1
|
Ng JY, Wong QYA, Lim JJ, Cen D, Wong JYK, Lim YYE, Sio YY, Reginald K, Say YH, Chew FT. A broad assessment of forty-one skin phenotypes reveals complex dimensions of skin ageing. J Physiol Anthropol 2025; 44:3. [PMID: 39923103 PMCID: PMC11806859 DOI: 10.1186/s40101-024-00383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/25/2024] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Skin ageing takes on many different forms. Despite this diversity in skin ageing phenotypes, literature published to date is limited in scope, as many research studies either focus on one single phenotype or just a few specific phenotypes. Presently, phenotypes such as wrinkles, pigment spots, and photo-ageing are receiving most of the research attention. We therefore wonder whether the current discourse on skin ageing places a disproportionate amount of focus on a few selected phenotypes, leaving other skin ageing phenotypes underexplored. METHODS In this cross-sectional study, we performed a broad assessment of forty-one signs of skin ageing and characterised the phenotypes that constituted key components of skin ageing. We also explored the interrelationship among forty-one skin ageing phenotypes using Spearman's Correlation and Principal Component Analysis. RESULTS We analysed our study population, which is composed of 3281 ethnic Chinese participants from the Singapore/Malaysia Cross-sectional Genetics Epidemiology Study (SMCGES). The first ten principal components cumulatively explain 46.88% of the variance of skin ageing phenotypes in our study population. We discovered that the commonly discussed forms of skin ageing (i.e., wrinkles, pigmentation, and photo-ageing) only accounted for a small portion (24.39%) of the variance of all skin ageing phenotypes in our study population. Telangiectasia, a poor lip fullness, a lighter skin colour, xerosis, ephelides (freckles), ptosis of eyelids (droopy eyelids), eyebags, and a low eyebrow positioning were other key components of skin ageing, accounting for a further 22.49% of the variance of skin ageing phenotypes in our study population. We found that each of these ten skin ageing phenotypes characterises a key and important aspect of skin ageing. In this broad assessment of skin ageing, we first described the prevalence of forty-one signs of skin ageing and then characterised in detail both the prevalence and severity distribution of ten key skin ageing phenotypes. CONCLUSIONS We presented clear evidence that skin ageing is much more than just wrinkles, pigmentation and photo-ageing. The addition of telangiectasia, poor lip fullness, a lighter skin colour, xerosis, ephelides, ptosis of eyelids, eyebags, and a low eyebrow positioning added more dimensions to skin ageing phenotype presentations.
Collapse
Affiliation(s)
- Jun Yan Ng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Qi Yi Ambrose Wong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Jun Jie Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Dingyu Cen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Jia Yi Karen Wong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yi Ying Eliza Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Kavita Reginald
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Yee-How Say
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya, Malaysia
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore.
| |
Collapse
|
2
|
Sio YY, Gan WL, Ng WS, Matta SA, Say YH, Teh KF, Wong YR, Rawanan Shah SM, Reginald K, Chew FT. The ERBB2 Exonic Variant Pro1170Ala Modulates Mitogen-Activated Protein Kinase Signaling Cascades and Associates with Allergic Asthma. Int Arch Allergy Immunol 2023; 184:1010-1021. [PMID: 37336194 DOI: 10.1159/000530960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/30/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Previous studies have indicated the ERBB2 genetic variants in the 17q12 locus might be associated with asthma; however, the functional effects of these variants on asthma risk remain inconclusive. This study aimed to characterize the functional roles of asthma-associated ERBB2 single nucleotide polymorphisms (SNPs) in asthma pathogenesis by performing genetic association and functional analysis studies. METHODS This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). Genotype-phenotype associations were assessed by performing a genotyping assay on n = 4,348 ethnic Chinese individuals from the SMCSGES cohort. The phosphorylation levels of receptors and signaling proteins in the MAPK signaling cascades, including ErbB2, EGFR, and ERK1/2, were compared across the genotypes of asthma-associated SNPs through in vitro and ex vivo approaches. RESULTS The ERBB2 tag-SNP rs1058808 was significantly associated with allergic asthma, with the allele "G" identified as protective against the disease (adjusted logistic p = 6.56 × 10-9, OR = 0.625, 95% CI: 0.544-0.718). The allele "G" of rs1058808 resulted in a Pro1170Ala mutation that results in lower phosphorylation levels of ErbB2 in HaCat cells (p < 0.001), whereas the overall ERBB2 mRNA expression and the phosphorylation levels of EGFR remained unaffected. In the SMCSGES cohort, individuals carrying the genotype "GG" of rs1058808 had lower phosphorylated ERK1/2 proteins in the MAPK signaling cascade. A lower phosphorylation level of ERK1/2 was also associated with reduced asthma risk. CONCLUSIONS The present findings highlighted the involvement of a functional exonic variant of ERBB2 in asthma development via modulating the MAPK signaling cascade.
