1
|
Zemelka-Wiacek M. A Modern Approach to Clinical Outcome Assessment in Allergy Management: Advantages of Allergen Exposure Chambers. J Clin Med 2024; 13:7268. [PMID: 39685727 DOI: 10.3390/jcm13237268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Allergic diseases triggered by airborne allergens such as allergic rhinitis and conjunctivitis are increasingly prevalent, posing significant challenges for both patients and healthcare systems. Assessing the efficacy of allergen immunotherapy and other anti-allergic treatments requires precise and reproducible methods. Allergen exposure chambers (AECs) have emerged as advanced tools for evaluating clinical outcomes, offering controlled conditions that address many limitations of traditional field-based studies. This review explores the advantages of AECs in allergy management, emphasizing their role in providing standardized allergen exposure for both clinical research and routine assessments. AECs deliver consistent and reproducible data comparable to the nasal allergen challenge and natural allergen exposure, making them a valuable addition to the diagnosis and treatment effectiveness of allergic diseases. Although they are well suited to early-stage clinical trials, further standardization and validation are needed to gain broader acceptance in pivotal phase III studies. Future research should focus on refining AEC protocols and integrating them into regulatory frameworks, ensuring their role in the advancement of therapeutic approaches for allergic diseases.
Collapse
Affiliation(s)
- Magdalena Zemelka-Wiacek
- Department of Clinical Immunology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
2
|
An W, Li T, Tian X, Fu X, Li C, Wang Z, Wang J, Wang X. Allergies to Allergens from Cats and Dogs: A Review and Update on Sources, Pathogenesis, and Strategies. Int J Mol Sci 2024; 25:10520. [PMID: 39408849 PMCID: PMC11476515 DOI: 10.3390/ijms251910520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Inhalation allergies caused by cats and dogs can lead to a range of discomforting symptoms, such as rhinitis and asthma, in humans. With the increasing popularity of and care provided to these companion animals, the allergens they produce pose a growing threat to susceptible patients' health. Allergens from cats and dogs have emerged as significant risk factors for triggering asthma and allergic rhinitis worldwide; however, there remains a lack of systematic measures aimed at assisting individuals in recognizing and preventing allergies caused by these animals. This review provides comprehensive insights into the classification of cat and dog allergens, along with their pathogenic mechanisms. This study also discusses implementation strategies for prevention and control measures, including physical methods, gene-editing technology, and immunological approaches, as well as potential strategies for enhancing allergen immunotherapy combined with immunoinformatics. Finally, it presents future prospects for the prevention and treatment of human allergies caused by cats and dogs. This review will improve knowledge regarding allergies to cats and dogs while providing insights into potential targets for the development of next-generation treatments.
Collapse
Affiliation(s)
- Wei An
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Beijing 100071, China;
| | - Xinya Tian
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoxin Fu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Chunxiao Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
3
|
Piotin A, Godet J, Domis N, de Blay F. Rhinoconjunctivitis severity induced by cat exposure influences early and late asthmatic responses: Evidence from an environmental exposure chamber. Clin Exp Allergy 2024; 54:596-606. [PMID: 38660824 DOI: 10.1111/cea.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The impact of allergic rhinoconjunctivitis on the early (EAR) and late asthmatic response (LAR) has yet to be assessed during optimal allergen exposure conditions. OBJECTIVE We aimed to assess predictive factors of the EAR and LAR and to evaluate the relation between rhinitis, conjunctivitis and asthma induced by cat allergen exposure in an environmental exposure chamber (EEC). METHODS Data from two cohort studies involving asthmatic patients with cat allergy who performed a cat allergen exposure challenge in ALYATEC EEC were analysed. Spirometry, visual analogue scale (VAS) for asthma, VAS for rhinitis, Total Nasal Symptoms Score, Total Ocular Symptoms Score (TOSS), Rhinoconjunctivitis Total Symptoms Score and Abelson score were used to assess asthma, rhinitis and conjunctivitis during and after exposure. RESULTS An EAR occurred in 65.1% of patients, 32.1% of whom had a LAR. The diameter of the prick test to cat allergens and non-specific bronchial hypersensitivity level were independent risk factors for EAR (p < .05). No independent risk factors for LAR were identified. Rhinoconjunctivitis severity during exposure correlated with the asthma VAS during EAR and LAR (p < .05). Allergen exposure time needed to trigger an EAR correlated with the Abelson score during exposure (p < .05). The asthma VAS and TOSS during exposure correlated with faster LAR occurrence (p < .05). CONCLUSION Prick test size and non-specific bronchial hypersensitivity level were confirmed as independent predictive factors of EAR during allergen exposure in an EEC. This study demonstrated the relation between the severity of rhinitis, conjunctivitis and asthma induced by allergen exposure for both EAR and LAR.
