1
|
Kühl L, Graichen P, von Daacke N, Mende A, Wygrecka M, Potaczek DP, Miethe S, Garn H. Human Lung Organoids-A Novel Experimental and Precision Medicine Approach. Cells 2023; 12:2067. [PMID: 37626876 PMCID: PMC10453737 DOI: 10.3390/cells12162067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The global burden of respiratory diseases is very high and still on the rise, prompting the need for accurate models for basic and translational research. Several model systems are currently available ranging from simple airway cell cultures to complex tissue-engineered lungs. In recent years, human lung organoids have been established as highly transferrable three-dimensional in vitro model systems for lung research. For acute infectious and chronic inflammatory diseases as well as lung cancer, human lung organoids have opened possibilities for precise in vitro research and a deeper understanding of mechanisms underlying lung injury and regeneration. Human lung organoids from induced pluripotent stem cells or from adult stem cells of patients' samples introduce tools for understanding developmental processes and personalized medicine approaches. When further state-of-the-art technologies and protocols come into use, the full potential of human lung organoids can be harnessed. High-throughput assays in drug development, gene therapy, and organoid transplantation are current applications of organoids in translational research. In this review, we emphasize novel approaches in translational and personalized medicine in lung research focusing on the use of human lung organoids.
Collapse
Affiliation(s)
- Laura Kühl
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Pauline Graichen
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Nele von Daacke
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Anne Mende
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany;
- Institute of Lung Health, German Center for Lung Research (DZL), 35392 Giessen, Germany
- CSL Behring Innovation GmbH, 35041 Marburg, Germany
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany;
- Bioscientia MVZ Labor Mittelhessen GmbH, 35394 Giessen, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| |
Collapse
|
2
|
Schröder A, Lunding LP, Zissler UM, Vock C, Webering S, Ehlers JC, Orinska Z, Chaker A, Schmidt‐Weber CB, Lang NJ, Schiller HB, Mall MA, Fehrenbach H, Dinarello CA, Wegmann M. IL-37 regulates allergic inflammation by counterbalancing pro-inflammatory IL-1 and IL-33. Allergy 2022; 77:856-869. [PMID: 34460953 DOI: 10.1111/all.15072] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/08/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Children with asthma have impaired production of interleukin (IL) 37; in mice, IL-37 reduces hallmarks of experimental allergic asthma (EAA). However, it remains unclear how IL-37 exerts its inhibitory properties in asthma. This study aimed to identify the mechanism(s) by which IL-37 controls allergic inflammation. METHODS IL-37 target cells were identified by single-cell RNA-seq of IL-1R5 and IL-1R8. Airway tissues were isolated by laser-capture microdissection and examined by microarray-based gene expression analysis. Mononuclear cells (MNC) and airway epithelial cells (AECs) were isolated and stimulated with allergen, IL-1β, or IL-33 together with recombinant human (rh) IL-37. Wild-type, IL-1R1- and IL-33-deficient mice with EAA were treated with rhIL-37. IL-1β, IL-33, and IL-37 levels were determined in sputum and nasal secretions from adult asthma patients without glucocorticoid therapy. RESULTS IL-37 target cells included AECs, T cells, and dendritic cells. In mice with EAA, rhIL-37 led to differential expression of >90 genes induced by IL-1β and IL-33. rhIL-37 reduced production of Th2 cytokines in allergen-activated MNCs from wild-type but not from IL-1R1-deficient mice and inhibited IL-33-induced Th2 cytokine release. Furthermore, rhIL-37 attenuated IL-1β- and IL-33-induced pro-inflammatory mediator expression in murine AEC cultures. In contrast to wild-type mice, hIL-37 had no effect on EAA in IL-1R1- or IL-33-deficient mice. We also observed that expression/production ratios of both IL-1β and IL-33 to IL-37 were dramatically increased in asthma patients compared to healthy controls. CONCLUSION IL-37 downregulates allergic airway inflammation by counterbalancing the disease-amplifying effects of IL-1β and IL-33.
