1
|
Martin-Gonzalez E, Perez-Garcia J, Herrera-Luis E, Martin-Almeida M, Kebede-Merid S, Hernandez-Pacheco N, Lorenzo-Diaz F, González-Pérez R, Sardón O, Hernández-Pérez JM, Poza-Guedes P, Sánchez-Machín I, Mederos-Luis E, Corcuera P, López-Fernández L, Román-Bernal B, Toncheva AA, Harner S, Wolff C, Brandstetter S, Abdel-Aziz MI, Hashimoto S, Vijverberg SJH, Kraneveld AD, Potočnik U, Kabesch M, Maitland-van der Zee AH, Villar J, Melén E, Pino-Yanes M. Epigenome-Wide Association Study of Asthma Exacerbations in Europeans. Allergy 2025; 80:1086-1099. [PMID: 39907155 DOI: 10.1111/all.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/03/2024] [Accepted: 01/01/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Asthma exacerbations (AEs) represent the major contributor to the global asthma burden. Although genetic and environmental factors have been associated with AEs, the role of epigenetics remains uncovered. OBJECTIVE This study aimed to identify whole blood DNA methylation (DNAm) markers associated with AEs in Europeans. METHODS DNAm was assessed in 406 blood samples from Spanish individuals using the Infinium MethylationEPIC microarray (Illumina). An epigenome-wide association study was conducted to test the association of DNAm with AEs at differentially methylated positions, regions, and epigenetic modules. CpGs suggestively associated with AEs (false discovery rate [FDR] < 0.1) were followed up for replication in 222 European individuals, and the genome-wide significance (p < 9 × 10-8) was declared after meta-analyzing the discovery and replication samples. Additional assessment was performed using nasal tissue DNAm data from 155 Spanish individuals. The effects of genetic variation on DNAm were assessed through cis-methylation quantitative trait loci (meQTL) analysis. Enrichment analyses of previous EWAS signals were conducted. RESULTS Four CpGs were associated with AEs, and two were replicated and reached genomic significance in the meta-analysis (annotated to ZBTB16 and BAIAP2). Of those, CpG cg25345365 (ZBTB16) was cross-tissue validated in nasal epithelium (p= 0.003) and associated with five independent meQTLs (FDR < 0.05). Additionally, four differentially methylated regions and one module were significantly associated with AEs. Enrichment analyses revealed an overrepresentation of prior epigenetic associations with prenatal and environmental exposures, immune-mediated diseases, and mortality. CONCLUSIONS DNAm in whole blood and nasal samples may contribute to AEs in Europeans, capturing genetic and environmental risk factors.
Collapse
Affiliation(s)
- Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mario Martin-Almeida
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Simon Kebede-Merid
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, La Laguna, Spain
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Spain
| | - Olaia Sardón
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - José M Hernández-Pérez
- Department of Respiratory Medicine, Hospital Universitario de N.S de Candelaria, Santa Cruz de Tenerife, Spain
- Respiratory Medicine, Hospital Universitario de La Palma, Santa Cruz de Tenerife, Spain
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias, La Laguna, Spain
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Spain
| | | | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias, La Laguna, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Leyre López-Fernández
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | | | - Antoaneta A Toncheva
- University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Susanne Harner
- University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Christine Wolff
- University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Susanne Brandstetter
- University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Mahmoud Ibrahim Abdel-Aziz
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Simone Hashimoto
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Susanne J H Vijverberg
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Uroš Potočnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Maribor, Slovenia
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
- Research and Development Campus Regensburg (WECARE) at the Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Anke H Maitland-van der Zee
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario Dr. Negrín, Fundación Canaria Instituto de Investigación Sanitaria de Canarias, Las Palmas de Gran Canaria, Spain
- Faculty of Health Sciences, Universidad del Atlántico Medio, Las Palmas, Spain
- Li Ka Shing Knowledge Institute at St Michael's Hospital, Toronto, Canada
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| |
Collapse
|
2
|