Collapse
Affiliation(s)
- Anays Piotin
- Division of Asthma and Allergy, Chest Diseases Department, Strasbourg University Hospital, Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, Strasbourg, France
| | - Julien Godet
- Public Health Department, Strasbourg University Hospital, Strasbourg, France
| | - Nathalie Domis
- ALYATEC Environmental Exposure Chamber, Strasbourg, France
| | - Frédéric de Blay
- Division of Asthma and Allergy, Chest Diseases Department, Strasbourg University Hospital, Strasbourg, France
- ALYATEC Environmental Exposure Chamber, Strasbourg, France
- EA 3070 Federation of Translational Medicine, FHU Homicare, University of Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Gherasim A, Lee AG, Bernstein JA. Impact of Climate Change on Indoor Air Quality. Immunol Allergy Clin North Am 2024; 44:55-73. [PMID: 37973260 DOI: 10.1016/j.iac.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Climate change may affect the quality of the indoor environment through heat and mass transfer between indoors and outdoors: first by a direct response to global warming itself and related extreme weather phenomena and second by indirect actions taken to reduce greenhouse gas emissions that can lead to increased concentrations of indoor air contaminants. Therefore, both indoor and outdoor air pollution contribute to poor indoor air quality in this context. Exposures to high concentrations of these pollutants contribute to inflammatory respiratory diseases. Climate change adaptation and mitigation measures could minimize these risks and bring associated health benefits.
Collapse
Affiliation(s)
- Alina Gherasim
- ALYATEC Environmental Exposure Chamber, 1 Place de l'Hôpital, Strasbourg, France
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Jonathan A Bernstein
- Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
Lee HY, Lee SM, Kang SY, Kim K, Kim JH, Ryu G, Min JY, Park KH, Park SY, Sung M, Lee Y, Yang EA, Jee HM, Ha EK, Shin YS, Chung EH, Choi SH, Koh YI, Kim ST, Nahm DH, Park JW, Shim JY, An YM, Han DH, Han MY, Lee YW, Choi JH. KAAACI Guidelines for Allergen Immunotherapy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:725-756. [PMID: 37957792 PMCID: PMC10643862 DOI: 10.4168/aair.2023.15.6.725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023]
Abstract
Allergen immunotherapy (AIT) is a causative treatment for various allergic diseases such as allergic rhinitis, allergic asthma, and bee venom allergy that induces tolerance to offending allergens. The need for uniform practice guidelines in AIT is continuously growing because of the increasing discovery of potential candidates for AIT and evolving interest in new therapeutic approaches. This guideline is an updated version of the Korean Academy of Asthma Allergy and Clinical Immunology recommendations for AIT published in 2010. This updated guideline proposes an expert opinion by allergy, pediatrics, and otorhinolaryngology specialists with an extensive literature review. The guideline deals with basic knowledge and methodological aspects of AIT, including mechanisms, clinical efficacy, patient selection, allergens extract selection, schedule and doses, management of adverse reactions, efficacy measurements, and special consideration in pediatrics. The guidelines for sublingual immunotherapy will be covered in detail in a separate article.
Collapse
Affiliation(s)
- Hwa Young Lee
- Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Min Lee
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Sung-Yoon Kang
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Kyunghoon Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Ju Hee Kim
- Department of Pediatrics, Kyung Hee University Medical Center, Seoul, Korea
| | - Gwanghui Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin-Young Min
- Department of Otorhinolaryngology-Head & Neck Surgery, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Kyung Hee Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - So-Young Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, Gwangmyeong, Korea
| | - Myongsoon Sung
- Department of Pediatrics, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Youngsoo Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Ae Yang
- Department of Pediatrics, Daejeon St Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam, Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Eun Hee Chung
- Department of Pediatrics, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sun Hee Choi
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Young-Il Koh
- Department of Allergy and Clinical Immunology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Seon Tae Kim
- Department of Otolaryngology-Head & Neck Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Dong-Ho Nahm
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Jung Won Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Yeon Shim
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Doo Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam, Korea
| | - Yong Won Lee
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Center for Health Policy Research, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon, Korea.