Collapse
Affiliation(s)
- Alexandra Schröder
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Lars P. Lunding
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
| | - Christina Vock
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Sina Webering
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Johanna C. Ehlers
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Zane Orinska
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Adam Chaker
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical, University of Munich Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
| | - Niklas J. Lang
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
- Institute of Lung Biology and Disease Helmholtz Zentrum München Munich Germany
| | - Herbert B. Schiller
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
- Institute of Lung Biology and Disease Helmholtz Zentrum München Munich Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine Charité ‐ Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
- German Center for Lung Research (DZL), associated partner site Berlin Germany
| | - Heinz Fehrenbach
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Charles A. Dinarello
- Department of Medicine University of Colorado Denver Denver CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Michael Wegmann
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| |
Collapse
|
3
|
Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Front Immunol 2020; 11:761. [PMID: 32411147 PMCID: PMC7198799 DOI: 10.3389/fimmu.2020.00761] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchial asthma is a chronic disease of the airways that is characterized by symptoms like respiratory distress, chest tightness, wheezing, productive cough, and acute episodes of broncho-obstruction. This symptom-complex arises on the basis of chronic allergic inflammation of the airway wall. Consequently, the airway epithelium is central to the pathogenesis of this disease, because its multiple abilities directly have an impact on the inflammatory response and thus the formation of the disease. In turn, its structure and functions are markedly impaired by the inflammation. Hence, the airway epithelium represents a sealed, self-cleaning barrier, that prohibits penetration of inhaled allergens, pathogens, and other noxious agents into the body. This barrier is covered with mucus that further contains antimicrobial peptides and antibodies that are either produced or specifically transported by the airway epithelium in order to trap these particles and to remove them from the body by a process called mucociliary clearance. Once this first line of defense of the lung is overcome, airway epithelial cells are the first cells to get in contact with pathogens, to be damaged or infected. Therefore, these cells release a plethora of chemokines and cytokines that not only induce an acute inflammatory reaction but also have an impact on the alignment of the following immune reaction. In case of asthma, all these functions are impaired by the already existing allergic immune response that per se weakens the barrier integrity and self-cleaning abilities of the airway epithelium making it more vulnerable to penetration of allergens as well as of infection by bacteria and viruses. Recent studies indicate that the history of allergy- and pathogen-derived insults can leave some kind of memory in these cells that can be described as imprinting or trained immunity. Thus, the airway epithelium is in the center of processes that lead to formation, progression and acute exacerbation of asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Lars P Lunding
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| | - Johanna C Ehlers
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Experimental Pneumology, Research Center Borstel, Borstel, Germany
| | - Markus Weckmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Department of Pediatric Pulmonology and Allergology, University Children's Hospital, Lübeck, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Michael Wegmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| |
Collapse
|
4
|
Bartel S, La Grutta S, Cilluffo G, Perconti G, Bongiovanni A, Giallongo A, Behrends J, Kruppa J, Hermann S, Chiang D, Pfaffl MW, Krauss‐Etschmann S. Human airway epithelial extracellular vesicle miRNA signature is altered upon asthma development. Allergy 2020; 75:346-356. [PMID: 31386204 DOI: 10.1111/all.14008] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/18/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND miRNAs are master regulators of signaling pathways critically involved in asthma and are transferred between cells in extracellular vesicles (EV). We aimed to investigate whether the miRNA content of EV secreted by primary normal human bronchial epithelial cells (NHBE) is altered upon asthma development. METHODS NHBE cells were cultured at air-liquid interface and treated with interleukin (IL)-13 to induce an asthma-like phenotype. EV isolations by precipitation from basal culture medium or apical surface wash were characterized by nanoparticle tracking analysis, transmission electron microscopy, and Western blot, and EV-associated miRNAs were identified by a RT-qPCR-based profiling. Significant candidates were confirmed in EVs isolated by size-exclusion chromatography from nasal lavages of children with mild-to-moderate (n = 8) or severe asthma (n = 9), and healthy controls (n = 9). RESULTS NHBE cells secrete EVs to the apical and basal side. 47 miRNAs were expressed in EVs and 16 thereof were significantly altered in basal EV upon IL-13 treatment. Expression of miRNAs could be confirmed in EVs from human nasal lavages. Of note, levels of miR-92b, miR-210, and miR-34a significantly correlated with lung function parameters in children (FEV1 FVC%pred and FEF25-75%pred ), thus lower sEV-miRNA levels in nasal lavages associated with airway obstruction. Subsequent ingenuity pathway analysis predicted the miRNAs to regulate Th2 polarization and dendritic cell maturation. CONCLUSION Our data indicate that secretion of miRNAs in EVs from the airway epithelium, in particular miR-34a, miR-92b, and miR-210, might be involved in the early development of a Th2 response in the airways and asthma.