Van Asselt AJ, Pool R, Hottenga JJ, Beck JJ, Finnicum CT, Johnson BN, Kallsen N, Viet S, Huizenga P, de Geus E, Boomsma DI, Ehli EA, van Dongen J. Blood-Based EWAS of Asthma Polygenic Burden in The Netherlands Twin Register. Biomolecules 2025; 15:251. [PMID: 40001554 PMCID: PMC11852504 DOI: 10.3390/biom15020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Asthma, a chronic respiratory condition characterized by airway inflammation, affects millions of individuals worldwide. Challenges remain in asthma prediction and diagnosis from its complex etiology involving genetic and environmental factors. Here, we investigated the relationship between genome-wide DNA methylation and genetic risk for asthma quantified via polygenic scores in two cohorts from the Netherlands Twin Register; one enriched with asthmatic families measured on the Illumina EPIC array (n = 526) and a general population cohort measured on the Illumina HM450K array (n = 2680). We performed epigenome-wide association studies of asthma polygenic scores in each cohort with results combined through meta-analysis (total samples = 3206). The EWAS meta-analysis identified 63 significantly associated CpGs, (following Bonferroni correction, α = 0.05/358,316). An investigation of previous mQTL associations identified 48 mQTL associations between 24 unique CpGs and 48 SNPs, of which two SNPs have previous associations with asthma. Enrichment analysis using the 63 significant CpGs highlighted previous associations with ancestry, smoking, and air pollution. A dizygotic twin within-pair analysis of the 63 CpGs revealed similar directional effects between the two cohorts in 33 of the 63 CpGs. These findings further characterize the intricate relationship between DNA methylation and genetics relative to asthma.
Collapse
Affiliation(s)
- Austin J. Van Asselt
- Avera McKennan Hospital & University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.); (J.J.B.)
- Department of Biological Psychology, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands; (R.P.)
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands; (R.P.)
- Amsterdam Public Health Research Institute, 1081 HV Amsterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands; (R.P.)
- Amsterdam Public Health Research Institute, 1081 HV Amsterdam, The Netherlands
| | - Jeffrey J. Beck
- Avera McKennan Hospital & University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.); (J.J.B.)
| | - Casey T. Finnicum
- Avera McKennan Hospital & University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.); (J.J.B.)
| | - Brandon N. Johnson
- Avera McKennan Hospital & University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.); (J.J.B.)
| | - Noah Kallsen
- Avera McKennan Hospital & University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.); (J.J.B.)
| | - Sarah Viet
- Avera McKennan Hospital & University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.); (J.J.B.)
| | - Patricia Huizenga
- Avera McKennan Hospital & University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.); (J.J.B.)
| | - Eco de Geus
- Department of Biological Psychology, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands; (R.P.)
- Amsterdam Public Health Research Institute, 1081 HV Amsterdam, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands; (R.P.)
- Amsterdam Public Health Research Institute, 1081 HV Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, 1081 HV Amsterdam, The Netherlands
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Erik A. Ehli
- Avera McKennan Hospital & University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.); (J.J.B.)
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands; (R.P.)
- Amsterdam Public Health Research Institute, 1081 HV Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Perez-Garcia J, Cardenas A, Lorenzo-Diaz F, Pino-Yanes M. Precision medicine for asthma treatment: Unlocking the potential of the epigenome and microbiome. J Allergy Clin Immunol 2025; 155:298-315. [PMID: 38906272 PMCID: PMC12002393 DOI: 10.1016/j.jaci.2024.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Asthma is a leading worldwide biomedical concern. Patients can experience life-threatening worsening episodes (exacerbations) usually controlled by anti-inflammatory and bronchodilator drugs. However, substantial heterogeneity in treatment response exists, and a subset of patients with unresolved asthma carry the major burden of this disease. The study of the epigenome and microbiome might bridge the gap between human genetics and environmental exposure to partially explain the heterogeneity in drug response. This review aims to provide a critical examination of the existing literature on the microbiome and epigenetic studies examining associations with asthma treatments and drug response, highlight convergent pathways, address current challenges, and offer future perspectives. Current epigenetic and microbiome studies have shown the bilateral relationship between asthma pharmacologic interventions and the human epigenome and microbiome. These studies, focusing on corticosteroids and to a lesser extent on bronchodilators, azithromycin, immunotherapy, and mepolizumab, have improved the understanding of the molecular basis of treatment response and identified promising biomarkers for drug response prediction. Immune and inflammatory pathways (eg, IL-2, TNF-α, NF-κB, and C/EBPs) underlie microbiome-epigenetic associations with asthma treatment, representing potential therapeutic pathways to be targeted. A comprehensive evaluation of these omics biomarkers could significantly contribute to precision medicine and new therapeutic target discovery.