| | - Jeong-Hee Choi
- Department of Pulmonology and Allergy, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea.
| |
Collapse
|
6
|
Gherasim A, Dietsch F, Beck M, Domis N, de Blay F. Birch-induced allergic rhinitis: Results of exposure during nasal allergen challenge, environmental chamber, and pollen season. World Allergy Organ J 2023; 16:100801. [PMID: 37520615 PMCID: PMC10384658 DOI: 10.1016/j.waojou.2023.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background Pollen variation can affect field study data quality. Nasal allergen challenge (NAC) is considered the gold standard for evaluating allergic rhinitis, while environmental exposure chambers (EECs) are mainly used in phase 2 drug development studies. We aimed to study birch-induced allergic rhinitis under 3 different conditions. Methods This study included 30 participants allergic to birch pollen, based on birch skin prick test, specific immunoglobulin E (IgE), and positive NAC. Participants were exposed to placebo twice, followed by 2 consecutive 4-h birch airborne exposures, repeated on 2 occasions to evaluate reproducibility and priming effect. Nasal response was defined as total corrected nasal symptom score (ΔTNSS) ≥ 5 during NAC and EEC. The primary end-point was to measure TNSS during the last 2 h of first allergen exposure. TNSS was also analyzed during natural exposure. Results The dose most commonly yielding positive TNSS during NAC was 175.2 ng/200 μL. Eighteen participants experienced ΔTNSS ≥5 during the last 2 h of the first exposure, whereas 21 had positive responses at all 4 exposures. Mean ΔTNSS was 1 with placebo versus 6 with birch. Exposures were reproducible, with no observed priming effect. Airborne Bet v 1 was 25 ng/m3, while the pollen measurement was 279/m3 during pollen season. TNSS reached 5 in 67.9% of participants during peak pollen season. Conclusion EEC outcomes were similar to those obtained with NAC and natural exposure, suggesting the usefulness of EEC in allergic rhinitis studies. The primary end-point was reached, as 60% of participants experienced nasal responses.
Collapse
Affiliation(s)
- Alina Gherasim
- ALYATEC Environmental Exposure Chamber, 1 place de l’Hôpital, Strasbourg, France
| | - Frank Dietsch
- ALYATEC Environmental Exposure Chamber, 1 place de l’Hôpital, Strasbourg, France
| | - Marine Beck
- ALYATEC Environmental Exposure Chamber, 1 place de l’Hôpital, Strasbourg, France
| | - Nathalie Domis
- ALYATEC Environmental Exposure Chamber, 1 place de l’Hôpital, Strasbourg, France
| | - Frederic de Blay
- ALYATEC Environmental Exposure Chamber, 1 place de l’Hôpital, Strasbourg, France
- Chest Diseases Department, Strasbourg University Hospital, Strasbourg, France
- Federation of Translational Medicine EA 3070, University of Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
8
|
REGN1908/1909 prevented cat allergen-induced early asthmatic responses in an environmental exposure unit. J Allergy Clin Immunol 2022; 150:1437-1446. [PMID: 35934082 DOI: 10.1016/j.jaci.2022.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The dominant allergen in cat dander, Felis domesticus allergen 1 (Fel d 1), is a persistent trigger for allergic rhinitis and asthma symptoms. OBJECTIVE We evaluated the efficacy of Fel d 1 monoclonal antibodies (REGN1908/1909) in preventing cat allergen-induced early asthmatic responses (EARs) in cat-allergic patients with mild asthma. METHODS Patients were randomized to single-dose REGN1908/1909 600 mg (n = 29) or placebo (n = 27). The FEV1 was measured for up to 4 hours in a cat allergen environmental exposure unit up to 85 days after dosing. Assessments included between-group differences in change from baseline in FEV1 area under the curve (AUC; 0-2 hours) and incidence of EAR (FEV1 reduction ≥20%). TRIAL REGISTRATION NCT03838731. RESULTS Single-dose REGN1908/1909 significantly prevented reductions in FEV1 on days 8, 29, 57, and 85. Most REGN1908/1909 patients did not have an EAR by 4 hours (the last time point tested). In contrast, placebo-treated patients experienced a ≥20% mean FEV1 reduction on days 8, 29, 57, and 85 after dosing, with most experiencing an EAR within 1 hour. REGN1908/1909-treated patients tolerated 3-fold higher allergen quantities (P < .05 at all time points) versus placebo. REGN1908/1909 substantially reduced skin test reactivity to cat allergen versus placebo at all time points tested (nominal P < .001). REGN1908/1909 was generally well tolerated; no serious adverse events or deaths were reported. CONCLUSION Single-dose REGN1908/1909 significantly prevented reductions in FEV1 in cat-allergic patients with mild asthma on cat allergen environmental exposure unit exposure at 8 days and up to 85 days after dose.
