1
|
Peng Z, Siziba LP, Brenner H, Wernecke D, Rothenbacher D, Genuneit J. Changes in Childhood Atopic Dermatitis Incidence and Risk Factors Over Time: Results From Two German Birth Cohorts. Clin Exp Allergy 2025. [PMID: 40295156 DOI: 10.1111/cea.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common allergic skin disease. We aimed to assess the secular changes in the cumulative incidence of childhood AD and its risk factors over a decade. METHODS We used data from two methodologically similar cohort studies in Ulm, Germany, the Ulm Birth Cohort Study (UBCS, recruited in 2000/2001) and the Ulm SPATZ Health Study (recruited in 2012/2013). The cumulative incidences of AD as reported by their family physicians and parents up to the age of 4 years were compared by log-rank test across the two cohorts, using propensity score-based weighting to control confounders. We fitted multivariable Cox regression models to estimate hazard ratios and 95% confidence intervals (CIs) for the factors associated with the occurrence of physician- and parent-reported AD and compared the results between the two cohorts. RESULTS The 4-year cumulative incidence (95% confidence interval) of physician-reported AD (27.4% (24.4%-30.5%) in UBCS [2000/2001] vs. 26.4% (22.8%-30.2%) in SPATZ [2012/2013], p = 0.728) and parent-reported AD (14.5% (12.2%-17.0%) in UBCS [2000/2001] vs. 16.7% (14.0%-19.7%) in SPATZ [2012/2013], p = 0.211) remained stable between the two cohorts after propensity score-based weighting. We observed the changes in the association between AD and certain risk factors (e.g., family history of AD and infantile antibiotic use) over the decade, but the results need to be interpreted with caution due to the limited sample size, relatively high attrition rate and demographic differences between the two cohorts. CONCLUSIONS Over the decade, childhood AD incidence remained stable. Further studies are needed to verify whether there is a growing importance of environmental and microbiota-related factors for AD development over time.
Collapse
Affiliation(s)
- Zhuoxin Peng
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Linda P Siziba
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Deborah Wernecke
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
| | - Dietrich Rothenbacher
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
| | - Jon Genuneit
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Divakara N, Dempsey Z, Saraswati C, Garssen J, Silva D, Keelan JA, Christophersen CT, Cooper MN, Prescott SL, Palmer DJ, Verhasselt V, Macchiaverni P. Effect of maternal prebiotic supplementation on human milk immunological composition: Insights from the SYMBA study. Pediatr Allergy Immunol 2024; 35:e14226. [PMID: 39221598 DOI: 10.1111/pai.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Immunomodulatory proteins in human milk (HM) can shape infant immune development. However, strategies to modulate their levels are currently unknown. This study investigated whether maternal prebiotic supplementation alters the levels of immunomodulatory proteins in HM. METHODS The study was nested within the SYMBA double-blind randomized controlled trial (ACTRN12615001075572), which investigated the effects of maternal prebiotic (short-chain galacto-oligosaccharides/long-chain fructo-oligosaccharides) supplementation from <21 weeks gestation during pregnancy until 6 months postnatal during lactation on child allergic disease risk. Mother-child dyads receiving prebiotics (n = 46) or placebo (n = 54) were included in this study. We measured the levels of 24 immunomodulatory proteins in HM collected at 2, 4, and 6 months. RESULTS Cluster analysis showed that the overall immunomodulatory protein composition of milk samples from both groups was similar. At 2 months, HM of prebiotic-supplemented women had decreased levels of TGF-β1 and TSLP (95% CI: -17.4 [-29.68, -2.28] and -57.32 [-94.22, -4.7] respectively) and increased levels of sCD14 (95% CI: 1.81 [0.17, 3.71]), when compared to the placebo group. At 4 months, IgG1 was lower in the prebiotic group (95% CI: -1.55 [-3.55, -0.12]) compared to placebo group. CONCLUSION This exploratory study shows that prebiotic consumption by lactating mothers selectively alters specific immunomodulatory proteins in HM. This finding is crucial for understanding how prebiotic dietary recommendations for pregnant and lactating women can modify the immune properties of HM and potentially influence infant health outcomes through immune support from breastfeeding.
