1
|
Agarwal R, Chang J, Côrtes FH, Ha C, Villalpando J, Castillo IN, Gálvez RI, Grifoni A, Sette A, Romero-Vivas CM, Heise MT, Premkumar L, Falconar AK, Weiskopf D. Chikungunya virus-specific CD4 + T cells are associated with chronic chikungunya viral arthritic disease in humans. Cell Rep Med 2025; 6:102134. [PMID: 40398392 DOI: 10.1016/j.xcrm.2025.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/02/2024] [Accepted: 04/21/2025] [Indexed: 05/23/2025]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus that can cause chronic chikungunya virus disease (CHIKVD), which is characterized by persistent incapacitating arthralgia. Despite recurring CHIKV outbreaks and recent approval of a vaccine, the breadth and target of T cell responses in CHIKVD remain largely understudied. Here, we tested peripheral blood mononuclear cells (PBMCs) collected from CHIKV-infected individuals against overlapping peptide pools sequentially spanning the entire CHIKV proteome. We detected robust CHIKV-specific CD4+, but not CD8+, T cell responses in infected individuals. Individuals with chronic arthralgia displayed significantly higher CD4+ T cell responses against nsP1, nsP2, and E2 proteins and exhibited a significantly lower Th1 CD4+ T cell population, compared to individuals who had recovered. Additionally, CD4+ T cells in chronic individuals were marked by a predominant production of tumor necrosis factor alpha (TNF-α). Overall, our work comprehensively characterizes T cell responses in CHIKVD in humans and provides insights into the role of T cells in CHIKVD.
Collapse
Affiliation(s)
- Rimjhim Agarwal
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - James Chang
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Fernanda H Côrtes
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Laboratory of AIDS and Molecular Immunology, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21040-360, Brazil
| | - Calvin Ha
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - John Villalpando
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Rosa Isela Gálvez
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Claudia M Romero-Vivas
- Laboratorio de Enfermedades Tropicales, Departamento de Medicina, Fundación Universidad del Norte, Barranquilla 80003, Colombia
| | - Mark T Heise
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew K Falconar
- Laboratorio de Enfermedades Tropicales, Departamento de Medicina, Fundación Universidad del Norte, Barranquilla 80003, Colombia
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
da Silva Antunes R, Weiskopf D, Sidney J, Rubiro P, Peters B, Arlehamn CSL, Grifoni A, Sette A. The MegaPool Approach to Characterize Adaptive CD4+ and CD8+ T Cell Responses. Curr Protoc 2023; 3:e934. [PMID: 37966108 PMCID: PMC10662678 DOI: 10.1002/cpz1.934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Epitopes recognized by T cells are a collection of short peptide fragments derived from specific antigens or proteins. Immunological research to study T cell responses is hindered by the extreme degree of heterogeneity of epitope targets, which are usually derived from multiple antigens; within a given antigen, hundreds of different T cell epitopes can be recognized, differing from one individual to the next because T cell epitope recognition is restricted by the epitopes' ability to bind to MHC molecules, which are extremely polymorphic in different individuals. Testing large pools encompassing hundreds of peptides is technically challenging because of logistical considerations regarding solvent-induced toxicity. To address this issue, we developed the MegaPool (MP) approach based on sequential lyophilization of large numbers of peptides that can be used in a variety of assays to measure T cell responses, including ELISPOT, intracellular cytokine staining, and activation-induced marker assays, and that has been validated in the study of infectious diseases, allergies, and autoimmunity. Here, we describe the procedures for generating and testing MPs, starting with peptide synthesis and lyophilization, as well as a step-by-step guide and recommendations for their handling and experimental usage. Overall, the MP approach is a powerful strategy for studying T cell responses and understanding the immune system's role in health and disease. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of peptide pools ("MegaPools") Basic Protocol 2: MegaPool testing and quantitation of antigen-specific T cell responses.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| |
Collapse
|
3
|
Muse VP, Aguayo-Orozco A, Balaganeshan SB, Brunak S. Population-wide analysis of hospital laboratory tests to assess seasonal variation and temporal reference interval modification. PATTERNS (NEW YORK, N.Y.) 2023; 4:100778. [PMID: 37602220 PMCID: PMC10435957 DOI: 10.1016/j.patter.2023.100778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 05/26/2023] [Indexed: 08/22/2023]
Abstract
We identified mortality-, age-, and sex-associated differences in relation to reference intervals (RIs) for laboratory tests in population-wide data from nearly 2 million hospital patients in Denmark and comprising more than 300 million measurements. A low-parameter mathematical wave-based modification method was developed to adjust for dietary and environment influences during the year. The resulting mathematical fit allowed for improved association rates between re-classified abnormal laboratory tests, patient diagnoses, and mortality. The study highlights the need for seasonally modified RIs and presents an approach that has the potential to reduce over- and underdiagnosis, affecting both physician-patient interactions and electronic health record research as a whole.
Collapse
Affiliation(s)
- Victorine P. Muse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alejandro Aguayo-Orozco
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sedrah B. Balaganeshan
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, Burel JG, Lindestam Arlehamn CS. Antigen-specificity measurements are the key to understanding T cell responses. Front Immunol 2023; 14:1127470. [PMID: 37122719 PMCID: PMC10140422 DOI: 10.3389/fimmu.2023.1127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.
Collapse
|
5
|
Yu ED, Wang E, Garrigan E, Sutherland A, Khalil N, Kearns K, Pham J, Schulten V, Peters B, Frazier A, Sette A, da Silva Antunes R. Ex vivo assays show human gamma-delta T cells specific for common allergens are Th1-polarized in allergic donors. CELL REPORTS METHODS 2022; 2:100350. [PMID: 36590684 PMCID: PMC9795325 DOI: 10.1016/j.crmeth.2022.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/15/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
Gamma-delta (γδ) T cells contribute to the pathology of many immune-related diseases; however, no ex vivo assays to study their activities are currently available. Here, we established a methodology to characterize human allergen-reactive γδ T cells in peripheral blood using an activation-induced marker assay targeting upregulated 4-1BB and CD69 expression. Broad and reproducible ex vivo allergen-reactive γδ T cell responses were detected in donors sensitized to mouse, cockroach, house dust mite, and timothy grass, but the response did not differ from that in non-allergic participants. The reactivity to 4 different allergen extracts was readily detected in 54.2%-100% of allergic subjects in a donor- and allergen-specific pattern and was abrogated by T cell receptor (TCR) blocking. Analysis of CD40L upregulation and intracellular cytokine staining revealed a T helper type 1 (Th1)-polarized response against mouse and cockroach extract stimulation. These results support the existence of allergen-reactive γδ T cells and their potential use in rebalancing dysregulated Th2 responses in allergic diseases.