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Khare M, Piparia S, Tantisira KG. Pharmacogenetics of childhood uncontrolled asthma. Expert Rev Clin Immunol 2025; 21:181-194. [PMID: 37190963 PMCID: PMC10657335 DOI: 10.1080/1744666x.2023.2214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Asthma is a heterogeneous, multifactorial disease with multiple genetic and environmental risk factors playing a role in pathogenesis and therapeutic response. Understanding of pharmacogenetics can help with matching individualized treatments to specific genotypes of asthma to improve therapeutic outcomes especially in uncontrolled or severe asthma. AREAS COVERED In this review, we outline novel information about biology, pathways, and mechanisms related to interindividual variability in drug response (corticosteroids, bronchodilators, leukotriene modifiers, and biologics) for childhood asthma. We discuss candidate gene, genome-wide association studies and newer omics studies including epigenomics, transcriptomics, proteomics, and metabolomics as well as integrative genomics and systems biology methods related to childhood asthma. The articles were obtained after a series of searches, last updated November 2022, using database PubMed/CINAHL DB. EXPERT OPINION Implementation of pharmacogenetic algorithms can improve therapeutic targeting in children with asthma, particularly with severe or uncontrolled asthma who typically have challenges in clinical management and carry considerable financial burden. Future studies focusing on potential biomarkers both clinical and pharmacogenetic can help formulate a prognostic test for asthma treatment response that would represent true bench to bedside clinical implementation.
Collapse
Affiliation(s)
- Manaswitha Khare
- Division of Pediatric Hospital Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Hospital Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| | - Shraddha Piparia
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| |
Collapse
|
5
|
Ramirez-Falcon M, Suarez-Pajes E, Flores C. Defining the Differential Corticosteroid Response Basis from Multiple Omics Approaches. Int J Mol Sci 2024; 25:13611. [PMID: 39769372 PMCID: PMC11679800 DOI: 10.3390/ijms252413611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Since their discovery, corticosteroids have been widely used in the treatment of several diseases, including asthma, acute lymphoblastic leukemia, chronic obstructive pulmonary disease, and many other conditions. However, it has been noted that some patients develop undesired side effects or even fail to respond to treatment. The reasons behind this have not yet been fully elucidated. This poses a significant challenge to effective treatment that needs to be addressed urgently. Recent genomic, transcriptomic, and other omics-based approximations have begun to shed light into the genetic factors influencing interindividual variability in corticosteroid efficacy and its side effects. Here, we comprehensively revise the recent literature on corticosteroid response in various critical and chronic diseases, with a focus on omics approaches, and highlight existing knowledge gaps where further investigation is urgently needed.
Collapse
Affiliation(s)
- Melody Ramirez-Falcon
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, Instituto de Investigación Sanitaria de Canarias, 38010 Santa Cruz de Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva Suarez-Pajes
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, Instituto de Investigación Sanitaria de Canarias, 38010 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, Instituto de Investigación Sanitaria de Canarias, 38010 Santa Cruz de Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Granadilla de Abona, 38600 Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
6
|
Edris A, Voorhies K, Lutz SM, Iribarren C, Hall I, Wu AC, Tobin M, Fawcett K, Lahousse L. Asthma exacerbations and eosinophilia in the UK Biobank: a genome-wide association study. ERJ Open Res 2024; 10:00566-2023. [PMID: 38196893 PMCID: PMC10772900 DOI: 10.1183/23120541.00566-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/31/2023] [Indexed: 01/11/2024] Open
Abstract
Background Asthma exacerbations reflect disease severity, affect morbidity and mortality, and may lead to declining lung function. Inflammatory endotypes (e.g. T2-high (eosinophilic)) may play a key role in asthma exacerbations. We aimed to assess whether genetic susceptibility underlies asthma exacerbation risk and additionally tested for an interaction between genetic variants and eosinophilia on exacerbation risk. Methods UK Biobank data were used to perform a genome-wide association study of individuals with asthma and at least one exacerbation compared to individuals with asthma and no history of exacerbations. Individuals with asthma were identified using self-reported data, hospitalisation data and general practitioner records. Exacerbations were identified as either asthma-related hospitalisation, general practitioner record of asthma exacerbation or an oral corticosteroid burst prescription. A logistic regression model adjusted for age, sex, smoking status and genetic ancestry via principal components was used to assess the association between genetic variants and asthma exacerbations. We sought replication for suggestive associations (p<5×10-6) in the GERA cohort. Results In the UK Biobank, we identified 11 604 cases and 37 890 controls. While no variants reached genome-wide significance (p<5×10-8) in the primary analysis, 116 signals were suggestively significant (p<5×10-6). In GERA, two single nucleotide polymorphisms (rs34643691 and rs149721630) replicated (p<0.05), representing signals near the NTRK3 and ABCA13 genes. Conclusions Our study has identified reproducible associations with asthma exacerbations in the UK Biobank and GERA cohorts. Confirmation of these findings in different asthma subphenotypes in diverse ancestries and functional investigation will be required to understand their mechanisms of action and potentially inform therapeutic development.
