1
|
Sun Q, Li Z, Wang Z, Wang Q, Qin F, Pan H, Lin W, Mu X, Wang Y, Jiang Y, Ji J, Lu Z. Immunosuppression by opioids: Mechanisms of action on innate and adaptive immunity. Biochem Pharmacol 2023; 209:115417. [PMID: 36682388 DOI: 10.1016/j.bcp.2023.115417] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Opioids are excellent analgesics for the clinical treatment of various types of acute and chronic pain, particularly cancer-related pain. Nevertheless, it is well known that opioids have some nasty side effects, including immunosuppression, which is commonly overlooked. As a result, the incidence of opportunistic bacterial and viral infections increases in patients with long-term opioid use. Nowadays, there are no effective medications to alleviate opioid-induced immunosuppression. Understanding the underlying molecular mechanism of opioids in immunosuppression can enable researchers to devise effective therapeutic interventions. This review comprehensively summarized the exogenous opioids-induced immunosuppressive effects and their underlying mechanisms, the regulatory roles of endogenous opioids on the immune system, the potential link between opioid immunosuppressive effect and the function of the central nervous system (CNS), and the future perspectives in this field.
Collapse
Affiliation(s)
- Qinmei Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhonghao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zijing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qisheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fenfen Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haotian Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weixin Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinru Mu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuxuan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhigang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Bruno F, Krauth V, Nabavi SM, Temml V, Fratianni F, Spaziano G, Nazzaro F, Roviezzo F, Xiao J, Khan H, Romano MP, D'Agostino B, Werz O, Filosa R. Design and synthesis of functionalized 4-aryl-Catechol derivatives as new antiinflammtory agents with in vivo efficacy. Eur J Med Chem 2022; 243:114788. [PMID: 36201859 DOI: 10.1016/j.ejmech.2022.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/04/2022]
Abstract
Oxidative stress and inflammation are two conditions that coexist in many multifactorial diseases and the discovery of antioxidants is an attractive approach that can simultaneously tackle two or more therapeutic targets of the arachidonic acid cascade. We report that the simple structural variations on the 4-aryl-benzene-1,2-diol side-arm of the scaffold significantly influence the selectivity against 5-LOX vs 12- and 15-LOX. Derivatives 4 a-l were evaluated for their antioxidant activity, using the DPPH, and ferric ion reducing antioxidant power (FRAP) methods. Docking simulations proposed concrete binding of the catechol series to 5-LO. Selected active compound 4-(3,4-dihydroxyphenyl)dibenzofuran (4l) was also tested in different in vivo mouse models of inflammation. 4l (0.1 mg/kg; i.p.) impaired (I) bronchoconstriction in ovalbumin-sensitized mice challenged with acetylcholine, (II) exudate formation in carrageenan-induced paw edema, and (III) zymosan-induced leukocyte infiltration in air pouches. These results pave the way for investigating the therapeutic potential of 4-aryl-benzene-1,2-diol, as novel multitarget therapeutic drugs, able to regulate the complex inflammatory cascade mechanisms.
Collapse
Affiliation(s)
- Ferdinando Bruno
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy; Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Verena Krauth
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Seyed Mohamed Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Veronika Temml
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | | | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | | | - Fiorita Roviezzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131, Naples, Italy
| | - Jianbo Xiao
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy; Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy; Department of Pharmacy, Abdul Wali Khan University Mardan, 23200-Mardan, Pakistan
| | - Maria Preziosa Romano
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy; Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Bruno D'Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy; Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy.