Collapse
Affiliation(s)
- Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Emily Garrigan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Natalie Khalil
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Kendall Kearns
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - John Pham
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Veronique Schulten
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Morgan J, Muskat K, Tippalagama R, Sette A, Burel J, Lindestam Arlehamn CS. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev 2021; 301:10-29. [PMID: 33751597 PMCID: PMC8252593 DOI: 10.1111/imr.12963] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis is a significant health problem without an effective vaccine to combat it. A thorough understanding of the immune response and correlates of protection is needed to develop a more efficient vaccine. The immune response against Mycobacterium tuberculosis (Mtb) is complex and involves all aspects of the immune system, however, the optimal protective, non‐pathogenic T cell response against Mtb is still elusive. This review will focus on discussing CD4 T cell immunity against mycobacteria and its importance in Mtb infection with a primary focus on human studies. We will in particular discuss the large heterogeneity of immune cell subsets that have been revealed by recent immunological investigations at an unprecedented level of detail. These studies have identified specific classical CD4 T cell subsets important for immune responses against Mtb in various states of infection. We further discuss the functional attributes that have been linked to the various subsets such as upregulation of activation markers and cytokine production. Another important topic to be considered is the antigenic targets of Mtb‐specific immune responses, and how antigen reactivity is influenced by both disease state and environmental exposure(s). These are key points for both vaccines and immune diagnostics development. Ultimately, these factors are holistically considered in the definition and investigations of what are the correlates on protection and resolution of disease.
Collapse
Affiliation(s)
- Jeffrey Morgan
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kaylin Muskat
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rashmi Tippalagama
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julie Burel
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | |
Collapse
|
7
|
Yu ED, Westernberg L, Grifoni A, Frazier A, Sutherland A, Wang E, Peters B, da Silva Antunes R, Sette A. B cells modulate mouse allergen-specific T cells in nonallergic laboratory animal-care workers. JCI Insight 2021; 6:145199. [PMID: 33616085 PMCID: PMC7934936 DOI: 10.1172/jci.insight.145199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the mechanisms of allergen-specific immune modulation in nonallergic individuals is key to recapitulate immune tolerance and to develop novel allergy treatments. Herein, we characterized mouse-specific T cell responses in nonallergic laboratory animal-care workers before and after reexposure to mice. PBMCs were collected and stimulated with developed peptide pools identified from high-molecular-weight fractions of mouse allergen extracts. Sizable CD4 T cell responses were noted and were temporarily decreased in most subjects upon reexposure, with the magnitude of decrease positively correlated with time of reexposure but not the duration of the break. Interestingly, the suppression was specific to mouse allergens without affecting responses of bystander antigens. Further, PBMC fractioning studies illustrated that the modulation is unlikely from T cells, while B cell depletion and exchange reversed the suppression of responses, suggesting that B cells may be the key modulators. Increased levels of regulatory cytokines (IL-10 and TGF-β1) in the cell culture supernatant and plasma mouse-specific IgG4 were also observed after reexposure, consistent with B cell–mediated modulation mechanisms. Overall, these results suggest that nonallergic status is achieved by an active, time-related, allergen-specific, B cell-dependent regulatory process upon reexposure, the mechanisms of which should be detailed by further molecular studies.
Collapse
Affiliation(s)
- Esther Dawen Yu
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Alba Grifoni
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - April Frazier
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Eric Wang
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Seumois G, Ramírez-Suástegui C, Schmiedel BJ, Liang S, Peters B, Sette A, Vijayanand P. Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma. Sci Immunol 2021; 5:5/48/eaba6087. [PMID: 32532832 DOI: 10.1126/sciimmunol.aba6087] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
CD4+ T helper (TH) cells and regulatory T (Treg) cells that respond to common allergens play an important role in driving and dampening airway inflammation in patients with asthma. Until recently, direct, unbiased molecular analysis of allergen-reactive TH and Treg cells has not been possible. To better understand the diversity of these T cell subsets in allergy and asthma, we analyzed the single-cell transcriptome of ~50,000 house dust mite (HDM) allergen-reactive TH cells and Treg cells from asthmatics with HDM allergy and from three control groups: asthmatics without HDM allergy and nonasthmatics with and without HDM allergy. Our analyses show that HDM allergen-reactive TH and Treg cells are highly heterogeneous and certain subsets are quantitatively and qualitatively different in individuals with HDM-reactive asthma. The number of interleukin-9 (IL-9)-expressing HDM-reactive TH cells is greater in asthmatics with HDM allergy compared with nonasthmatics with HDM allergy, and this IL-9-expressing TH subset displays enhanced pathogenic properties. More HDM-reactive TH and Treg cells expressing the interferon response signature (THIFNR and TregIFNR) are present in asthmatics without HDM allergy compared with those with HDM allergy. In cells from these subsets (THIFNR and TregIFNR), expression of TNFSF10 was enriched; its product, tumor necrosis factor-related apoptosis-inducing ligand, dampens activation of TH cells. These findings suggest that the THIFNR and TregIFNR subsets may dampen allergic responses, which may help explain why only some people develop TH2 responses to nearly ubiquitous allergens.
Collapse
Affiliation(s)
- Grégory Seumois
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | - Shu Liang
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. .,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA.,Clinical and Experimental Sciences, National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK
| |
Collapse
|
9
|
da Silva Antunes R, Pallikkuth S, Williams E, Yu ED, Mateus J, Quiambao L, Wang E, Rawlings SA, Stadlbauer D, Jiang K, Amanat F, Arnold D, Andrews D, Fuego I, Dan JM, Grifoni A, Weiskopf D, Krammer F, Crotty S, Hoffer ME, Pahwa SG, Sette A. Differential T cell reactivity to seasonal coronaviruses and SARS-CoV-2 in community and health care workers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.12.21249683. [PMID: 33469594 PMCID: PMC7814840 DOI: 10.1101/2021.01.12.21249683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Herein we measured CD4+ T cell responses against common cold corona (CCC) viruses and SARS-CoV-2 in high-risk health care workers (HCW) and community controls. We observed higher levels of CCC reactive T cells in SARS-CoV-2 seronegative HCW compared to community donors, consistent with potential higher occupational exposure of HCW to CCC. We further show that SARS-CoV-2 reactivity of seronegative HCW was higher than community controls and correlation between CCC and SARS-CoV-2 responses is consistent with cross-reactivity and not associated with recent in vivo activation. Surprisingly, CCC reactivity was decreased in SARS-CoV-2 infected HCW, suggesting that exposure to SARS-CoV-2 might interfere with CCC responses, either directly or indirectly. This result was unexpected, but consistently detected in independent cohorts derived from Miami and San Diego.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erin Williams
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Lorenzo Quiambao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaijun Jiang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Arnold
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - David Andrews
- Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Irma Fuego
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Michael E. Hoffer
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Savita G. Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Sidney J, Peters B, Sette A. Epitope prediction and identification- adaptive T cell responses in humans. Semin Immunol 2020; 50:101418. [PMID: 33131981 DOI: 10.1016/j.smim.2020.101418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Epitopes, in the context of T cell recognition, are short peptides typically derived by antigen processing, and presented on the cell surface bound to MHC molecules (HLA molecules in humans) for TCR scrutiny. The identification of epitopes is a context-dependent process, with consideration given to, for example, the source pathogen and protein, the host organism, and state of the immune reaction (e.g., following natural infection, vaccination, etc.). In the following review, we consider the various approaches used to define T cell epitopes, including both bioinformatic and experimental approaches, and discuss the concepts of immunodominance and immunoprevalence. We also discuss HLA polymorphism and epitope restriction, and the resulting impact on the identification of, and potential population coverage afforded by, epitopes or epitope-based vaccines. Finally, some examples of the practical application of T cell epitope identification are provided, showing how epitopes have been valuable for deriving novel immunological insights in the context of the immune response to various pathogens and allergens.