Collapse
|
9
|
Gherasim A, Beck M, Dietsch F, Meyer M, Domis N, De Blay F. Évaluation clinique de l’efficacité d’un masque chirurgical dans la réduction des symptômes d’asthme et de rhinite, chez des sujets allergiques au pollen de bouleau dans la chambre d’exposition environnementale ALYATEC. REVUE FRANÇAISE D'ALLERGOLOGIE 2022. [DOI: 10.1016/j.reval.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Maya‐Manzano JM, Pusch G, Ebner von Eschenbach C, Bartusel E, Belzner T, Karg E, Bardolatzy U, Scheja M, Schmidt‐Weber C, Buters J. Effect of air filtration on house dust mite, cat and dog allergens and particulate matter in homes. Clin Transl Allergy 2022; 12:e12137. [PMID: 35474731 PMCID: PMC9022093 DOI: 10.1002/clt2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- José María Maya‐Manzano
- Center of Allergy & Environment (ZAUM) Member of the German Center for Lung Research (DZL) Technical University and Helmholtz Center Munich Germany
| | - Gudrun Pusch
- Center of Allergy & Environment (ZAUM) Member of the German Center for Lung Research (DZL) Technical University and Helmholtz Center Munich Germany
| | - Cordula Ebner von Eschenbach
- Center of Allergy & Environment (ZAUM) Member of the German Center for Lung Research (DZL) Technical University and Helmholtz Center Munich Germany
| | - Elke Bartusel
- Center of Allergy & Environment (ZAUM) Member of the German Center for Lung Research (DZL) Technical University and Helmholtz Center Munich Germany
| | - Thomas Belzner
- Center of Allergy & Environment (ZAUM) Member of the German Center for Lung Research (DZL) Technical University and Helmholtz Center Munich Germany
| | - Erwin Karg
- Center of Allergy & Environment (ZAUM) Member of the German Center for Lung Research (DZL) Technical University and Helmholtz Center Munich Germany
| | - Ulrich Bardolatzy
- Center of Allergy & Environment (ZAUM) Member of the German Center for Lung Research (DZL) Technical University and Helmholtz Center Munich Germany
| | | | - Carsten Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Member of the German Center for Lung Research (DZL) Technical University and Helmholtz Center Munich Germany
| | - Jeroen Buters
- Center of Allergy & Environment (ZAUM) Member of the German Center for Lung Research (DZL) Technical University and Helmholtz Center Munich Germany
| |
Collapse
|
11
|
de Blay F, Gherasim A, Domis N, Choual I, Bourcier T. Efficacy of N-acetyl aspartyl glutamic acid versus fluorometholone for treating allergic conjunctivitis in an environmental exposure chamber. Clin Exp Allergy 2022; 52:1091-1100. [PMID: 35302688 PMCID: PMC9544405 DOI: 10.1111/cea.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022]
Abstract
Background Topical mast cell stabilizers were previously shown to treat the signs and symptoms of seasonal and perennial allergic conjunctivitis safely and effectively in active and placebo‐controlled trials. However, mast cell stabilizers have not been compared to topical corticosteroids for efficacy. We tested the non‐inferiority of a topical mast cell stabilizer, N‐acetyl aspartyl glutamic acid (4.9%, NAAGA), compared to fluorometholone (0.1%, FM) during controlled exposures to the airborne birch pollen allergen, Bet v 1, in an environmental exposure chamber (EEC). Methods This randomized, cross‐over, investigator‐blinded study included 24 patients with a history of birch pollen allergic conjunctivitis. Patients were randomized to 5 days of treatment with NAAGA, then FM (n = 12) or FM, then NAAGA (n = 12). After each treatment, patients were exposed to a fixed airborne concentration of Bet v 1 in ALYATEC EEC. The primary endpoint was the amount of allergen required to trigger a conjunctival response (Abelson score ≥5). Groups were compared with a linear model for cross‐over studies. Non‐inferiority was assumed, when the lower bound of the risk ratio confidence interval (CI) was >0.5. Results At screening, the mean time‐to‐conjunctival response was 72.5 ± 35.9 min. NAAGA and FM extended the response time to 114.8 ± 55.0 and 116.6 ± 51.5 min respectively. The mean amounts of allergen required to trigger a conjunctival response were 1.165 ng after NAAGA and 1.193 ng after FM treatment. The risk ratio for the conjunctival response was 0.977 (95% CI: 0.812; 1.174), which indicated non‐inferiority. Adverse events occurred less frequently with NAAGA (29.2%) than with FM (58.3%). Conclusion In patients with allergic conjunctivitis to birch pollen, NAAGA was non‐inferior to FM in exposures to airborne Bet v 1. The EEC was a good model for simulating real‐life airborne allergen exposure and for demonstrating the efficacy and safety of eye drops for treating allergic conjunctivitis. Trial registration Not registered.
