19 cousins, and 142 singletons; 150 (52%) had a diagnosis of ADHD (determined by clinician interview with parent); 188 were male. All had two clinical assessments (overall baseline mean age: 9.4 ± 2.4 years; follow-up: 12.5 ± 2.6 years). Diffusion tensor imaging estimated microstructural properties of white matter tracts on 252 participants. Resting-state functional magnetic resonance imaging estimated intrinsic connectivity within and between major brain networks on 226 participants. Total additive genetic heritability (h2) of the annual rate of change in these neural phenotypes was calculated using SOLAR (Sequential Oligogenic Linkage Analysis Routines). RESULTS Significant heritability was found for the rates of change of 6 white matter tract microstructural properties and for change in the connectivity between the ventral attention network and both the cognitive control and dorsal attention networks. Change in hyperactivity-impulsivity was associated with heritable change in white matter tracts metrics and change in the connectivity between the ventral attention and cognitive networks. CONCLUSIONS The relatively small number of heritable, ADHD-associated developmental neural phenotypes can serve as phenotypes for future gene discovery and understanding.
Collapse
Affiliation(s)
- Gustavo Sudre
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Marine Bouyssi-Kobar
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Luke Norman
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Wendy Sharp
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Saadia Choudhury
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Philip Shaw
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
11
|
|
12
|
Gold AL, Abend R, Britton JC, Behrens B, Farber M, Ronkin E, Chen G, Leibenluft E, Pine DS. Age Differences in the Neural Correlates of Anxiety Disorders: An fMRI Study of Response to Learned Threat. Am J Psychiatry 2020; 177:454-463. [PMID: 32252541 PMCID: PMC9078083 DOI: 10.1176/appi.ajp.2019.19060650] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Although both pediatric and adult patients with anxiety disorders exhibit similar neural responding to threats, age-related differences have been found in some functional MRI (fMRI) studies. To reconcile disparate findings, the authors compared brain function in youths and adults with and without anxiety disorders while rating fear and memory of ambiguous threats. METHODS Two hundred medication-free individuals ages 8-50 were assessed, including 93 participants with an anxiety disorder. Participants underwent discriminative threat conditioning and extinction in the clinic. Approximately 3 weeks later, they completed an fMRI paradigm involving extinction recall, in which they rated their levels of fear evoked by, and their explicit memory for, morph stimuli with varying degrees of similarity to the extinguished threat cues. RESULTS Age moderated two sets of anxiety disorder findings. First, as age increased, healthy subjects compared with participants with anxiety disorders exhibited greater amygdala-ventromedial prefrontal cortex (vmPFC) connectivity when processing threat-related cues. Second, age moderated diagnostic differences in activation in ways that varied with attention and brain regions. When rating fear, activation in the vmPFC differed between the anxiety and healthy groups at relatively older ages. In contrast, when rating memory for task stimuli, activation in the inferior temporal cortex differed between the anxiety and healthy groups at relatively younger ages. CONCLUSIONS In contrast to previous studies that demonstrated age-related similarities in the biological correlates of anxiety disorders, this study identified age differences. These findings may reflect this study's focus on relatively late-maturing psychological processes, particularly the appraisal and explicit memory of ambiguous threat, and inform neurodevelopmental perspectives on anxiety.
Collapse
Affiliation(s)
- Andrea L. Gold
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, and Pediatric Anxiety Research Center, Bradley Hospital, Riverside, R.I
| | - Rany Abend
- Emotion and Development Branch, NIMH, Bethesda, Md
| | | | | | | | - Emily Ronkin
- Emotion and Development Branch, NIMH, Bethesda, Md
| | - Gang Chen
- Scientific and Statistical Computing Core, NIMH, Bethesda, Md
| | | | | |
Collapse
|
13
|
Brain and Cognitive Development in Adolescents with Anorexia Nervosa: A Systematic Review of fMRI Studies. Nutrients 2019; 11:nu11081907. [PMID: 31443192 PMCID: PMC6723243 DOI: 10.3390/nu11081907] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Anorexia nervosa (AN) is an eating disorder often occurring in adolescence. AN has one of the highest mortality rates amongst psychiatric illnesses and is associated with medical complications and high risk for psychiatric comorbidities, persisting after treatment. Remission rates range from 23% to 33%. Moreover, weight recovery does not necessarily reflect cognitive recovery. This issue is of particular interest in adolescence, characterized by progressive changes in brain structure and functional circuitries, and fast cognitive development. We reviewed existing literature on fMRI studies in adolescents diagnosed with AN, following PRISMA guidelines. Eligible studies had to: (1) be written in English; (2) include only adolescent participants; and (3) use block-design fMRI. We propose a pathogenic model based on normal and AN-related neural and cognitive maturation during adolescence. We propose that underweight and delayed puberty-caused by genetic, environmental, and neurobehavioral factors-can affect brain and cognitive development and lead to impaired cognitive flexibility, which in turn sustains the perpetuation of aberrant behaviors in a vicious cycle. Moreover, greater punishment sensitivity causes a shift toward punishment-based learning, leading to greater anxiety and ultimately to excessive reappraisal over emotions. Treatments combining physiological and neurobehavioral rationales must be adopted to improve outcomes and prevent relapses.
Collapse
|
14
|
Guyer AE, Pérez-Edgar K, Crone EA. Opportunities for Neurodevelopmental Plasticity From Infancy Through Early Adulthood. Child Dev 2018; 89:687-697. [PMID: 29664997 DOI: 10.1111/cdev.13073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multiple and rapid changes in brain development occur in infancy and early childhood that undergird behavioral development in core domains. The period of adolescence also carries a second influx of growth and change in the brain to support the unique developmental tasks of adolescence. This special section documents two core conclusions from multiple studies. First, evidence for change in brain-based metrics that underlie cognitive and behavioral functions are not limited to narrow windows in development, but are evident from infancy into early adulthood. Second, the specific evident changes are unique to challenges and goals that are salient for a respective developmental period. These brain-based changes interface with environmental inputs, whether from the child's broader ecology or at an individual level.
Collapse
|