Collapse
Affiliation(s)
- Sabine Bartel
- Early Life Origins of Chronic Lung Disease Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL) and the Airway Research Center North (ARCN) Borstel Germany
- Department of Pathology and Medical Biology GRIAC Research Institute, University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Stefania La Grutta
- Institute for Research and Biomedical Innovation (IRIB) National Research Council Palermo Italy
| | - Giovanna Cilluffo
- Institute for Research and Biomedical Innovation (IRIB) National Research Council Palermo Italy
| | - Giovanni Perconti
- Institute for Research and Biomedical Innovation (IRIB) National Research Council Palermo Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB) National Research Council Palermo Italy
| | - Agata Giallongo
- Institute for Research and Biomedical Innovation (IRIB) National Research Council Palermo Italy
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry Research Center Borstel, Leibniz Lung Center Borstel Germany
| | - Jochen Kruppa
- Institute of Biometry and Clinical Epidemiology Charité ‐ Universitätsmedizin Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of Health Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| | - Stefanie Hermann
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan Technical University of Munich Munich Germany
| | - Dapi Chiang
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan Technical University of Munich Munich Germany
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan Technical University of Munich Munich Germany
| | - Susanne Krauss‐Etschmann
- Early Life Origins of Chronic Lung Disease Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL) and the Airway Research Center North (ARCN) Borstel Germany
- Institute for Experimental Medicine Christian‐Albrechts‐Universität zu Kiel Kiel Germany
| |
Collapse
|
5
|
Chen G, Volmer AS, Wilkinson KJ, Deng Y, Jones LC, Yu D, Bustamante-Marin XM, Burns KA, Grubb BR, O'Neal WK, Livraghi-Butrico A, Boucher RC. Role of Spdef in the Regulation of Muc5b Expression in the Airways of Naive and Mucoobstructed Mice. Am J Respir Cell Mol Biol 2019; 59:383-396. [PMID: 29579396 DOI: 10.1165/rcmb.2017-0127oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Understanding how expression of airway secretory mucins MUC5B and MUC5AC is regulated in health and disease is important to elucidating the pathogenesis of mucoobstructive respiratory diseases. The transcription factor SPDEF (sterile α-motif pointed domain epithelial specific transcription factor) is a key regulator of MUC5AC, but its role in regulating MUC5B in health and in mucoobstructive lung diseases is unknown. Characterization of Spdef-deficient mice upper and lower airways demonstrated region-specific, Spdef-dependent regulation of basal Muc5b expression. Neonatal Spdef-deficient mice exhibited reductions in BAL Muc5ac and Muc5b. Adult Spdef-deficient mice partially phenocopied Muc5b-deficient mice as they exhibited reduced Muc5b in nasopharyngeal and airway epithelia but not in olfactory Bowman glands, 75% incidence of nasopharyngeal hair/mucus plugs, and mild bacterial otitis media, without defective mucociliary clearance in the nasopharynx. In contrast, tracheal mucociliary clearance was reduced in Spdef-deficient mice in the absence of lung disease. To evaluate the role of Spdef in the development and persistence of Muc5b-predominant mucoobstructive lung disease, Spdef-deficient mice were crossed with Scnn1b-transgenic (Scnn1b-Tg) mice, which exhibit airway surface dehydration-induced airway mucus obstruction and inflammation. Spdef-deficient Scnn1b-Tg mice exhibited reduced Muc5ac, but not Muc5b, expression and BAL content. Airway mucus obstruction was not decreased in Spdef-deficient Scnn1b-Tg mice, consistent with Muc5b-dominant Scnn1b disease, but increased airway neutrophilia was observed compared with Spdef-sufficient Scnn1b-Tg mice. Collectively, these results indicate that Spdef regulates baseline Muc5b expression in respiratory epithelia but does not contribute to Muc5b regulation in a mouse model of Muc5b-predominant mucus obstruction caused by airway dehydration.