Collapse
Affiliation(s)
- Frédéric de Blay
- ALYATEC, Nouvel Hôpital Civil, 1 place de l'Hôpital, Strasbourg, France.,Department of Chest Diseases, Strasbourg University Hospital, FMTS, EA 3070, Strasbourg University, Strasbourg, France
| | - Alina Gherasim
- ALYATEC, Nouvel Hôpital Civil, 1 place de l'Hôpital, Strasbourg, France
| | - Nathalie Domis
- ALYATEC, Nouvel Hôpital Civil, 1 place de l'Hôpital, Strasbourg, France
| | - Ibrahim Choual
- ALYATEC, Nouvel Hôpital Civil, 1 place de l'Hôpital, Strasbourg, France
| | - Tristan Bourcier
- Department of Ophthalmology, Strasbourg University Hospital, FMTS, Strasbourg University, Strasbourg, France
| |
Collapse
|
12
|
de Blay F, Gherasim A, Casale TB, Doyen V, Bernstein D. Which patients with asthma are most likely to benefit from allergen immunotherapy? J Allergy Clin Immunol 2022; 149:833-843. [DOI: 10.1016/j.jaci.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
13
|
Abstract
PRACTICAL RELEVANCE Human allergy to cats affects a substantial and growing proportion of the global population, and cat allergy is regarded as the third most common cause of human respiratory allergies, and the second most common indoor cause. Veterinarians will frequently encounter owners who are cat-allergic, and having an understanding of this disease and the methods available to help control the allergy will assist them in giving appropriate advice, alongside human healthcare professionals. AIM The aim of this review is to summarise currently available data on the prevalence, causes, symptoms and control of human allergy to cats. In terms of managing cat allergy, the emphasis is on reviewing current and emerging modalities to reduce environmental exposure to cat allergens rather than on pharmacotherapy or immunotherapy, as it is in these areas in particular that the veterinarian may be able to offer help and advice to complement that of human healthcare professionals. EVIDENCE BASE The information in this review is drawn from the current and historical literature on human allergy to cats, and approaches to reduce exposure to cat allergens and manage symptoms of cat allergy.
Collapse
|
14
|
Yang WH, Kelly S, Haya L, Mehri R, Ramesh D, DeVeaux M, Wang CQ, Meier P, Narula S, Shawki F, Pennington R, Perlee L, O'Brien MP. Cat allergen exposure in a naturalistic exposure chamber: a prospective observational study in cat-allergic subjects. Clin Exp Allergy 2021; 52:265-275. [PMID: 34962661 PMCID: PMC9303194 DOI: 10.1111/cea.14087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/06/2021] [Accepted: 12/25/2021] [Indexed: 12/01/2022]
Abstract
Background To determine the proportion and reproducibility of cat‐allergic mild asthmatics with early asthmatic response (EAR) during cat allergen exposure in a naturalistic exposure chamber (NEC). Methods This was a prospective, observational study in 30 cat‐allergic mild asthmatics who received two 180‐min cat‐allergen (Felis domesticus allergen 1 [Fel d 1]) challenges 27 days apart in an NEC. Results An EAR (≥20% reduction from baseline in forced expiratory volume in 1 s [FEV1]) was observed in 67% and 52% of subjects at first and second NEC exposure, respectively, with similar median time to EAR; 44% of subjects had an EAR on days 1 and 28. Late asthmatic response (≥15% reduction in FEV1 within 24 h of NEC exit) was observed in 33% of subjects following either exposure. Average FEV1 and total nasal symptom score during NEC exposure were highly correlated within subjects between NEC exposures (r = 0.91, p < 0.0001; r = 0.73, p < 0.001), but total ocular symptom score was not. Time to EAR, but not average FEV1, was significantly associated with NEC Fel d 1 concentration, which was variable. There were no serious adverse events; 12/30 subjects experienced 20 adverse events (including asthma, 10%; headache, 10%). Conclusions The NEC model demonstrates that average FEV1 change is highly reproducible and has a low correlation with cat allergen levels. However, time to EAR and incidence of EAR are less reproducible and are highly correlated with NEC allergen levels. Average FEV1, rather than incidence of EAR or time to EAR, could be considered as an endpoint for interventional trials testing cat‐specific anti‐allergy therapies using an NEC.