| |
Collapse
|
3
|
Evaluating the tumor immune profile based on a three-gene prognostic risk model in HER2 positive breast cancer. Sci Rep 2022; 12:9311. [PMID: 35665772 PMCID: PMC9166798 DOI: 10.1038/s41598-022-13499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
To date, there have not been great breakthroughs in immunotherapy for HER2 positive breast cancer (HPBC). This study aimed to build a risk model that might contribute to predicting prognosis and discriminating the immune landscape in patients with HPBC. We analyzed the tumor immune profile of HPBC patients from the TCGA using the ESTIMATE algorithm. Thirty survival-related differentially expressed genes were selected according to the ImmuneScore and StromalScore. A prognostic risk model consisting of PTGDR, PNOC and CCL23 was established by LASSO analysis, and all patients were classified into the high- and low-risk score groups according to the risk scores. Subsequently, the risk model was proven to be efficient and reliable. Immune related pathways were the dominantly enriched category. ssGSEA showed stronger immune infiltration in the low-risk score group, including the infiltration of TILs, CD8 T cells, NK cells, DCs, and so on. Moreover, we found that the expression of immune checkpoint genes, including PD-L1, CTLA-4, TIGIT, TIM-3 and LAG-3, was significantly upregulated in the low-risk score group. All the results were validated with corresponding data from the GEO database. In summary, our investigation indicated that the risk model composed of PTGDR, PNOC and CCL23 has potential to predict prognosis and evaluate the tumor immune microenvironment in HPBC patients. More importantly, HPBC patients with a low-risk scores are likely to benefit from immune treatment.
Collapse
|
4
|
Regulatory Peptides in Asthma. Int J Mol Sci 2021; 22:ijms222413656. [PMID: 34948451 PMCID: PMC8707337 DOI: 10.3390/ijms222413656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Collapse
|
5
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
6
|
D'Agostino B, Sgambato M, Esposito R, Spaziano G. N/OFQ-NOP System and Airways. Handb Exp Pharmacol 2019; 254:313-322. [PMID: 30725285 DOI: 10.1007/164_2018_202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Asthma is a heterogeneous chronic inflammatory disease of the airways. The most prevalent form is atopic asthma, which is initiated by the exposure to (inhaled) allergens. Intermittent attacks of breathlessness, airways hyperresponsiveness, wheezing, coughing, and resultant allergen-specific immune responses characterize the disease. Nociceptin/OFQ-NOP receptor system is able to combine anti-hyperresponsiveness and immunomodulatory actions. In particular, N/OFQ is able to inhibit airways microvascular leakage and bronchoconstriction through a presynaptic and non-opioid mechanism of action that blocks tachykinin release. Moreover, it also acts on allergenic sensitization because it is able to modulate the immune response that triggers the development of airway hyperresponsiveness through an interaction on cell membranes of dendritic cells (DCs) that are generally responsible to start and sustain allergic T helper 2 (TH2)-cell responses to inhaled allergens in asthma. In asthmatic patients, sputum showed elevated N/OFQ levels that are related to increased eosinophil counts. The addition of exogenous N/OFQ in sputum obtained from patients with severe asthma attenuated eosinophils migration and release of inflammatory mediators. These observations confirmed that elevated endogenous N/OFQ levels in asthmatic sputum were lower than the ones required to exert beneficial effects, suggesting that supplementation with exogenous N/OFQ may need. In conclusion, the innovative role of N/OFQ in counteracting airways inflammation/hyperresponsiveness opens new potential targets/strategies in asthma treatment.
Collapse
Affiliation(s)
- Bruno D'Agostino
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy.