Collapse
Affiliation(s)
- Ahmed Edris
- Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Kirsten Voorhies
- Precision Medicine Translational Research Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sharon M. Lutz
- Precision Medicine Translational Research Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Ian Hall
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Ann Chen Wu
- Precision Medicine Translational Research Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Martin Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Katherine Fawcett
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
- These authors contributed equally
| | - Lies Lahousse
- Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- These authors contributed equally
| |
Collapse
|
7
|
Sardon-Prado O, Diaz-Garcia C, Corcuera-Elosegui P, Korta-Murua J, Valverde-Molina J, Sanchez-Solis M. Severe Asthma and Biological Therapies: Now and the Future. J Clin Med 2023; 12:5846. [PMID: 37762787 PMCID: PMC10532431 DOI: 10.3390/jcm12185846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Recognition of phenotypic variability in pediatric asthma allows for a more personalized therapeutic approach. Knowledge of the underlying pathophysiological and molecular mechanisms (endotypes) of corresponding biomarkers and new treatments enables this strategy to progress. Biologic therapies for children with severe asthma are becoming more relevant in this sense. The T2 phenotype is the most prevalent in childhood and adolescence, and non-T2 phenotypes are usually rare. This document aims to review the mechanism of action, efficacy, and potential predictive and monitoring biomarkers of biological drugs, focusing on the pediatric population. The drugs currently available are omalizumab, mepolizumab, benralizumab, dupilumab, and 1ezepelumab, with some differences in administrative approval prescription criteria between the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Previously, we described the characteristics of severe asthma in children and its diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Olaia Sardon-Prado
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 20014 Leioa, Spain
| | - Carolina Diaz-Garcia
- Paediatric Pulmonology and Allergy Unit, Santa Lucia General University Hospital, 30202 Cartagena, Spain;
| | - Paula Corcuera-Elosegui
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Javier Korta-Murua
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Jose Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
| | - Manuel Sanchez-Solis
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
- Department of Pediatrics, University of Murcia, 20120 Murcia, Spain
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, 20120 Murcia, Spain
| |
Collapse
|
8
|
Cardenas A, Fadadu RP, Koppelman GH. Epigenome-wide association studies of allergic disease and the environment. J Allergy Clin Immunol 2023; 152:582-590. [PMID: 37295475 PMCID: PMC10564109 DOI: 10.1016/j.jaci.2023.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The epigenome is at the intersection of the environment, genotype, and cellular response. DNA methylation of cytosine nucleotides, the most studied epigenetic modification, has been systematically evaluated in human studies by using untargeted epigenome-wide association studies (EWASs) and shown to be both sensitive to environmental exposures and associated with allergic diseases. In this narrative review, we summarize findings from key EWASs previously conducted on this topic; interpret results from recent studies; and discuss the strengths, challenges, and opportunities regarding epigenetics research on the environment-allergy relationship. The majority of these EWASs have systematically investigated select environmental exposures during the prenatal and early childhood periods and allergy-associated epigenetic changes in leukocyte-isolated DNA and more recently in nasal cells. Overall, many studies have found consistent DNA methylation associations across cohorts for certain exposures, such as smoking (eg, aryl hydrocarbon receptor repressor gene [AHRR] gene), and allergic diseases (eg, EPX gene). We recommend the integration of both environmental exposures and allergy or asthma within long-term prospective designs to strengthen causality as well as biomarker development. Future studies should collect paired target tissues to examine compartment-specific epigenetic responses, incorporate genetic influences in DNA methylation (methylation quantitative trait locus), replicate findings across diverse populations, and carefully interpret epigenetic signatures from bulk, target tissue or isolated cells.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, Calif