Collapse
Affiliation(s)
- Nivedithaa Divakara
- Larsson-Rosenquist Foundation Centre for Immunology and Breastfeeding, Medical School, University of Western Australia, Perth, Western Australia, Australia
- The Kids Research Institute Australia, Perth, Western Australia, Australia
| | - Zac Dempsey
- The Kids Research Institute Australia, Perth, Western Australia, Australia
| | - Chitra Saraswati
- The Kids Research Institute Australia, Perth, Western Australia, Australia
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Nutricia Research, Utrecht, The Netherlands
| | - Desiree Silva
- The Kids Research Institute Australia, Perth, Western Australia, Australia
- School of Medicine, UWA Health Campus, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Joondalup Health Campus, Joondalup, Western Australia, Australia
| | - Jeffrey A Keelan
- School of Medicine, UWA Health Campus, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, UWA Health Campus, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Claus T Christophersen
- Western Australian Human Microbiome Collaboration Centre, Curtin University, Bentley, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Matthew N Cooper
- The Kids Research Institute Australia, Perth, Western Australia, Australia
| | - Susan L Prescott
- The Kids Research Institute Australia, Perth, Western Australia, Australia
- School of Medicine, UWA Health Campus, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Immunology and Dermatology, Perth Children's Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
- Nova Institute for Health, Baltimore, Maryland, USA
| | - Debra J Palmer
- The Kids Research Institute Australia, Perth, Western Australia, Australia
- School of Medicine, UWA Health Campus, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Valerie Verhasselt
- Larsson-Rosenquist Foundation Centre for Immunology and Breastfeeding, Medical School, University of Western Australia, Perth, Western Australia, Australia
- The Kids Research Institute Australia, Perth, Western Australia, Australia
| | - Patricia Macchiaverni
- Larsson-Rosenquist Foundation Centre for Immunology and Breastfeeding, Medical School, University of Western Australia, Perth, Western Australia, Australia
- The Kids Research Institute Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Brockway MM, Daniel AI, Reyes SM, Gauglitz JM, Granger M, McDermid JM, Chan D, Refvik R, Sidhu KK, Musse S, Patel PP, Monnin C, Lotoski L, Geddes DT, Jehan F, Kolsteren P, Bode L, Eriksen KG, Allen LH, Hampel D, Rodriguez N, Azad MB. Human Milk Bioactive Components and Child Growth and Body Composition in the First 2 Years: A Systematic Review. Adv Nutr 2024; 15:100127. [PMID: 37802214 PMCID: PMC10831900 DOI: 10.1016/j.advnut.2023.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Human milk (HM) contains macronutrients, micronutrients, and a multitude of other bioactive factors, which can have a long-term impact on infant growth and development. We systematically searched MEDLINE, EMBASE, Cochrane Library, Scopus, and Web of Science to synthesize evidence published between 1980 and 2022 on HM components and anthropometry through 2 y of age among term-born infants. From 9992 abstracts screened, 141 articles were included and categorized based on their reporting of HM micronutrients, macronutrients, or bioactive components. Bioactives including hormones, HM oligosaccharides (HMOs), and immunomodulatory components are reported here, based on 75 articles from 69 unique studies reporting observations from 9980 dyads. Research designs, milk collection strategies, sampling times, geographic and socioeconomic settings, reporting practices, and outcomes varied considerably. Meta-analyses were not possible because data collection times and reporting were inconsistent among the studies included. Few measured infant HM intake, adjusted for confounders, precisely captured breastfeeding exclusivity, or adequately described HM collection protocols. Only 5 studies (6%) had high overall quality scores. Hormones were the most extensively examined bioactive with 46 articles (n = 6773 dyads), compared with 13 (n = 2640 dyads) for HMOs and 12 (n = 1422 dyads) for immunomodulatory components. Two studies conducted untargeted metabolomics. Leptin and adiponectin demonstrated inverse associations with infant growth, although several studies found no associations. No consistent associations were found between individual HMOs and infant growth outcomes. Among immunomodulatory components in HM, IL-6 demonstrated inverse relationships with infant growth. Current research on HM bioactives is largely inconclusive and is insufficient to address the complex composition of HM. Future research should ideally capture HM intake, use biologically relevant anthropometrics, and integrate components across categories, embracing a systems biology approach to better understand how HM components work independently and synergistically to influence infant growth.