Collapse
Affiliation(s)
- Gang Chen
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Allison S Volmer
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kristen J Wilkinson
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yangmei Deng
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lisa C Jones
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dongfang Yu
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ximena M Bustamante-Marin
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kimberlie A Burns
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Barbara R Grubb
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Shi Y, Fu X, Cao Q, Mao Z, Chen Y, Sun Y, Liu Z, Zhang Q. Overexpression of miR-155-5p Inhibits the Proliferation and Migration of IL-13-Induced Human Bronchial Smooth Muscle Cells by Suppressing TGF-β-Activated Kinase 1/MAP3K7-Binding Protein 2. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:260-267. [PMID: 29676073 PMCID: PMC5911445 DOI: 10.4168/aair.2018.10.3.260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/16/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022]
Abstract
Purpose Molecular mechanisms leading to asthma is still ill-defined. Though the function of microRNAs (miRNAs) in asthma was previously reported, the involvement of miR-155 in important features of this disease remains unknown. The present study was designed to uncover the probable involvement of miR-155-5p in the proliferation and migration of IL-13-induced human bronchial smooth muscle cells (BSMCs) and the intrinsic regulatory mechanism. Methods The effects of different concentrations of IL-13 on the proliferation and migration of BSMCs as well as the expression of miR-155-5p and its predicted target transforming growth factor (TGF)-β-activated kinase 1/MAP3K7-binding protein 2 (TAB2) were investigated. The effects of miR-155-5p on the proliferation and migration of interleukin (IL)-13-induced BSMCs was determined in vitro using BSMCs transfected with miR-155 mimic/inhibitor and induced by a high concentration of IL-13. The quantitative real-time polymerase chain reaction (qRTPCR) was employed for determining the expression of miR-155-5p and TAB2. Western blotting was applied to analyze the expression of TAB2 at the protein level. Cell proliferation and migration were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell assays, respectively. Results The proliferation and migration of BSMCs were dose-dependently increased with IL-13 treatment. Contrariwise, IL-13 dose-dependently inhibited the expression of miR-155-5p in BSMCs. Mechanistic studies showed that inhibition of miR-155-5p further promoted the stimulatory effects of IL-13, whereas overexpression of miR-155 significantly inhibited these effects. In silico studies and luciferase reporter assays indicated that TAB2 was a negatively regulated miR-155-5p target. Conclusions These results suggested that miR-155-5p-inhibit the IL-13-induced proliferation and migration of BSMCs by targeting TAB2 and that the IL-13/miR-155/TAB2 pathway could serve as a therapeutic target for pulmonary diseases, especially asthma.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xingli Fu
- Health Science Center, Jiangsu University, Zhenjiang, China
| | - Qi Cao
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Zhengdao Mao
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yi Chen
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yun Sun
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Zhiguang Liu
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qian Zhang
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
7
|
Roberts G, Boyle R, Bryce PJ, Crane J, Hogan SP, Saglani S, Wickman M, Woodfolk JA. Developments in the field of allergy mechanisms in 2015 through the eyes of Clinical & Experimental Allergy. Clin Exp Allergy 2017; 46:1248-57. [PMID: 27682977 DOI: 10.1111/cea.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the first of two papers we described the development in the field of allergy mechanisms as described by Clinical and Experimental Allergy in 2015. Experimental models of allergic disease, basic mechanisms, clinical mechanisms and allergens are all covered. A second paper will cover clinical aspects.
Collapse
Affiliation(s)
- G Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK. .,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK. .,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK.