Collapse
Affiliation(s)
| | | | - Laura Haya
- Red Maple Trials, Inc., Ottawa, ON, Canada
| | - Rym Mehri
- Red Maple Trials, Inc., Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pfaar O, Bergmann K, Bonini S, Compalati E, Domis N, Blay F, Kam P, Devillier P, Durham SR, Ellis AK, Gherasim A, Haya L, Hohlfeld JM, Horak F, Iinuma T, Jacobs RL, Jacobi HH, Jutel M, Kaul S, Kelly S, Klimek L, Larché M, Lemell P, Mahler V, Nolte H, Okamoto Y, Patel P, Rabin RL, Rather C, Sager A, Salapatek AM, Sigsgaard T, Togias A, Willers C, Yang WH, Zieglmayer R, Zuberbier T, Zieglmayer P. Technical standards in allergen exposure chambers worldwide - an EAACI Task Force Report. Allergy 2021; 76:3589-3612. [PMID: 34028057 DOI: 10.1111/all.14957] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Allergen exposure chambers (AECs) can be used for controlled exposure to allergenic and non-allergenic airborne particles in an enclosed environment, in order to (i) characterize the pathological features of respiratory diseases and (ii) contribute to and accelerate the clinical development of pharmacological treatments and allergen immunotherapy for allergic disease of the respiratory tract (such as allergic rhinitis, allergic rhinoconjunctivitis, and allergic asthma). In the guidelines of the European Medicines Agency for the clinical development of products for allergen immunotherapy (AIT), the role of AECs in determining primary endpoints in dose-finding Phase II trials is emphasized. Although methodologically insulated from the variability of natural pollen exposure, chamber models remain confined to supporting secondary, rather than primary, endpoints in Phase III registration trials. The need for further validation in comparison with field exposure is clearly mandated. On this basis, the European Academy of Allergy and Clinical Immunology (EAACI) initiated a Task Force in 2015 charged to gain a better understanding of how AECs can generate knowledge about respiratory allergies and can contribute to the clinical development of treatments. Researchers working with AECs worldwide were asked to provide technical information in eight sections: (i) dimensions and structure of the AEC, (ii) AEC staff, (iii) airflow, air processing, and operating conditions, (iv) particle dispersal, (v) pollen/particle counting, (vi) safety and non-contamination measures, (vii) procedures for symptom assessments, (viii) tested allergens/substances and validation procedures. On this basis, a minimal set of technical requirements for AECs applied to the field of allergology is proposed.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | - Karl‐Christian Bergmann
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Department of Dermatology and Allergy Allergy Centre Charité Berlin Germany
| | - Sergio Bonini
- Institute of Translational Medicine Italian National Research Council Rome Italy
| | | | - Nathalie Domis
- ALYATEC Environmental Exposure Chamber Strasbourg France
| | - Frédéric Blay
- ALYATEC Environmental Exposure Chamber Strasbourg France
- Chest Diseases Department Strasbourg University Hospital Strasbourg France
| | | | - Philippe Devillier
- Department of Airway Diseases Pharmacology Research Laboratory‐VIM Suresnes, Exhalomics Platform, Hôpital Foch University Paris‐Saclay Suresnes France
| | | | - Anne K. Ellis
- Departments of Medicine and Biomedical & Molecular Sciences Queen's University Kingston ON Canada
- Allergy Research Unit Kingston General Health Research Institute Kingston ON Canada
| | - Alina Gherasim
- ALYATEC Environmental Exposure Chamber Strasbourg France
| | | | - Jens M. Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine and Department of Respiratory Medicine Hannover Medical School Member of the German Center for Lung Research Hannover Germany
| | | | | | | | | | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
- All‐MED Medical Research Institute Wrocław Poland
| | | | | | - Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden Germany
- Allergy Center Rhineland‐Palatinate Mainz University Medical Center Mainz Germany
| | - Mark Larché
- Divisions of Clinical Immunology & Allergy, and Respirology Department of Medicine and Firestone Institute for Respiratory Health McMaster University Hamilton ON Canada
| | | | | | | | | | - Piyush Patel
- Cliantha Research Limited Mississauga ON Canada
- Providence Therapeutics Toronto ON Canada
| | - Ronald L. Rabin