Collapse
Affiliation(s)
- Meredith Merilee Brockway
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Faculty of Nursing, University of Calgary, Calgary, AB, Canada
| | - Allison I Daniel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah M Reyes
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | | | - Matthew Granger
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Deborah Chan
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, QC, Canada
| | - Rebecca Refvik
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Karanbir K Sidhu
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Suad Musse
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Pooja P Patel
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, Unites States
| | - Caroline Monnin
- Neil John Maclean Health Sciences Library, University of Manitoba, Winnipeg, MB, Canada
| | - Larisa Lotoski
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Fyezah Jehan
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan
| | - Patrick Kolsteren
- Department of Food Safety and Food Quality, Ghent University, Ghent, Belgium
| | - Lars Bode
- Department of Pediatrics, Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego (UC San Diego), San Diego, CA, United States
| | - Kamilla G Eriksen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lindsay H Allen
- Department of Nutrition, University of California, Davis, CA, United States; Western Human Nutrition Research Center, Agriculture Research Service, United States Department of Agriculture, Washington, DC, Unites States
| | - Daniela Hampel
- Department of Nutrition, University of California, Davis, CA, United States; Western Human Nutrition Research Center, Agriculture Research Service, United States Department of Agriculture, Washington, DC, Unites States
| | - Natalie Rodriguez
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Ravn NH, Halling AS, Berkowitz AG, Rinnov MR, Silverberg JI, Egeberg A, Thyssen JP. How does parental history of atopic disease predict the risk of atopic dermatitis in a child? A systematic review and meta-analysis. J Allergy Clin Immunol 2019; 145:1182-1193. [PMID: 31887393 DOI: 10.1016/j.jaci.2019.12.899] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/06/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Parental history of atopic disease is a well-established risk factor for the development of atopic dermatitis (AD), but several aspects of this association remain unclear. OBJECTIVE We sought to determine the association of parental history of atopic disease with AD in offspring. METHODS We searched PubMed and EMBASE through June 2018 for relevant records and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Pooled odds ratios (ORs) with 95% CI were calculated using random-effects models. RESULTS A total of 163 records covering 149 unique studies were included. Of these, 119 studies were included in the meta-analysis. Individuals with parental history of atopic disease had increased odds of AD (OR, 1.81; 95% CI, 1.65-1.99). Parental asthma (OR, 1.56; 95% CI, 1.18-2.05) and allergic rhinitis (OR, 1.68; 95% CI, 1.34-2.11) had a smaller effect than AD (OR, 3.30; 95% CI, 2.46-4.42). The effect of maternal and paternal history was comparable for all atopic diseases. An increase in odds was observed when comparing the effect of having 1 (OR, 1.30; 95% CI, 1.15-1.47) or 2 atopic parents (OR, 2.08; 95% CI, 1.83-2.36), as well as having a parent with 1 (OR, 1.49; 95% CI, 1.28-1.74) or more atopic diseases (OR, 2.32; 95% CI, 1.92-2.81). CONCLUSIONS This study provides evidence-based risk estimates that may guide physicians who counsel parents with a history of atopic disease about their children's risk of AD. This information is of particular importance for future efforts toward establishing prophylactic interventions for AD on a general population level.
Collapse
Affiliation(s)
- Nina H Ravn
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Anne-Sofie Halling
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | - Maria R Rinnov
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jonathan I Silverberg
- Departments of Dermatology, Preventive Medicine, and Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Alexander Egeberg
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; National Allergy Research Centre, Herlev and Gentofte Hospital, Hellerup, Denmark.