| | - Manuela Sgambato
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy
| | - Renata Esposito
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
7
|
Tartaglione G, Spaziano G, Sgambato M, Russo TP, Liparulo A, Esposito R, Mirra S, Filosa R, Roviezzo F, Polverino F, D'Agostino B. Nociceptin/Orphanin Fq in inflammation and remodeling of the small airways in experimental model of airway hyperresponsiveness. Physiol Rep 2018; 6:e13906. [PMID: 30370666 PMCID: PMC6204362 DOI: 10.14814/phy2.13906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
It is widely recognized that airway inflammation and remodeling play a key role not only in the central airway but also small airway pathology during asthma. Nociceptin/Orphanin FQ (N/OFQ), an endogenous peptide, and its receptor N/OFQ peptide (NOP) are involved in airway hyperresponsiveness (AHR). We studied a murine model of AHR in order to understand the role of N/OFQ in the inflammation and remodeling of the small airways. Balb/c mice were sensitized to ovalbumin (OVA). At days 0 and 7 (pre-OVA sensitization) or from day 21 to 23 (post-OVA sensitization), the mice were treated intraperitoneally with N/OFQ or saline solution. After the last OVA challenge, all OVA-sensitized mice were aerosol-challenged with 1% OVA in PBS for 48 h, and then euthanized. Small airway compliance (sCaw ) was measured and lung samples were collected for histological and molecular evaluations such as perimeter and diameter of small airway, total wall area, airway smooth muscle (ASM) thickness and number of alveolar attachments. Both pre- and post-OVA sensitization N/OFQ treatments induced: (1) increases in sCaw ; (2) reduction of the bronchial wall thickness; (3) attenuation of the hyperplastic phase of airway smooth muscle mass; and (4) protection against loss of alveolar attachments compared with saline solution treatments. These results suggest that N/OFQ protects against inflammation, and mechanical damage and remodeling of small airways caused by OVA sensitization, suggesting a new potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Gioia Tartaglione
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Giuseppe Spaziano
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Manuela Sgambato
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Teresa Palmira Russo
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Angela Liparulo
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Renata Esposito
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Salvatore Mirra
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Rosanna Filosa
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | | | | | - Bruno D'Agostino
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| |
Collapse
|
8
|
Structural Characterization of the Lactobacillus Plantarum FlmC Protein Involved in Biofilm Formation. Molecules 2018; 23:molecules23092252. [PMID: 30181476 PMCID: PMC6225345 DOI: 10.3390/molecules23092252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022] Open
Abstract
Lactobacillus plantarum is one of the most predominant species in the human gut microbiota of healthy individuals. We have previously characterized some probiotic features of L. plantarum LM3, as the high resistance to different stress, the binding ability toward some extracellular matrix proteins and plasminogen and the immunomodulatory role of the surface expressed adhesin EnoA1. We have also identified the flmA, flmB and flmC genes, coding for putative proteins named FlmA, FlmB and FlmC, whose null mutations partially impaired biofilm development; the L. plantarum LM3–6 strain, carrying a deletion in flmC, showed a high rate of autolysis, supporting the hypothesis that FlmC might be involved in cell wall integrity. Here, we report the in-silico characterization of ΔTM-FlmC, a portion of the FlmC protein. The protein has been also expressed, purified and characterized by means of CD spectroscopy, ICP-mass and UHPLC-HRMS. The obtained experimental data validated the predicted model unveiling also the presence of a bound lipid molecule and of a Mg(II) ion. Overall, we provide strong evidences that ΔTM-FlmC belongs to the LytR-CpsA-Psr (LCP) family of domains and is involved in cell envelope biogenesis.
Collapse
|
9
|
New Role of Adult Lung c-kit + Cells in a Mouse Model of Airway Hyperresponsiveness. Mediators Inflamm 2016; 2016:3917471. [PMID: 28090152 PMCID: PMC5206449 DOI: 10.1155/2016/3917471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/05/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
Structural changes contribute to airway hyperresponsiveness and airflow obstruction in asthma. Emerging evidence points to the involvement of c-kit+ cells in lung homeostasis, although their potential role in asthma is unknown. Our aim was to isolate c-kit+ cells from normal mouse lungs and to test whether these cells can interfere with hallmarks of asthma in an animal model. Adult mouse GFP-tagged c-kit+ cells, intratracheally delivered in the ovalbumin-induced airway hyperresponsiveness, positively affected airway remodeling and improved airway function. In bronchoalveolar lavage fluid of cell-treated animals, a reduction in the number of inflammatory cells and in IL-4, IL-5, and IL-13 release, along with an increase of IL-10, was observed. In MSC-treated mice, the macrophage polarization to M2-like subset may explain, at least in part, the increment in the level of anti-inflammatory cytokine IL-10. After in vitro stimulation of c-kit+ cells with proinflammatory cytokines, the indoleamine 2,3-dioxygenase and TGFβ were upregulated. These data, together with the increased apoptosis of inflammatory cells in vivo, indicate that c-kit+ cells downregulate immune response in asthma by influencing local environment, possibly by cell-to-cell contact combined to paracrine action. In conclusion, intratracheally administered c-kit+ cells reduce inflammation, positively modulate airway remodeling, and improve function. These data document previously unrecognized properties of c-kit+ cells, able to impede pathophysiological features of experimental airway hyperresponsiveness.
Collapse
|