| | - R Boyle
- Paediatric Research Unit, Imperial College London, London, UK
| | - P J Bryce
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - M Wickman
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - J A Woodfolk
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
8
|
Tomatidine Attenuates Airway Hyperresponsiveness and Inflammation by Suppressing Th2 Cytokines in a Mouse Model of Asthma. Mediators Inflamm 2017; 2017:5261803. [PMID: 29386751 PMCID: PMC5745703 DOI: 10.1155/2017/5261803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 01/10/2023] Open
Abstract
Tomatidine is isolated from the fruits of tomato plants and found to have anti-inflammatory effects in macrophages. In the present study, we investigated whether tomatidine suppresses airway hyperresponsiveness (AHR) and eosinophil infiltration in asthmatic mice. BALB/c mice were sensitized with ovalbumin and treated with tomatidine by intraperitoneal injection. Airway resistance was measured by intubation analysis as an indication of airway responsiveness, and histological studies were performed to evaluate eosinophil infiltration in lung tissue. Tomatidine reduced AHR and decreased eosinophil infiltration in the lungs of asthmatic mice. Tomatidine suppressed Th2 cytokine production in bronchoalveolar lavage fluid. Tomatidine also blocked the expression of inflammatory and Th2 cytokine genes in lung tissue. In vitro, tomatidine inhibited proinflammatory cytokines and CCL11 production in inflammatory BEAS-2B bronchial epithelial cells. These results indicate that tomatidine contributes to the amelioration of AHR and eosinophil infiltration by blocking the inflammatory response and Th2 cell activity in asthmatic mice.
Collapse
|
9
|
Spengler D, Winoto-Morbach S, Kupsch S, Vock C, Blöchle K, Frank S, Rintz N, Diekötter M, Janga H, Weckmann M, Fuchs S, Schromm AB, Fehrenbach H, Schütze S, Krause MF. Novel therapeutic roles for surfactant-inositols and -phosphatidylglycerols in a neonatal piglet ARDS model: a translational study. Am J Physiol Lung Cell Mol Physiol 2017; 314:L32-L53. [PMID: 28860142 DOI: 10.1152/ajplung.00128.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biological and immune-protective properties of surfactant-derived phospholipids and phospholipid subfractions in the context of neonatal inflammatory lung disease are widely unknown. Using a porcine neonatal triple-hit acute respiratory distress syndrome (ARDS) model (repeated airway lavage, overventilation, and LPS instillation into airways), we assessed whether the supplementation of surfactant (S; poractant alfa) with inositol derivatives [inositol 1,2,6-trisphosphate (IP3) or phosphatidylinositol 3,5-bisphosphate (PIP2)] or phosphatidylglycerol subfractions [16:0/18:1-palmitoyloleoyl-phosphatidylglycerol (POPG) or 18:1/18:1-dioleoyl-phosphatidylglycerol (DOPG)] would result in improved clinical parameters and sought to characterize changes in key inflammatory pathways behind these improvements. Within 72 h of mechanical ventilation, the oxygenation index (S+IP3, S+PIP2, and S+POPG), the ventilation efficiency index (S+IP3 and S+POPG), the compliance (S+IP3 and S+POPG) and resistance (S+POPG) of the respiratory system, and the extravascular lung water index (S+IP3 and S+POPG) significantly improved compared with S treatment alone. The inositol derivatives (mainly S+IP3) exerted their actions by suppressing acid sphingomyelinase activity and dependent ceramide production, linked with the suppression of the inflammasome nucleotide-binding domain, leucine-rich repeat-containing protein-3 (NLRP3)-apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-caspase-1 complex, and the profibrotic response represented by the cytokines transforming growth factor-β1 and IFN-γ, matrix metalloproteinase (MMP)-1/8, and elastin. In addition, IκB kinase activity was significantly reduced. S+POPG and S+DOPG treatment inhibited polymorphonuclear leukocyte activity (MMP-8 and myeloperoxidase) and the production of interleukin-6, maintained alveolar-capillary barrier functions, and reduced alveolar epithelial cell apoptosis, all of which resulted in reduced pulmonary edema. S+DOPG also limited the profibrotic response. We conclude that highly concentrated inositol derivatives and phosphatidylglycerol subfractions in surfactant preparations mitigate key inflammatory pathways in inflammatory lung disease and that their clinical application may be of interest for future treatment of the acute exudative phase of neonatal ARDS.