| | - Raj P Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Herrera-Luis E, Forno E, Celedón JC, Pino-Yanes M. Asthma Exacerbations: The Genes Behind the Scenes. J Investig Allergol Clin Immunol 2023; 33:76-94. [PMID: 36420738 PMCID: PMC10638677 DOI: 10.18176/jiaci.0878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The clinical and socioeconomic burden of asthma exacerbations (AEs) constitutes a major public health problem. In the last 4 years, there has been an increase in ethnic diversity in candidate-gene and genome-wide association studies of AEs, which in the latter case led to the identification of novel genes and underlying pathobiological processes. Pharmacogenomics, admixture mapping analyses, and the combination of multiple "omics" layers have helped to prioritize genomic regions of interest and/or facilitated our understanding of the functional consequences of genetic variation. Nevertheless, the field still lags behind the genomics of asthma, where a vast compendium of genetic approaches has been used (eg, gene-environment nteractions, next-generation sequencing, and polygenic risk scores). Furthermore, the roles of the DNA methylome and histone modifications in AEs have received little attention, and microRNA findings remain to be validated in independent studies. Likewise, the most recent transcriptomic studies highlight the importance of the host-airway microbiome interaction in the modulation of risk of AEs. Leveraging -omics and deep-phenotyping data from subtypes or homogenous subgroups of patients will be crucial if we are to overcome the inherent heterogeneity of AEs, boost the identification of potential therapeutic targets, and implement precision medicine approaches to AEs in clinical practice.
Collapse
Affiliation(s)
- E Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - E Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain 4 Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| |
Collapse
|
10
|
eClock: An ensemble-based method to accurately predict ages with a biased distribution from DNA methylation data. PLoS One 2022; 17:e0267349. [PMID: 35522643 PMCID: PMC9075636 DOI: 10.1371/journal.pone.0267349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
DNA methylation is closely related to senescence, so it has been used to develop statistical models, called clock models, to predict chronological ages accurately. However, because the training data always have a biased age distribution, the model performance becomes weak for the samples with a small age distribution density. To solve this problem, we developed the R package eClock, which uses a bagging-SMOTE method to adjust the biased distribution and predict age with an ensemble model. Moreover, it also provides a bootstrapped model based on bagging only and a traditional clock model. The performance on three datasets showed that the bagging-SMOTE model significantly improved rare sample age prediction. In addition to model construction, the package also provides other functions such as data visualization and methylation feature conversion to facilitate the research in relevant areas.
Collapse
|
11
|
Benincasa G, DeMeo DL, Glass K, Silverman EK, Napoli C. Epigenetics and pulmonary diseases in the horizon of precision medicine: a review. Eur Respir J 2021; 57:13993003.03406-2020. [PMID: 33214212 DOI: 10.1183/13993003.03406-2020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic mechanisms represent potential molecular routes which could bridge the gap between genetic background and environmental risk factors contributing to the pathogenesis of pulmonary diseases. In patients with COPD, asthma and pulmonary arterial hypertension (PAH), there is emerging evidence of aberrant epigenetic marks, mainly including DNA methylation and histone modifications which directly mediate reversible modifications to the DNA without affecting the genomic sequence. Post-translational events and microRNAs can be also regulated epigenetically and potentially participate in disease pathogenesis. Thus, novel pathogenic mechanisms and putative biomarkers may be detectable in peripheral blood, sputum, nasal and buccal swabs or lung tissue. Besides, DNA methylation plays an important role during the early phases of fetal development and may be impacted by environmental exposures, ultimately influencing an individual's susceptibility to COPD, asthma and PAH later in life. With the advances in omics platforms and the application of computational