Collapse
Affiliation(s)
- John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
11
|
Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, Burger ZC, Rawlings SA, Smith DM, Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu ED, da Silva Antunes R, Greenbaum J, Frazier A, Markmann AJ, Premkumar L, de Silva A, Peters B, Crotty S, Sette A, Weiskopf D. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020; 370:89-94. [PMID: 32753554 PMCID: PMC7574914 DOI: 10.1126/science.abd3871] [Citation(s) in RCA: 862] [Impact Index Per Article: 172.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Many unknowns exist about human immune responses to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. SARS-CoV-2-reactive CD4+ T cells have been reported in unexposed individuals, suggesting preexisting cross-reactive T cell memory in 20 to 50% of people. However, the source of those T cells has been speculative. Using human blood samples derived before the SARS-CoV-2 virus was discovered in 2019, we mapped 142 T cell epitopes across the SARS-CoV-2 genome to facilitate precise interrogation of the SARS-CoV-2-specific CD4+ T cell repertoire. We demonstrate a range of preexisting memory CD4+ T cells that are cross-reactive with comparable affinity to SARS-CoV-2 and the common cold coronaviruses human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Thus, variegated T cell memory to coronaviruses that cause the common cold may underlie at least some of the extensive heterogeneity observed in coronavirus disease 2019 (COVID-19) disease.
Collapse
Affiliation(s)
- Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sydney I Ramirez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Zoe C Burger
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Stephen A Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Marshall Lammers
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Lorenzo Quiambao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jason Greenbaum
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alena J Markmann
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Aravinda de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Premkumar L, Jadi RS, Marrama D, de Silva AM, Frazier A, Carlin AF, Greenbaum JA, Peters B, Krammer F, Smith DM, Crotty S, Sette A. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020; 181:1489-1501.e15. [PMID: 32473127 PMCID: PMC7237901 DOI: 10.1016/j.cell.2020.05.015] [Citation(s) in RCA: 2756] [Impact Index Per Article: 551.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sydney I Ramirez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | | | - Stephen A Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Ramesh S Jadi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Daniel Marrama
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Aaron F Carlin
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jason A Greenbaum
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
O’Konek JJ, Baker JR. Treatment of allergic disease with nanoemulsion adjuvant vaccines. Allergy 2020; 75:246-249. [PMID: 31298741 DOI: 10.1111/all.13977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jessica J. O’Konek
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - James R. Baker
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| |
Collapse
|
14
|
Bacher P, Scheffold A. The effect of regulatory T cells on tolerance to airborne allergens and allergen immunotherapy. J Allergy Clin Immunol 2019; 142:1697-1709. [PMID: 30527063 DOI: 10.1016/j.jaci.2018.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Forkhead box P3-positive regulatory T (Treg) cells are essential mediators of tolerance against self-antigens and harmless exogenous antigens. Treg cell deficiencies result in multiple autoimmune and allergic syndromes in neonates. How Treg cells affect conventional allergies against aeroantigens, which are restricted to a few specific proteins released from inhaled particles, remains controversial. The hallmarks of antigen-specific loss of tolerance are allergen-specific TH2 cells and IgE. However, difficulties in identifying the rare allergen-specific Treg cells have obscured the cellular basis of tolerance to aeroallergens, which is also a major obstacle for the rational design of novel and more efficient allergen-specific immunotherapies. Recent technological progress allowing characterization of allergen-specific effectors and Treg cells with minimal in vitro manipulation revealed their detailed contribution to tolerance. The data identified inhaled particles as immunodominant Treg cell targets in healthy and allergic subjects. Conversely, the supposed immunodominant major allergens being rapidly released from inhaled particles apparently do not actively induce tolerance but are ignored by the immune system. Here, the partially contradictory data on various allergen-specific T-cell types in healthy subjects, allergic patients, and patients undergoing allergen-specific immunotherapy are discussed and integrated into one model, postulating Treg cell-dependent and Treg cell-independent checkpoints of tolerance and allergy development.
Collapse
Affiliation(s)
- Petra Bacher
- Institute for Immunology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Alexander Scheffold
- Institute for Immunology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
15
|
Schulten V, Frazier A, Calatroni A, Kattan M, Bacharier LB, O'Connor GT, Sandel MT, Wood RA, Wheatley LM, Togias A, Visness CM, Dresen A, Gern JE, Sette A. The association of allergic sensitization patterns in early childhood with disease manifestations and immunological reactivity at 10 years of age. Clin Exp Allergy 2019; 49:1087-1094. [PMID: 31046157 DOI: 10.1111/cea.13406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Allergy to German cockroach (CR) is common in urban environments and is an important allergen in children with asthma. OBJECTIVE We hypothesize that the evolution of allergic sensitization and clinical disease is associated with distinct patterns of allergen-specific T cell reactivity. To test this hypothesis, a subset of high-risk inner-city children participating in the URECA (Urban Environment and Childhood Asthma) birth cohort were selected to evaluate CR-specific T cell reactivity from three distinct groups based on acquisition of aeroallergen sensitivity from ages 2 to 10: low atopy with minimal to no sensitivity (n = 26), early-onset allergic sensitization (n = 25) and late-onset allergic sensitization (n = 25). METHODS Using pools of previously identified CR-derived T cell epitopes, we characterized the allergen-specific T cell response in these 76 subjects from blood samples obtained at age 10. CR-specific production of IL-5, IFNγ and IL-10 was measured by ELISPOT following two-week in vitro culture with CR extract. RESULTS T cell responses were significantly higher in the early-onset atopy group compared to low atopy (P = 0.01), and a trend for higher cytokine production in the late onset compared to the low atopy cohort was also observed (P = 0.06). T cell responses were similar between early- and late-onset cohorts. Furthermore, a comparison of T cell reactivity between asthmatic and non-asthmatic individuals revealed significantly higher cytokine production in asthmatics compared to non-asthmatics (P = 0.02) within both the CR-allergic and non-allergic cohorts. CONCLUSIONS AND CLINICAL RELEVANCE In conclusion, the present study reports that higher T cell reactivity is associated with allergen sensitization and asthma. Interestingly, no significant difference in T cell reactivity was observed in allergic children with early-onset versus late-onset atopy.