| |
Collapse
|
5
|
Soluble CD14 in Breast Milk and Its Relation to Atopic Manifestations in Early Infancy. Nutrients 2019; 11:nu11092118. [PMID: 31492016 PMCID: PMC6770418 DOI: 10.3390/nu11092118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Soluble CD14 (sCD14) is one of the immunomodulatory factors in breast milk (BM). Although it may be involved in the prevention of atopic symptoms and sensitization to both food and inhalant allergens, conflicting evidence exists concerning its protective effects. In this study, we investigated the relationship between sCD14 in colostrum and 1-month BM, and the development of atopic dermatitis (AD) and sensitization to food and aeroallergens at 9 months of age in infants who were exclusively or almost exclusively breastfed up to 4 months of age. BM samples were collected from lactating mothers who participated in a 2 × 2 factorial, randomized, nontreatment controlled trial study set in Tokyo, which looked at the efficacy of emollients and synbiotics in preventing AD and food allergy in children during the first year of life. A total of 258 colostrum samples and 269 1-month BM samples were analyzed. We found that one-month BM sCD14 levels in the AD group were significantly lower than in the non-AD group. Levels of sCD14 in 1-month BM were not related to allergen sensitization in the overall analysis, but egg white sensitization correlated inversely with 1-month BM sCD14 in infants without AD. The results suggest that sCD14 in BM may be involved in atopic manifestations in early infancy.
Collapse
|
6
|
Boix-Amorós A, Collado MC, Van't Land B, Calvert A, Le Doare K, Garssen J, Hanna H, Khaleva E, Peroni DG, Geddes DT, Kozyrskyj AL, Warner JO, Munblit D. Reviewing the evidence on breast milk composition and immunological outcomes. Nutr Rev 2019; 77:541-556. [PMID: 31111150 DOI: 10.1093/nutrit/nuz019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A large number of biologically active components have been found in human milk (HM), and in both human and animal models, studies have provided some evidence suggesting that HM composition can be altered by maternal exposures, subsequently influencing health outcomes for the breastfed child. Evidence varies from the research studies on whether breastfeeding protects the offspring from noncommunicable diseases, including those associated with immunological dysfunction. It has been hypothesized that the conflicting evidence results from HM composition variations, which contain many immune active molecules, oligosaccharides, lactoferrin, and lysozyme in differing concentrations, along with a diverse microbiome. Determining the components that influence infant health outcomes in terms of both short- and long-term sequelae is complicated by a lack of understanding of the environmental factors that modify HM constituents and thereby offspring outcomes. Variations in HM immune and microbial composition (and the differing infantile responses) may in part explain the controversies that are evidenced in studies that aim to evaluate the prevalence of allergy by prolonged and exclusive breastfeeding. HM is a "mixture" of immune active factors, oligosaccharides, and microbes, which all may influence early immunological outcomes. This comprehensive review provides an in-depth overview of existing evidence on the studied relationships between maternal exposures, HM composition, vaccine responses, and immunological outcomes.
Collapse
Affiliation(s)
- Alba Boix-Amorós
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
| | - Belinda Van't Land
- Department of Immunology, Danone Nutricia Research, Utrecht, the Netherlands
- Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Anna Calvert
- Paediatric Infectious Diseases Research Group, St George's University of London, London, United Kingdom
| | - Kirsty Le Doare
- Paediatric Infectious Diseases Research Group, St George's University of London, London, United Kingdom
- Imperial College London, London, United Kingdom
- Public Health England, Porton Down, United Kingdom, and the MRC Unit, Fajara, Gambia
| | - Johan Garssen
- Department of Immunology, Danone Nutricia Research, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Ekaterina Khaleva
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- University of Southampton, Southampton, UK
| | - Diego G Peroni
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Donna T Geddes
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- School of Molecular Sciences, the University of Western Australia, Perth, Australia
| | - Anita L Kozyrskyj
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- Department of Pediatrics, Department of Obstetrics & Gynecology, Faculty of Medicine & Dentistry, School of Public Health, University of Alberta, Alberta, Canada
| | - John O Warner
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- Imperial College London, London, United Kingdom
- National Institute for Health Research, Collaboration for Leadership in Applied Health Research and Care for NW London, London, United Kingdom
| | - Daniel Munblit
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- Imperial College London, London, United Kingdom
- Department of Pediatrics, Sechenov University, Moscow, Russia, and the Solov'ev Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| |
Collapse
|