- Center for Biologics Evaluation and Research US Food and Drug Administration Silver Spring MD USA
| | | | | | | | - Torben Sigsgaard
- Department of Public Health, Section for Environment Occupation and Health Danish Ramazzini Centre Aarhus University Aarhus Denmark
| | - Alkis Togias
- Division of Allergy, Immunology, and Transplantation (DAIT) National Institute of Allergy and Infectious Diseases NIH Bethesda MD USA
| | | | | | | | - Torsten Zuberbier
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Department of Dermatology and Allergy Allergy Centre Charité Berlin Germany
| | - Petra Zieglmayer
- Vienna Challenge Chamber Vienna Austria
- Karl Landsteiner University Krems Austria
| |
Collapse
|
16
|
Boyle RJ, Shamji MH. Developments in the field of allergy in 2020 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2021; 51:1531-1537. [PMID: 34750898 DOI: 10.1111/cea.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
While 2020 will be remembered for the global coronavirus pandemic, there were also important advances in the field of allergy. In this review article, we summarize key findings reported in Clinical and Experimental Allergy during 2020. We hope this provides readers with an accessible snapshot of the work published in our journal during this time.
Collapse
Affiliation(s)
- Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| |
Collapse
|
17
|
Gherasim A, Fauquert J, Domis N, Siomboing X, de Blay F. Birch allergen challenges in allergic conjunctivitis using standard conjunctival allergen challenge and environmental exposure chamber. Clin Transl Allergy 2021; 11:e12053. [PMID: 34429874 PMCID: PMC8369317 DOI: 10.1002/clt2.12053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Environmental exposure chambers (EECs) have been used extensively to study allergic rhinoconjunctivitis. Few studies have been published using EECs in conjunctivitis only, and none have used conjunctival allergen challenge as a selection criterion. The present study validated ALYATEC EEC in allergic conjunctivitis to birch pollen. METHODS Sixteen patients with a positive conjunctival allergen challenge (CAC) were exposed to 60 ng/m3 of Bet v 1 in an EEC on two consecutive days for a maximum of 4 h to validate EEC exposure to birch. Reproducibility was tested among seven of the patients. A conjunctival positive scoring during the CAC and the EEC exposure was defined as a Total Ocular Symptom Score (TOSS) ≥ 5. RESULTS Fifty percent of patients had a conjunctival positive scoring during first exposure and 75% during second exposure. The mean time to a conjunctival response was 81.2 ± 33.9 min and 101.6 ± 57 (P > 0.05) during first and second exposure, respectively. No difference in TOSS occurred between the two exposures. The time necessary to obtain a positive response during the CAC was significantly shorter than with the EEC. The estimated quantity of Bet v 1 inducing a positive response was 0.07 ± 0.03 ng (exposure 1), 0.07 ± 0.07 ng (exposure 2), 980 ± 784 ng (CAC). Conjunctival positive scoring and quantity of Bet v 1 was reproducible in all six EEC exposures. CONCLUSIONS Early conjunctival responses induced by birch allergen exposures in EEC were different than from those identified with direct instillation during CAC. EEC appears to be closer to natural exposure than CAC.
Collapse
Affiliation(s)
| | | | | | | | - Frederic de Blay
- ALYATEC Environmental Exposure ChamberStrasbourgFrance
- Chest Diseases DepartmentStrasbourg University HospitalStrasbourgFrance
- University of StrasbourgStrasbourgFrance
| |
Collapse
|
18
|
Roberts G. Origins of allergic airway disease and dealing with environmental allergens. Clin Exp Allergy 2021; 50:131-132. [PMID: 31997522 DOI: 10.1111/cea.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| |
Collapse
|
19
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments allergy in 2019 through the eyes of Clinical and Experimental Allergy, Part II clinical allergy. Clin Exp Allergy 2020; 50:1302-1312. [PMID: 33283366 DOI: 10.1111/cea.13778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the second of two linked articles, we describe the development in clinical as described by Clinical & Experimental Allergy and other journals in 2019. Epidemiology, clinical allergy, asthma and rhinitis are all covered. In this article, we described the development in the field of allergy as described by Clinical and Experimental Allergy in 2019. Epidemiology, clinical allergy, asthma and rhinitis are all covered.