Collapse
Affiliation(s)
- Dietmar Spengler
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Supandi Winoto-Morbach
- Institute of Immunology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Sarah Kupsch
- Division of Immunobiophysics, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Christina Vock
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany.,Airway Research Center North, German Center for Lung Research, Lübeck and Borstel, Germany
| | - Katharina Blöchle
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Susanna Frank
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Nele Rintz
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Marie Diekötter
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany.,Division of Experimental Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Harshavardhan Janga
- Section of Experimental Traumatology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Markus Weckmann
- Division of Pediatric Pneumology and Allergology, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck , Germany.,Airway Research Center North, German Center for Lung Research, Lübeck and Borstel, Germany
| | - Sabine Fuchs
- Section of Experimental Traumatology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Andra B Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Heinz Fehrenbach
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany.,Airway Research Center North, German Center for Lung Research, Lübeck and Borstel, Germany
| | - Stefan Schütze
- Institute of Immunology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Martin F Krause
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| |
Collapse
|
10
|
Qi M, Zhou J, Zhang X, Zhong X, Zhang Y, Zhang X, Deng X, Li H, Wang Q. Effect of Xiaoqinglong decoction on mucus hypersecretion in the airways and cilia function in a murine model of asthma. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Song J, Heijink IH, Kistemaker LEM, Reinders-Luinge M, Kooistra W, Noordhoek JA, Gosens R, Brandsma CA, Timens W, Hiemstra PS, Rots MG, Hylkema MN. Aberrant DNA methylation and expression of SPDEF and FOXA2 in airway epithelium of patients with COPD. Clin Epigenetics 2017; 9:42. [PMID: 28450970 PMCID: PMC5404321 DOI: 10.1186/s13148-017-0341-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Background Goblet cell metaplasia, a common feature of chronic obstructive pulmonary disease (COPD), is associated with mucus hypersecretion which contributes to the morbidity and mortality among patients. Transcription factors SAM-pointed domain-containing Ets-like factor (SPDEF) and forkhead box protein A2 (FOXA2) regulate goblet cell differentiation. This study aimed to (1) investigate DNA methylation and expression of SPDEF and FOXA2 during goblet cell differentiation and (2) compare this in airway epithelial cells from patients with COPD and controls during mucociliary differentiation. Methods To assess DNA methylation and expression of SPDEF and FOXA2 during goblet cell differentiation, primary airway epithelial cells, isolated from trachea (non-COPD controls) and bronchial tissue (patients with COPD), were differentiated by culture at the air-liquid interface (ALI) in the presence of cytokine interleukin (IL)-13 to promote goblet cell differentiation. Results We found that SPDEF expression was induced during goblet cell differentiation, while FOXA2 expression was decreased. Importantly, CpG number 8 in the SPDEF promoter was hypermethylated upon differentiation, whereas DNA methylation of FOXA2 promoter was not changed. In the absence of IL-13, COPD-derived ALI-cultured cells displayed higher SPDEF expression than control-derived ALI cultures, whereas no difference was found for FOXA2 expression. This was accompanied with hypomethylation of CpG number 6 in the SPDEF promoter and also hypomethylation of CpG numbers 10 and 11 in the FOXA2 promoter. Conclusions These findings suggest that aberrant DNA methylation of SPDEF and FOXA2 is one of the factors underlying mucus hypersecretion in COPD, opening new avenues for epigenetic-based inhibition of mucus hypersecretion. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0341-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Song
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - I H Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - L E M Kistemaker
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - M Reinders-Luinge
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - W Kooistra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J A Noordhoek
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R Gosens
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - C A Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - W Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - M G Rots
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M N Hylkema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Pathology and Medical Biology EA10, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
12
|