Collapse
Affiliation(s)
| | - April Frazier
- La Jolla Institute for Immunology, La Jolla, California
| | | | - Meyer Kattan
- Department of Pediatrics, Columbia University, New York, New York
| | - Leonard B Bacharier
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Megan T Sandel
- Department of Pediatrics, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts
| | - Robert A Wood
- Department of Pediatrics, John Hopkins University Medical Center, Baltimore, Maryland
| | - Lisa M Wheatley
- National Institute of Allergy, Infectious Diseases, Bethesda, Maryland
| | - Alkis Togias
- National Institute of Allergy, Infectious Diseases, Bethesda, Maryland
| | | | - Amy Dresen
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| | - James E Gern
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, California.,Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
16
|
Characterization and epitope identification of the T cell response in non-allergic individuals exposed to mouse allergen. World Allergy Organ J 2019; 12:100026. [PMID: 31044023 PMCID: PMC6479169 DOI: 10.1016/j.waojou.2019.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 01/11/2023] Open
Abstract
Background Exposure to airborne allergens is a frequent trigger of respiratory allergy and asthma in atopic individuals. While allergic patients suffer hypersensitivity reactions to these allergens, non-allergic individuals do not exhibit clinical symptoms despite environmental exposure to these ubiquitous allergen sources. The aim of this study was to characterize T cell responses in non-allergic laboratory workers, who are heavily exposed to mice allergens (Exposed Non-Allergics, ENA) and compare this data to previously published T cell responses measured in mouse (MO)-allergic patients. METHODS: Peripheral mononuclear cells (PBMC) from ENA subjects were expanded for 2 weeks in vitro with mouse urine extract and screened for IFNγ and IL-5 cytokine production in response to mouse antigen-derived peptides by ELISPOT. Ex vivo T cell reactivity in the ENA cohort was performed after 6hr stimulation with peptide pools by intracellular staining of CD154. Results Vigorous responses were detected, associated with 147 epitopes derived from 16 mouse antigens. As expected, responses in ENA subjects were somewhat lower than those observed in MO-allergics for both responder frequency and overall response magnitude. While responses in allergics were polarized towards IL-5 production and associated with low IFNγ production, ENA responses were not polarized. The composition of targeted antigens and epitopes was overall similar between the two cohorts, with the majority of T cell reactivity directed against Mus m 1 and other major urinary proteins. However, kappa-casein precursor and odorant binding protein Ib were more abundantly recognized in MO-allergics compared to ENA subjects. Additionally, T cell responses against oligopeptides derived from the low molecular weight fraction of mouse urine were also assessed. Interestingly, no difference in the response frequency, magnitude or polarization between MO-allergic and ENA individuals was observed. Finally, assessment of ex vivo T cell activation also revealed T cell reactivity in the ENA cohort, with a non-significant trend for lower responses compared to MO-allergics. Conclusion Exposure to mouse induces potent T cell responses in non-allergic individuals, targeting similar epitopes as seen in allergic patients.
Collapse
|
17
|
Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest 2019; 129:1441-1451. [PMID: 30932910 DOI: 10.1172/jci124606] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The epithelial cell-derived cytokines thymic stromal lymphopoietin (TSLP), IL-33, and IL-25 are central regulators of type 2 immunity, which drives a broad array of allergic responses. Often characterized as "alarmins" that are released by the barrier epithelium in response to external insults, these epithelial cell-derived cytokines were initially thought to act only early in allergic inflammation. Indeed, TSLP can condition dendritic cells to initiate type 2 responses, and IL-33 may influence susceptibility to asthma through its role in establishing the immune environment in the perinatal lungs. However, TSLP, IL-33, and IL-25 all regulate a broad spectrum of innate immune cell populations and are particularly potent in eliciting and activating type 2 innate lymphoid cells (ILC2s) that may act throughout allergic inflammation. Recent data suggest that a TSLP/ILC axis may mediate steroid resistance in asthma. Recent identification of memory Th2 cell subsets that are characterized by high receptor expression for TSLP, IL-33, and IL-25 further supports a role for these cytokines in allergic exacerbations. There is therefore growing interest in developing biologics that target TSLP, IL-33, and IL-25. This Review provides an overview of TSLP, IL-33, and IL-25 and the development of blocking antibodies that target these epithelial cell-derived cytokines.
Collapse
Affiliation(s)
- Florence Roan
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA.,Division of Allergy and Infectious Diseases and
| | | | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Birrueta G, Frazier A, Pomés A, Glesner J, Filep S, Schal C, Jeong KY, McMurtrey C, Vander Schans T, Hildebrand WH, Busse P, Beigelman A, Bacharier LB, Peters B, Sette A, Schulten V. Variability in German Cockroach Extract Composition Greatly Impacts T Cell Potency in Cockroach-Allergic Donors. Front Immunol 2019; 10:313. [PMID: 30891032 PMCID: PMC6413722 DOI: 10.3389/fimmu.2019.00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/06/2019] [Indexed: 12/02/2022] Open
Abstract
German cockroach extract is used clinically to evaluate allergen-specific sensitization and for subcutaneous allergen-specific immunotherapy, though there are no guidelines for standardization in its manufacture. We performed an immunological evaluation of 12 different cockroach extracts prepared from different sources and their potency to induce allergen-specific T cell reactivity. PBMC from 13 cockroach allergic donors were expanded in vitro with 12 different German cockroach extracts. After culture expansion, cells were re-stimulated with the different extracts and T cell responses were assessed by FluoroSpot (IL-5, IFNγ and IL-10 production). In parallel to the extracts, single allergen peptide pools for allergens from groups 1, 2, 4, 5, and 11 were tested to determine allergen immunodominance. Furthermore, to assess allergy specificity, PBMC from 13 non-allergic donors were also tested with the most potent extract and T cell responses were compared to the allergic cohort. Dramatic variations in T cell reactivity were observed to the different cockroach extract batches. Response magnitudes varied over 3 logs within a single donor. IL-5 production in the allergic cohort was significantly higher compared to the non-allergic cohort (p=0.004). Allergen content determination by ELISA detected much lower concentrations of Bla g 5 compared to Bla g 1 and 2. Mass spectrometric analysis revealed that Bla g 5 was present in similar amounts to Bla g 1 and 2 in extracts made from whole body, whereas it was not detected in extracts made from fecal matter, suggesting that Bla g 5 is not excreted into feces. Different donors exhibit different response patterns to different extracts, potentially dependent on the donor-specific T cell allergen immunodominance pattern and the allergen content of the extract tested. These findings have dramatic implications for the selection of potent extracts used for diagnostic purposes or allergen-specific immunotherapy.