biology tools, modelling the epigenetic variability in a network framework, rather than as single molecular defects, provides insights into the possible molecular pathways underlying the pathogenesis of COPD, asthma and PAH. Epigenetic modifications may have clinical applications as noninvasive biomarkers of pulmonary diseases. Moreover, combining molecular assays with network analysis of epigenomic data may aid in clarifying the multistage transition from a "pre-disease" to "disease" state, with the goal of improving primary prevention of lung diseases and its subsequent clinical management.We describe epigenetic mechanisms known to be associated with pulmonary diseases and discuss how network analysis could improve our understanding of lung diseases.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Dept of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudio Napoli
- Dept of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy .,Clinical Dept of Internal and Specialty Medicine (DAI), University Hospital (AOU), University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Asthma is a common disease worldwide, however, its pathogenesis has not been fully elucidated. Emerging evidence suggests that epigenetic modifications may play a role in the development and natural history of asthma. The aim of this review is to highlight recent progress in research on epigenetic mechanisms in asthma. RECENT FINDINGS Over the past years, epigenetic studies, in particular DNA methylation studies, have added to the growing body of evidence supporting a link between epigenetic regulation of gene expression and asthma. Recent studies demonstrate that epigenetic mechanisms also play a role in asthma remission. Although most existing studies in this field have been conducted on blood cells, recent evidence suggests that epigenetic signatures are also crucial for the regulation of airway epithelial cells. Studies conducted on nasal epithelium revealed highly replicable epigenetic patterns that could be used for diagnostic purposes. SUMMARY Further research is needed to explore the diagnostic and therapeutic potential of epigenetic modifications in asthma. Multiomics studies on asthma will become increasingly important for a better understanding of etiology, heterogeneity, and severity of asthma, as well as establishing molecular biomarkers that could be combined with clinical information to improve the management of asthma patients.
Collapse
|
13
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments allergy in 2019 through the eyes of Clinical and Experimental Allergy, Part II clinical allergy. Clin Exp Allergy 2020; 50:1302-1312. [PMID: 33283366 DOI: 10.1111/cea.13778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the second of two linked articles, we describe the development in clinical as described by Clinical & Experimental Allergy and other journals in 2019. Epidemiology, clinical allergy, asthma and rhinitis are all covered. In this article, we described the development in the field of allergy as described by Clinical and Experimental Allergy in 2019. Epidemiology, clinical allergy, asthma and rhinitis are all covered.
Collapse
Affiliation(s)
- Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - R Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Department of Pathology, Michigan Medicine, Mary H Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - B Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - J A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
14
|
Asthma genomics and pharmacogenomics. Curr Opin Immunol 2020; 66:136-142. [PMID: 33171417 DOI: 10.1016/j.coi.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
In this review, we summarize recent published work interrogating the relationship between genetic variation or gene expression regulation across the genome and asthma or asthma treatment outcomes. This includes 11 genome-wide association studies of asthma phenotypes that collectively identified 64 novel loci; transcriptome-wide asthma association studies which identified genes involved in virus recognition, bacterial infection, lung tissue remodeling, eosinophilic and neutrophilic inflammation and genes in the chromosome 17q12 asthma susceptibility locus; and three epigenome-wide studies of asthma that had robust sample sizes and replicated findings. We also highlight pharmacogenomic studies of corticosteroids, bronchodilator response to albuterol and zileuton, although finding from these studies may still be preliminary due to their relatively small sample sizes and limited availability of replication cohorts.