Collapse
Affiliation(s)
- Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - R Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Department of Pathology, Michigan Medicine, Mary H Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - B Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - J A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
20
|
Ehret M, Bourcier T, Domis N, Gherasim A, Speeg-Schatz C, de Blay F. [Interest of environmental exposure chambers in the evaluation of allergic conjunctivitis]. J Fr Ophtalmol 2020; 43:920-928. [PMID: 33004194 DOI: 10.1016/j.jfo.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Allergic conjunctivitis affects 15 to 20% of the general population. It is currently evaluated by the Conjunctival Provocation Test (CPT), which is considered as the gold standard. In the investigation of allergic rhinitis and asthma, environmental exposure chambers (EEC) are increasingly utilised. For allergic conjunctivitis, EEC might be a valid alternative to the CPT. However, evaluation of the allergen response in individual provocation tests or in EECs is still in discussion due to the multiplicity of symptom scores. Indeed, there are many scores used to evaluate allergic conjunctivitis. The main criteria used were described by Abelson in 1990 and include redness, itching, tearing, and swelling. In clinical studies, the specifically ocular score most used is the Total Ocular Symptom Score (TOSS). Few treatments have been evaluated by EEC, including cold compresses, epinastine and N-acetyl aspartyl glutamic acid. Moreover, early data shows good correlation between ocular symptoms induced in an EEC and those assessed during natural exposure. EEC might be a valid alternative to CPT and correlate with natural seasonal allergen exposure. Finally, EEC might be useful in other fields as well, such as in the study of dry eye disease.
Collapse
Affiliation(s)
- M Ehret
- Service d'ophtalmologie, HUS de Strasbourg, FMTS, Strasbourg, France.
| | - T Bourcier
- Service d'ophtalmologie, HUS de Strasbourg, FMTS, Strasbourg, France
| | - N Domis
- Alyatec biocluster, Strasbourg, France
| | | | - C Speeg-Schatz
- Service d'ophtalmologie, HUS de Strasbourg, FMTS, Strasbourg, France
| | - F de Blay
- Pôle de pathologie thoracique, HUS de Strasbourg EA3070 université de Strasbourg, FMTS, Strasbourg, France
| |
Collapse
|
21
|
Abstract
(1) Background: On the Internet, we can find the guidelines for homemade air purifiers. One of the solutions includes the use of a low-cost ozone generator to decrease the level of odors and biological contaminants. However, the authors do not notify about hazardous effects of ozone generation on human health; (2) Methods: We elaborated our test results on the bacterial and fungal aerosol reduction by the use of two technical solutions of homemade air purifiers. First, including a mesh filter and ozone generator, second including an ozone generator, mesh filter, and carbon filter. (3) Conclusions: After 20 min of ozone generation, the concentration of bacteria decreased by 78% and 48% without and with a carbon filter, while fungi concentration was reduced in the lower range 63% and 40%, respectively. Based on our test results, we proposed a precise periodical operation of homemade air purifier to maintain the permissible level of ozone for the occupants.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The goal of this review is to compress all important information and results of the research in reducing cat allergen exposure using air filtration. Fel d 1 is the major allergen responsible for IgE responses in 90 to 95% of patients with cat allergy. RECENT FINDINGS Reduction of cat allergen in indoor air with different air filtration systems and portable devices has been demonstrated in the majority of the studies. Recently, early and late asthmatic responses were significantly reduced using portable HEPA air cleaners in an environmental exposure chamber. This review provides a comprehensive overview of the current state of airborne Fel d 1 air filtration targeting the most efficient devices in cat allergen reduction. Novel emerging HEPA filters are targeting reduction of cat indoor asthma trigger so patient can might benefit from efficient solution.
Collapse
Affiliation(s)
- Alina Gherasim
- ALYATEC® Environmental Exposure Chamber, 1 place de l'Hôpital, 67000, Strasbourg, France.
| | - Frédéric de Blay
- ALYATEC® Environmental Exposure Chamber, 1 place de l'Hôpital, 67000, Strasbourg, France.,Chest Diseases Department, Strasbourg University Hospital, 1 place de l'Hôpital, 67000, Strasbourg, France.,Federation of Translational Medicine EA 3070, University of Strasbourg, Strasbourg, France
| |
Collapse
|