Collapse
Affiliation(s)
| | - April Frazier
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Jill Glesner
- Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Stephanie Filep
- Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, South Korea
| | - Curtis McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK, United States.,Pure MHC, Oklahoma City, OK, United States
| | | | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK, United States
| | - Paula Busse
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY, United States
| | - Avraham Beigelman
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, United States
| | - Leonard B Bacharier
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, United States
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | | |
Collapse
|
19
|
Tian Y, da Silva Antunes R, Sidney J, Lindestam Arlehamn CS, Grifoni A, Dhanda SK, Paul S, Peters B, Weiskopf D, Sette A. A Review on T Cell Epitopes Identified Using Prediction and Cell-Mediated Immune Models for Mycobacterium tuberculosis and Bordetella pertussis. Front Immunol 2018; 9:2778. [PMID: 30555469 PMCID: PMC6281829 DOI: 10.3389/fimmu.2018.02778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023] Open
Abstract
In the present review, we summarize work from our as well as other groups related to the characterization of bacterial T cell epitopes, with a specific focus on two important pathogens, namely, Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), and Bordetella pertussis (BP), the bacterium that causes whooping cough. Both bacteria and their associated diseases are of large societal significance. Although vaccines exist for both pathogens, their efficacy is incomplete. It is widely thought that defects and/or alteration in T cell compartments are associated with limited vaccine effectiveness. As discussed below, a full genome-wide map was performed in the case of Mtb. For BP, our focus has thus far been on the antigens contained in the acellular vaccine; a full genome-wide screen is in the planning stage. Nevertheless, the sum-total of the results in the two different bacterial systems allows us to exemplify approaches and techniques that we believe are generally applicable to the mapping and characterization of human immune responses to bacterial pathogens. Finally, we add, as a disclaimer, that this review by design is focused on the work produced by our laboratory as an illustration of approaches to the study of T cell responses to Mtb and BP, and is not meant to be comprehensive, nor to detract from the excellent work performed by many other groups.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
20
|
Grifoni A, Costa-Ramos P, Pham J, Tian Y, Rosales SL, Seumois G, Sidney J, de Silva AD, Premkumar L, Collins MH, Stone M, Norris PJ, Romero CME, Durbin A, Ricciardi MJ, Ledgerwood JE, de Silva AM, Busch M, Peters B, Vijayanand P, Harris E, Falconar AK, Kallas E, Weiskopf D, Sette A. Cutting Edge: Transcriptional Profiling Reveals Multifunctional and Cytotoxic Antiviral Responses of Zika Virus-Specific CD8 + T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:3487-3491. [PMID: 30413672 DOI: 10.4049/jimmunol.1801090] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/12/2018] [Indexed: 01/02/2023]
Abstract
Zika virus (ZIKV) constitutes an increasing public health problem. Previous studies have shown that CD8+ T cells play an important role in ZIKV-specific protective immunity. We have previously defined antigenic targets of the ZIKV-specific CD8+ T cell response in humans. In this study, we characterized the quality and phenotypes of these responses by a combined use of flow cytometry and transcriptomic methods, using PBMCs from donors deriving from different geographical locations collected in the convalescent phase of infection. We show that ZIKV-specific CD8+ T cells are characterized by a polyfunctional IFN-γ signature with upregulation of TNF-α, TNF receptors, and related activation markers, such as CD69, as well as a cytotoxic signature characterized by strong upregulation of GZMB and CRTAM. The signature is stable and not influenced by previous dengue virus exposure, geographical location, or time of sample collection postinfection. To our knowledge, this work elucidates the first in-depth characterization of human CD8+ T cells responding to ZIKV infection.
Collapse
Affiliation(s)
- Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Priscilla Costa-Ramos
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Sandy L Rosales
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Aruna D de Silva
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.,Genetech Research Institute, Colombo 08, Sri Lanka
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27516
| | - Matthew H Collins
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27516.,The Hope Clinic, Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA 30317
| | - Mars Stone
- Blood Systems Research Institute, San Francisco, CA 94118
| | | | | | - Anna Durbin
- School of Medicine, University of Vermont, Burlington, VT 05405
| | - Michael J Ricciardi
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33146
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27516
| | - Michael Busch
- Blood Systems Research Institute, San Francisco, CA 94118
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.,University of California San Diego, La Jolla, CA 92093; and
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| | | | - Esper Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; .,University of California San Diego, La Jolla, CA 92093; and
| |
Collapse
|
21
|
Scheiblhofer S, Thalhamer J, Weiss R. DNA and mRNA vaccination against allergies. Pediatr Allergy Immunol 2018; 29:679-688. [PMID: 30063806 PMCID: PMC6283005 DOI: 10.1111/pai.12964] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/09/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
Allergen-specific immunotherapy, which is performed by subcutaneous injection or sublingual application of allergen extracts, represents an effective treatment against type I allergic diseases. However, due to the long duration and adverse reactions, only a minority of patients decides to undergo this treatment. Alternatively, early prophylactic intervention in young children has been proposed to stop the increase in patient numbers. Plasmid DNA and mRNA vaccines encoding allergens have been shown to induce T helper 1 as well as T regulatory responses, which modulate or counteract allergic T helper 2-biased reactions. With regard to prophylactic immunization, additional safety measurements are required. In contrast to crude extracts, genetic vaccines provide the allergen at high purity. Moreover, by targeting the encoded allergen to subcellular compartments for degradation, release of native allergen can be avoided. Due to inherent safety features, mRNA vaccines could be the candidates of choice for preventive allergy immunizations. The subtle priming of T helper 1 immunity induced by this vaccine type closely resembles responses of non-allergic individuals and-by boosting via natural allergen exposure-could suffice for long-term protection from type I allergy.
Collapse
Affiliation(s)
| | - Josef Thalhamer
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
22
|
Antigen-specific regulatory T-cell responses against aeroantigens and their role in allergy. Mucosal Immunol 2018; 11:1537-1550. [PMID: 29858582 DOI: 10.1038/s41385-018-0038-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 02/04/2023]
Abstract
The mucosal immune system of the respiratory tract is specialized to continuously monitor the external environment and to protect against invading pathogens, while maintaining tolerance to innocuous inhaled particles. Allergies result from a loss of tolerance against harmless antigens characterized by formation of allergen-specific Th2 cells and IgE. Tolerance is often described as a balance between harmful Th2 cells and various types of protective "regulatory" T cells. However, the identity of the protective T cells in healthy vs. allergic individuals or following successful allergen-specific therapy is controversially discussed. Recent technological progress enabling the identification of antigen-specific effector and regulatory T cells has significantly contributed to our understanding of tolerance. Here we discuss the experimental evidence for the various tolerance mechanisms described. We try to integrate the partially contradictory data into a new model proposing different mechanism of tolerance depending on the quality and quantity of the antigens as well as the way of antigen exposure. Understanding the basis of tolerance is essential for the rational design of novel and more efficient immunotherapies.