Collapse
|
15
|
Affiliation(s)
- G Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| |
Collapse
|
16
|
Wu M, Yang Y, Yuan L, Yang M, Wang L, Du X, Qin L, Wu S, Xiang Y, Qu X, Liu H, Qin X, Liu C. DNA methylation down-regulates integrin β4 expression in asthmatic airway epithelial cells. Clin Exp Allergy 2020; 50:1127-1139. [PMID: 32618381 DOI: 10.1111/cea.13697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Integrin β4 (ITGB4) is a hemi-desmosome protein which is downregulated in the airway epithelial cells of asthma patients. The proximal promoters and exons of ITGB4 contain CpG islands or multiple CpG sites both in human and mice, which indicated the possible methylation regulation of ITGB4 in airway epithelial cells. OBJECTIVE We sought to unveil that DNA methylation regulates the decreased ITGB4 during the pathogenesis of asthma. METHODS Mice were exposed to house dust mite (HDM) extracts to construct an asthma model. 5-Aza-2'-deoxycytidine (5-AZA) or dexamethasone (DEX) were added in the last two weeks. Besides, the primary human bronchial epithelial (HBE) cells were incubated for the detection of ITGB4 expression and methylation status after HDM stress. Furthermore, DNA methylation of ITGB4 in peripheral blood was measured in asthma patients. Logistic regression was employed to evaluate the association between methylation sites and asthma patients' ages in the control of potential confounders. Moreover, the correlations between differentially methylated sites (DMSs) and clinical parameters in asthma patients were assessed. Finally, the ability of candidate DMSs to predict asthma was evaluated by receiver operating characteristic (ROC) analysis and principal component analysis (PCA). RESULTS We found that in HDM-stressed asthma model, DNA methylation regulated the reduced ITGB4 expression in airway epithelial cells. Moreover, alteration in the specific CpG sites (chr17:73717720 and chr17:73717636) of ITGB4 may regulate ITGB4 expression and further may be associated with the clinically phenotypic of asthma. The specific DMSs of ITGB4 in peripheral blood can distinguish asthma patients from healthy controls (HCs) effectively. CONCLUSIONS AND CLINICAL RELEVANCE This study confirmed that DNA methylation regulates the decreased expression of ITGB4 in the airway epithelial cells of asthma patients. These results supply some useful insights to the mechanism of the decreased ITGB4 in asthmatic airway epithelial and provide possible targets for early prediction and screening of asthma.
Collapse
Affiliation(s)
- Mengping Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ming Yang
- Faculty of Health and Medicine, Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangyan Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine Central South University, Changsha, China
| |
Collapse
|
17
|
Precision Medicine in Childhood Asthma: Omic Studies of Treatment Response. Int J Mol Sci 2020; 21:ijms21082908. [PMID: 32326339 PMCID: PMC7215369 DOI: 10.3390/ijms21082908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Asthma is a heterogeneous and multifactorial respiratory disease with an important impact on childhood. Difficult-to-treat asthma is not uncommon among children, and it causes a high burden to the patient, caregivers, and society. This review aims to summarize the recent findings on pediatric asthma treatment response revealed by different omic approaches conducted in 2018–2019. A total of 13 studies were performed during this period to assess the role of genomics, epigenomics, transcriptomics, metabolomics, and the microbiome in the response to short-acting beta agonists, inhaled corticosteroids, and leukotriene receptor antagonists. These studies have identified novel associations of genetic markers, epigenetic modifications, metabolites, bacteria, and molecular mechanisms involved in asthma treatment response. This knowledge will allow us establishing molecular biomarkers that could be integrated with clinical information to improve the management of children with asthma.
Collapse
|
18
|
Kabesch M, Tost J. Recent findings in the genetics and epigenetics of asthma and allergy. Semin Immunopathol 2020; 42:43-60. [PMID: 32060620 PMCID: PMC7066293 DOI: 10.1007/s00281-019-00777-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022]
Abstract
In asthma and allergy genetics, a trend towards a few main topics developed over the last 2 years. First, a number of studies have been published recently which focus on overlapping and/or very specific phenotypes: within the allergy spectrum but also reaching beyond, looking for common genetic traits shared between different diseases or disease entities. Secondly, an urgently needed focus has been put on asthma and allergy genetics in populations genetically different from European ancestry. This acknowledges that the majority of new asthma patients today are not white and asthma is a truly worldwide disease. In epigenetics, recent years have seen several large-scale epigenome-wide association studies (EWAS) being published and a further focus was on the interaction between the environment and epigenetic signatures. And finally, the major trends in current asthma and allergy genetics and epigenetics comes from the field of pharmacogenetics, where it is necessary to understand the susceptibility for and mechanisms of current asthma and allergy therapies while at the same time, we need to have scientific answers to the recent availability of novel drugs that hold the promise for a more individualized therapy.
Collapse
Affiliation(s)
- Michael Kabesch
- Department of Pediatric Pneumology and Allergy, St. Hedwig's Hospital of the order of St. John, University Children's Hospital Regensburg (KUNO), Steinmetzstr. 1-3, 93049, Regensburg, Germany.
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, 2 rue Gaston Crémieux, 91000, Evry, France
| |
Collapse
|