Xie T, Luo G, Zhang Y, Wang X, Wang X, Wu M, Li G. Rho-kinase inhibitor fasudil reduces allergic airway inflammation and mucus hypersecretion by regulating STAT6 and NFκB. Clin Exp Allergy 2016; 45:1812-22. [PMID: 26245530 DOI: 10.1111/cea.12606] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Airway mucus hypersecretion is a key pathophysiological feature in asthma. Fasudil, a selective Rho-A/Rho kinase inhibitor, has been used in clinical trials to treat pulmonary hypertension. However, its function in modulating airway mucus hypersecretion in asthma remains undefined. OBJECTIVE We examined whether fasudil, a selective Rho-A/Rho kinase inhibitor, affects the mucus hypersecretion by suppressing MUC5AC via signal transducer and activator of transcription factor 6 (STAT6) and nuclear factor-kappa B (NFκB) in mice and cells. METHODS We measured mucus secretion and the expression of Rho-kinase in the airway tissue of patients with asthma. BALB/c mice were sensitized and challenged with ovalbumin (OVA) followed with fasudil treatment. The lung tissues were assessed for airway inflammation and mucus secretion. Cytokine levels and airway responsiveness were determined. STAT6 and NFκB were quantified by Western blot. 16HBE cells were stimulated with house dust mite (HDM) extracts. MUC5AC and muc5ac promoter activities were measured. Using siRNA to knockdown STAT6 in epithelial cells, we determined the impact of STAT6 on muc5ac promoter activity. NFκB nuclear translocation was observed with immunostaining. RESULTS Fasudil administration significantly decreased the number of inflammatory cells, inflammation index in the lung and airway responsiveness. Fasudil also reduced mucous secretion and MUC5AC expression in OVA-challenged mice. Fasudil down-regulated the levels of IL-17, IL-4 and IL-13 in the lung tissue of OVA-challenged mice. Fasudil also decreased the expression and phosphorylation of NFκB and STAT6 as well as the nuclear translocation of NFκB. In addition, human airway epithelial cells (16HBE) were challenged with HDM extracts and then treated with fasudil. Fasudil inhibited HDM extract-induced MUC5AC expression, which is associated with a reduction in STAT6 and NFκB in epithelial cells. CONCLUSIONS AND CLINICAL RELEVANCE These findings indicate that the Rho-A/Rho kinase inhibitor, fasudil, plays a negative regulatory role in allergen-induced mucus secretion and MUC5AC expression by regulating STAT6 and NFκB.
Collapse
Affiliation(s)
- T Xie
- Inflammations & Allergic Diseases Research Unit, First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China
| | - Gy Luo
- Staff Health Clinic, Sichuan Medical University, Luzhou, Sichuan, China
| | - Y Zhang
- Inflammations & Allergic Diseases Research Unit, First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China
| | - X Wang
- Inflammations & Allergic Diseases Research Unit, First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China
| | - Xy Wang
- Inflammations & Allergic Diseases Research Unit, First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China
| | - M Wu
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Gp Li
- Inflammations & Allergic Diseases Research Unit, First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China.,State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Liu Z, Chen X, Wu Q, Song J, Wang L, Li G. miR-125b inhibits goblet cell differentiation in allergic airway inflammation by targeting SPDEF. Eur J Pharmacol 2016; 782:14-20. [PMID: 27112664 DOI: 10.1016/j.ejphar.2016.04.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Abstract
Asthma is a disease characterized by goblet cell differentiation, mucus hypersecretion, airway inflammation, and airway hyperresponsiveness. miR-125b was downregulated as normal human bronchial epithelial cells differentiation to pseudostratified epithelium. However, its role in asthma remains unknown especially in regulating goblet cell differentiation. miR-125b expression in the sputum of 50 asthmatic children and 50 age- and sex-matched healthy controls were assessed by quantitative RT-PCR (qRT-PCR). Meanwhile, expressions of miR-125b and SAM pointed domain-containing ETS transcription factor (SPDEF) in normal human tracheal epithelial (HTEpC) and A549 cells stimulated with lipopolysaccharide (LPS) for 2h were detected by qRT-PCR and western blot. Furthermore, the predicted miR-125b target was determined in silico and confirmed with dual-luciferase reporter assay. Additionally, intranasal delivery of miR-125b mimic in mice was performed to study its effects on house dust mite-induced allergic airway inflammation mouse models. We found that miR-125b expression was decreased in the sputum of the asthmatic patients especially in eosinophilic asthma. After stimulation with LPS, miR-125b expression was downregulated, accompanied by the upregulation of SPDEF in HTEpC and A549 cells. Moreover, SPDEF is a target of miR-125b, which regulates SPDEF at the posttranscriptional level. Additionally, intranasal delivery of miR-125b decreased SPDEF protein levels, goblet cell differentiation, mucus hypersecretion, and altered relevant gene expressions. Taken together, these results suggest that miR-125b inhibits SPDEF expression modulating goblet cell differentiation and mucus secretion in asthma.
Collapse
Affiliation(s)
- Zhaoe Liu
- Department of neonatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Xing Chen
- Department of pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China.
| | - Qiaoling Wu
- Department of Neonatal, Maternity and Child Care Hospital, Jinan, Shandong 250001, PR China
| | - Jia Song
- Department of neonatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Lijun Wang
- Department of neonatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Gang Li
- Department of neonatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| |
Collapse
|