Collapse
|
23
|
Birrueta G, Tripple V, Pham J, Manohar M, James EA, Kwok WW, Nadeau KC, Sette A, Peters B, Schulten V. Peanut-specific T cell responses in patients with different clinical reactivity. PLoS One 2018; 13:e0204620. [PMID: 30304054 PMCID: PMC6179248 DOI: 10.1371/journal.pone.0204620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/11/2018] [Indexed: 01/24/2023] Open
Abstract
Whole extract or allergen-specific IgE testing has become increasingly popular in the diagnosis of peanut allergy. However, much less is known about T cell responses in peanut allergy and how it relates to different clinical phenotypes. CD4+ T cells play a major role in the pathophysiology of peanut allergy as well as tolerance induction during oral desensitization regimens. We set out to characterize and phenotype the T cell responses and their targets in peanut sensitized patients. Using PBMC from peanut-allergic and non-allergic patients, we mapped T cell epitopes for three major peanut allergens, Ara h 1, 2 and 3 (27 from Ara h 1, 4 from Ara h 2 and 43 from Ara h 3) associated with release of IFNγ (representative Th1 cytokine) and IL5 (representative Th2 cytokine). A pool containing 19 immunodominant peptides, selected to account for 60% of the total Ara h 1-3-specific T cell response in allergics, but only 20% in non-allergics, was shown to discriminate T cell responses in peanut-sensitized, symptomatic vs non-symptomatic individuals more effectively than peanut extract. This pool elicited positive T cell responses above a defined threshold in 12/15 sensitized, symptomatic patients, whereas in the sensitized but non-symptomatic cohort only, 4/14 reacted. The reactivity against this peptide pool in symptomatic patients was dominated by IL-10, IL-17 and to a lesser extend IL-5. For four distinct epitopes, HLA class II restrictions were determined, enabling production of tetrameric reagents. Tetramer staining in four donors (2 symptomatic, 2 non-symptomatic) revealed a trend for increased numbers of peanut epitope-specific T cells in symptomatic patients compared to non-symptomatic patients, which was associated with elevated CRTh2 expression whereas cells from non-symptomatic patients exhibited higher levels of Integrin β7 expression. Our results demonstrate differences in T cell response magnitude, epitope specificity and phenotype between symptomatic and non-symptomatic peanut-sensitized patients. In addition to IgE reactivity, analysis of peanut-specific T cells may be useful to improve our understanding of different clinical manifestations in peanut allergy.
Collapse
Affiliation(s)
- Giovanni Birrueta
- La Jolla Institute for Allergy & Immunology, La Jolla, CA, United States of America
| | - Victoria Tripple
- La Jolla Institute for Allergy & Immunology, La Jolla, CA, United States of America
| | - John Pham
- La Jolla Institute for Allergy & Immunology, La Jolla, CA, United States of America
| | - Monali Manohar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States of America
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Kari C. Nadeau
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy & Immunology, La Jolla, CA, United States of America
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy & Immunology, La Jolla, CA, United States of America
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Véronique Schulten
- La Jolla Institute for Allergy & Immunology, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
24
|
IgE and T-cell responses to house dust mite allergen components. Mol Immunol 2018; 100:120-125. [DOI: 10.1016/j.molimm.2018.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/19/2018] [Indexed: 01/10/2023]
|
25
|
Roberts G. Improving quality in allergy care. Clin Exp Allergy 2018; 46:662-3. [PMID: 27112117 DOI: 10.1111/cea.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| |
Collapse
|
26
|
O'Konek JJ, Landers JJ, Janczak KW, Goel RR, Mondrusov AM, Wong PT, Baker JR. Nanoemulsion adjuvant-driven redirection of T H2 immunity inhibits allergic reactions in murine models of peanut allergy. J Allergy Clin Immunol 2018; 141:2121-2131. [PMID: 29655584 DOI: 10.1016/j.jaci.2018.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/17/2018] [Accepted: 01/27/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Immunotherapy for food allergies involves progressive increased exposures to food that result in desensitization to food allergens in some subjects but not tolerance to the food. Therefore new approaches to suppress allergic immunity to food are necessary. Previously, we demonstrated that intranasal immunization with a nanoemulsion (NE) adjuvant induces robust mucosal antibody and TH17-polarized immunity, as well as systemic TH1-biased cellular immunity with suppression of pre-existing TH2-biased immunity. OBJECTIVE We hypothesized that immunization with food in conjunction with the nanoemulsion adjuvant could lead to modulation of allergic reactions in food allergy by altering pre-existing allergic immunity and enhancing mucosal immunity. METHODS Mice were sensitized to peanut with aluminum hydroxide or cholera toxin. The animals were then administered 3 monthly intranasal immunizations with peanut in the nanoemulsion adjuvant or saline. Mice were then challenged with peanut to examine allergen reactivity. RESULTS The NE intranasal immunizations resulted in marked decreases in TH2 cytokine, IgG1, and IgE levels, whereas TH1 and mucosal TH17 immune responses were increased. After allergen challenge, these mice showed significant reductions in allergic hypersensitivity. Additionally, the NE immunizations significantly increased antigen-specific IL-10 production and regulatory T-cell counts, and the protection induced by NE was dependent in part on IL-10. Control animals immunized with intranasal peanut in saline had no modulation of their allergic response. CONCLUSIONS NE adjuvant-mediated induction of mucosal TH17 and systemic TH1-biased immunity can suppress TH2-mediated allergy through multiple mechanisms and protect against anaphylaxis. These results suggest the potential therapeutic utility of this approach in the setting of food allergy.
Collapse
Affiliation(s)
- Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich.
| | - Jeffrey J Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | | | - Rishi R Goel
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Anna M Mondrusov
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Pamela T Wong
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - James R Baker
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
27
|
Hesse L, van Ieperen N, Habraken C, Petersen AH, Korn S, Smilda T, Goedewaagen B, Ruiters MH, van der Graaf AC, Nawijn MC. Subcutaneous immunotherapy with purified Der p1 and 2 suppresses type 2 immunity in a murine asthma model. Allergy 2018; 73:862-874. [PMID: 29318623 PMCID: PMC5947840 DOI: 10.1111/all.13382] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Allergen-specific immunotherapy can induce long-term suppression of allergic symptoms, reduce medication use, and prevent exacerbations of allergic rhinitis and asthma. Current treatment is based on crude allergen extracts, which contain immunostimulatory components such as β-glucans, chitins, and endotoxin. Use of purified or recombinant allergens might therefore increase efficacy of treatment. AIMS Here, we test application of purified natural group 1 and 2 allergens from Dermatophagoides pteronyssinus (Der p) for subcutaneous immunotherapy (SCIT) treatment in a house dust mite (HDM)-driven mouse model of allergic asthma. MATERIALS AND METHODS HDM-sensitized mice received SCIT with crude HDM extract, a mixture of purified Der p1 and 2 (DerP1/2), or placebo. Upon challenges, we measured specific immunoglobulin responses, allergen-induced ear swelling response (ESR), airway hyperresponsiveness (AHR), and inflammation in bronchoalveolar lavage fluid (BAL) and lung tissue. RESULTS ESR measurement shows suppression of early allergic response in HDM-SCIT- and DerP1/2-SCIT-treated mice. Both HDM-SCIT and DerP1/2-SCIT are able to suppress AHR and eosinophilic inflammation. In contrast, only DerP1/2-SCIT is able to significantly suppress type 2 cytokines in lung tissue and BAL fluid. Moreover, DerP1/2-SCIT treatment is uniquely able suppress CCL20 and showed a trend toward suppression of IL-33, CCL17 and eotaxin levels in lung tissue. DISCUSSION Taken together, these data show that purified DerP1/2-SCIT is able to not only suppress AHR and inflammation, but also has superior activity toward suppression of Th2 cells and HDM-induced activation of lung structural cells including airway epithelium. CONCLUSIONS We postulate that treatment with purified natural major allergens derived from HDM will likely increase clinical efficacy of SCIT.
Collapse
Affiliation(s)
- L. Hesse
- Experimental Pulmonary and Inflammatory Research (EXPIRE)Department of Pathology & Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute of Asthma and COPD (GRIAC)University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - N. van Ieperen
- Experimental Pulmonary and Inflammatory Research (EXPIRE)Department of Pathology & Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute of Asthma and COPD (GRIAC)University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - C. Habraken
- Experimental Pulmonary and Inflammatory Research (EXPIRE)Department of Pathology & Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute of Asthma and COPD (GRIAC)University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - A. H. Petersen
- Department of Pathology & Medical BiologyMedical Biology SectionUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - S. Korn
- Citeq Biologics BVGroningenThe Netherlands
| | - T. Smilda
- Citeq Biologics BVGroningenThe Netherlands
| | | | - M. H. Ruiters
- Department of Pathology & Medical BiologyMedical Biology SectionUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | - M. C. Nawijn
- Experimental Pulmonary and Inflammatory Research (EXPIRE)Department of Pathology & Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute of Asthma and COPD (GRIAC)University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
28
|
Grifoni A, Angelo MA, Lopez B, O'Rourke PH, Sidney J, Cerpas C, Balmaseda A, Silveira CGT, Maestri A, Costa PR, Durbin AP, Diehl SA, Phillips E, Mallal S, De Silva AD, Nchinda G, Nkenfou C, Collins MH, de Silva AM, Lim MQ, Macary PA, Tatullo F, Solomon T, Satchidanandam V, Desai A, Ravi V, Coloma J, Turtle L, Rivino L, Kallas EG, Peters B, Harris E, Sette A, Weiskopf D. Global Assessment of Dengue Virus-Specific CD4 + T Cell Responses in Dengue-Endemic Areas. Front Immunol 2017; 8:1309. [PMID: 29081779 PMCID: PMC5646259 DOI: 10.3389/fimmu.2017.01309] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022] Open
Abstract
Background Dengue is a major public health problem worldwide. Assessment of adaptive immunity is important to understanding immunopathology and to define correlates of protection against dengue virus (DENV). To enable global assessment of CD4+ T cell responses, we mapped HLA-DRB1-restricted DENV-specific CD4+ T cell epitopes in individuals previously exposed to DENV in the general population of the dengue-endemic region of Managua, Nicaragua. Methods HLA class II epitopes in the population of Managua were identified by an in vitro IFNγ ELISPOT assay. CD4+ T cells purified by magnetic bead negative selection were stimulated with HLA-matched epitope pools in the presence of autologous antigen-presenting cells, followed by pool deconvolution to identify specific epitopes. The epitopes identified in this study were combined with those previously identified in the DENV endemic region of Sri Lanka, to generate a “megapool” (MP) consisting of 180 peptides specifically designed to achieve balanced HLA and DENV serotype coverage. The DENV CD4MP180 was validated by intracellular cytokine staining assays. Results We detected responses directed against a total of 431 epitopes, representing all 4 DENV serotypes, restricted by 15 different HLA-DRB1 alleles. The responses were associated with a similar pattern of protein immunodominance, overall higher magnitude of responses, as compared to what was observed previously in the Sri Lanka region. Based on these epitope mapping studies, we designed a DENV CD4 MP180 with higher and more consistent coverage, which allowed the detection of CD4+ T cell DENV responses ex vivo in various cohorts of DENV exposed donors worldwide, including donors from Nicaragua, Brazil, Singapore, Sri Lanka, and U.S. domestic flavivirus-naïve subjects immunized with Tetravalent Dengue Live-Attenuated Vaccine (TV005). This broad reactivity reflects that the 21 HLA-DRB1 alleles analyzed in this and previous studies account for more than 80% of alleles present with a phenotypic frequency ≥5% worldwide, corresponding to 92% phenotypic coverage of the general population (i.e., 92% of individuals express at least one of these alleles). Conclusion The DENV CD4 MP180 can be utilized to measure ex vivo responses to DENV irrespective of geographical location.
Collapse
Affiliation(s)
- Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Michael A Angelo
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Benjamin Lopez
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Patrick H O'Rourke
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Cristhiam Cerpas
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Cassia G T Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alvino Maestri
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Priscilla R Costa
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anna P Durbin
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sean A Diehl
- Vaccine Testing Center, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Aruna D De Silva
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Genetech Research Institute, Colombo, Sri Lanka
| | - Godwin Nchinda
- Chantal BIYA International Reference Centre for Research on the Prevention and Management of HIV/AIDS CIRCB, Yaoundé, Cameroon
| | - Celine Nkenfou
- Chantal BIYA International Reference Centre for Research on the Prevention and Management of HIV/AIDS CIRCB, Yaoundé, Cameroon
| | - Matthew H Collins
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Mei Qiu Lim
- Emerging Infectious Disease Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Paul A Macary
- Immunology Programme, Department of Microbiology and Immunology, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Filippo Tatullo
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| | - Vijaya Satchidanandam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anita Desai
- Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Vasanthapram Ravi
- Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Lance Turtle
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| | - Laura Rivino
- Emerging Infectious Disease Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Esper G Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| |
Collapse
|
29
|
Determining T-cell specificity to understand and treat disease. Nat Biomed Eng 2017; 1:784-795. [DOI: 10.1038/s41551-017-0143-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
|
30
|
Natural protective immunity against grass pollen allergy is maintained by a diverse spectrum of response types. J Allergy Clin Immunol 2017; 140:1746-1749.e11. [PMID: 28867457 DOI: 10.1016/j.jaci.2017.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/15/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
|
31
|
Sette A, Schulten V. It's a lot of work to be nonallergic. J Allergy Clin Immunol 2017; 139:769-770. [PMID: 27993537 PMCID: PMC5465425 DOI: 10.1016/j.jaci.2016.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/01/2016] [Accepted: 11/22/2016] [Indexed: 12/01/2022]
|
32
|
da Silva Antunes R, Paul S, Sidney J, Weiskopf D, Dan JM, Phillips E, Mallal S, Crotty S, Sette A, Lindestam Arlehamn CS. Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses. PLoS One 2017; 12:e0169086. [PMID: 28081174 PMCID: PMC5230748 DOI: 10.1371/journal.pone.0169086] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Despite widespread uses of tetanus toxoid (TT) as a vaccine, model antigen and protein carrier, TT epitopes have been poorly characterized. Herein we defined the human CD4+ T cell epitope repertoire by reevaluation of previously described epitopes and evaluation of those derived from prediction of HLA Class II binding. Forty-seven epitopes were identified following in vitro TT stimulation, with 28 epitopes accounting for 90% of the total response. Despite this diverse range of epitopes, individual responses were associated with only a few immunodominant epitopes, with each donor responding on average to 3 epitopes. For the top 14 epitopes, HLA restriction could be inferred based on HLA typing of the responding donors. HLA binding predictions re-identified the vast majority of known epitopes, and identified 24 additional novel epitopes. With these epitopes, we created a TT epitope pool, which allowed us to characterize TT responses directly ex vivo using a cytokine-independent Activation Induced Marker (AIM) assay. These TT responses were highly Th1 or Th2 polarized, which was dependent upon the original priming vaccine, either the cellular DTwP or acellular DTaP formulation. This polarization remained despite the original priming having occurred decades past and a recent booster immunization with a reduced acellular vaccine formulation. While TT responses following booster vaccination were not durably increased in magnitude, they were associated with a relative expansion of CD4+ effector memory T cells.
Collapse
Affiliation(s)
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United Ststes of America
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United Ststes of America
| | - Daniela Weiskopf
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United Ststes of America
| | - Jennifer M. Dan
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United Ststes of America
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Shane Crotty
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United Ststes of America
| | | |
Collapse
|
33
|
Oseroff C, Pham J, Frazier A, Hinz D, Sidney J, Paul S, Greenbaum JA, Vita R, Peters B, Schulten V, Sette A. Immunodominance in allergic T-cell reactivity to Japanese cedar in different geographic cohorts. Ann Allergy Asthma Immunol 2016; 117:680-689.e1. [PMID: 27979027 PMCID: PMC5172395 DOI: 10.1016/j.anai.2016.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/13/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Japanese cedar (JC) pollen is a common trigger for allergic rhinitis in Japan. Pollen proteins targeted by IgE, including Cry j 1 and Cry j 2, and isoflavone reductase (IFR) have been identified. OBJECTIVE To compare antigen-specific IgE titers and T-cell responses to JC pollen-derived extract and peptides in cohorts with high and low pollen exposure. METHODS Peripheral blood mononuclear cells from JC pollen allergic or nonallergic patients who have lived in Japan for at least 1 year and JC pollen allergic patients who have never been to Japan were tested for T-cell responses against JC pollen extract and peptide pools derived from Cry j 1, Cry j 2, or IFR. T-cell reactivity was assessed by interleukin 5 and interferon γ production by ELISPOT. RESULTS JC pollen-specific T-cell reactivity and IgE titers were significantly higher in the allergic compared with the nonallergic Japanese cohort, which was also associated with different patterns of polysensitization. Interestingly, a significant overlap was observed in the hierarchy of the T-cell epitopes in the allergic Japanese cohort compared with the allergic non-Japanese cohort. In all 3 cohorts, T-cell reactivity was dominantly directed against peptides from the major allergens Cry j 1 and 2, with few T-cell responses detected against IFR. CONCLUSION Our studies identify common denominators of T-cell reactivity in patient populations with different sensitization patterns, suggesting that generally applicable immunotherapeutic approaches might be developed irrespective of exposure modality.
Collapse
MESH Headings
- Adolescent
- Adult
- Alleles
- Allergens/immunology
- Amino Acid Sequence
- Antigens, Plant/immunology
- Cohort Studies
- Cryptomeria/adverse effects
- Epitopes, T-Lymphocyte/immunology
- Female
- HLA Antigens/genetics
- HLA Antigens/immunology
- Humans
- Immunoglobulin E/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/immunology
- Male
- Middle Aged
- Peptides/immunology
- Pollen/immunology
- Rhinitis, Allergic, Seasonal/genetics
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Young Adult
Collapse
Affiliation(s)
- Carla Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - John Pham
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - April Frazier
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Denise Hinz
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | | | - Randi Vita
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
34
|
Farhan RK, Vickers MA, Ghaemmaghami AM, Hall AM, Barker RN, Walsh GM. Effective antigen presentation to helper T cells by human eosinophils. Immunology 2016; 149:413-422. [PMID: 27502559 DOI: 10.1111/imm.12658] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022] Open
Abstract
Although eosinophils are inflammatory cells, there is increasing attention on their immunomodulatory roles. For example, murine eosinophils can present antigen to CD4+ T helper (Th) cells, but it remains unclear whether human eosinophils also have this ability. This study determined whether human eosinophils present a range of antigens, including allergens, to activate Th cells, and characterized their expression of MHC class II and co-stimulatory molecules required for effective presentation. Human peripheral blood eosinophils purified from non-allergic donors were pulsed with the antigens house dust mite extract (HDM), Timothy Grass extract (TG) or Mycobacterium tuberculosis purified protein derivative (PPD), before co-culture with autologous CD4+ Th cells. Proliferative and cytokine responses were measured, with eosinophil expression of HLA-DR/DP/DQ and the co-stimulatory molecules CD40, CD80 and CD86 determined by flow cytometry. Eosinophils pulsed with HDM, TG or PPD drove Th cell proliferation, with the response strength dependent on antigen concentration. The cytokine responses varied with donor and antigen, and were not biased towards any particular Th subset, often including combinations of pro- and anti-inflammatory cytokines. Eosinophils up-regulated surface expression of HLA-DR/DP/DQ, CD80, CD86 and CD40 in culture, increases that were sustained over 5 days when incubated with antigens, including HDM, or the major allergens it contains, Der p I or Der p II. Human eosinophils can, therefore, act as effective antigen-presenting cells to stimulate varied Th cell responses against a panel of antigens including HDM, TG or PPD, an ability that may help to determine the development of allergic disease.
Collapse
Affiliation(s)
- Ruhaifah K Farhan
- Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Mark A Vickers
- Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Amir M Ghaemmaghami
- Cellular Immunology & Allergy Group, Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, Nottingham, UK
| | - Andrew M Hall
- Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - Robert N Barker
- Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Garry M Walsh
- Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|