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore,
| | - Wei Liang Gan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Wing Shan Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR)Kampar Campus, Kampar, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Keng Foo Teh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Yi Ru Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Smyrna Moti Rawanan Shah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
4
|
Meng Z, Chen H, Deng C, Meng S. Potential cellular endocrinology mechanisms underlying the effects of Chinese herbal medicine therapy on asthma. Front Endocrinol (Lausanne) 2022; 13:916328. [PMID: 36051395 PMCID: PMC9424672 DOI: 10.3389/fendo.2022.916328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma is a complex syndrome with polygenetic tendency and multiple phenotypes, which has variable expiratory airflow limitation and respiratory symptoms that vary over time and in intensity. In recent years, continuous industrial development has seriously impacted the climate and air quality at a global scale. It has been verified that climate change can induce asthma in predisposed individuals and that atmospheric pollution can exacerbate asthma severity. At present, a subset of patients is resistant to the drug therapy for asthma. Hence, it is urgent to find new ideas for asthma prevention and treatment. In this review, we discuss the prescription, composition, formulation, and mechanism of traditional Chinese medicine monomer, traditional Chinese medicine monomer complex, single herbs, and traditional Chinese patent medicine in the treatment of asthma. We also discuss the effects of Chinese herbal medicine on asthma from the perspective of cellular endocrinology in the past decade, emphasizing on the roles as intracellular and extracellular messengers of three substances-hormones, substances secreted by pulmonary neuroendocrine cells, and neuroendocrine-related signaling protein-which provide the theoretical basis for clinical application and new drug development.
Collapse
Affiliation(s)
- Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Shengxi Meng,
| |
Collapse
|
5
|
蔡 明, 魏 兵, 廖 世, 付 金, 刘 亚, 李 令. Association between ADRB2 regulatory region polymorphisms and susceptibility to childhood asthma. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1132-1140. [PMID: 34753545 PMCID: PMC8580024 DOI: 10.7499/j.issn.1008-8830.2108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To study the association of β2-drenergic receptor (ADRB2) regulatory region single nucleotides polymorphism (SNP)/haplotypes at rs11168070, rs17108803, rs2053044, rs12654778, rs11959427, and rs2895795 loci with childhood asthma. METHODS A total of 143 children with asthma who attended the hospital from October 2016 to October 2020 were enrolled as the asthma group, among whom 61 children had mild symptoms (mild group) and 82 children had moderate-to-severe symptoms (moderate-to-severe group). A total of 137 healthy children were enrolled as the control group. Peripheral venous blood samples were collected from the two groups. The SNaPshot SNP technique was used to analyze the SNP and haplotypes of the ADRB2 regulatory region at rs11168070, rs17108803, rs2053044, rs12654778, rs11959427, and rs2895795 loci in all children. The asthma group and the control group were compared in terms of the association of ADRB2 regulatory region SNP and haplotypes at the above six loci with susceptibility to asthma and severity of asthma. RESULTS Polymorphisms were observed in the ADRB2 regulation region at the above six loci in both the asthma group and the control group, with significant differences between the two groups in the distribution of genotype and allele frequencies at rs2895795 (-1429T /A), rs2053044(-1023G/A), and rs12654778 (-654G/A) loci (P<0.05). Linkage disequilibrium of SNP was observed at the six loci of the ADRB2 regulatory region.The haplotypes of TATGCT, TATGGC, and AGTGCT were associated with susceptibility to childhood asthma, among which TATGCT and TATGGC were risk factors for childhood asthma (OR=1.792 and 1.946 respectively, P<0.05), while AGTGCT was a protective factor (OR=0.523, P<0.05). CONCLUSIONS SNP/haplotype of the ADRB2 regulatory region is associated with the susceptibility to childhood asthma. The haplotypes of TATGCT and TATGGC formed by such SNP/haplotype are risk factors for childhood asthma, while AGTGCT is a protective factor.
Collapse
|
6
|
Boyle RJ, Shamji MH. Developments in the field of allergy in 2020 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2021; 51:1531-1537. [PMID: 34750898 DOI: 10.1111/cea.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
While 2020 will be remembered for the global coronavirus pandemic, there were also important advances in the field of allergy. In this review article, we summarize key findings reported in Clinical and Experimental Allergy during 2020. We hope this provides readers with an accessible snapshot of the work published in our journal during this time.
Collapse
Affiliation(s)
- Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| |
Collapse
|
7
|
Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108396. [PMID: 34893161 DOI: 10.1016/j.mrrev.2021.108396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Enzymatic methylation catalyzed by methyltransferases has a significant impact on many human biochemical reactions. As the second most ubiquitous cofactor in humans, S-adenosyl-l-methionine (SAM or AdoMet) serves as a methyl donor for SAM-dependent methyltransferases (MTases), which transfer a methyl group to a nucleophilic acceptor such as O, As, N, S, or C as the byproduct. SAM-dependent methyltransferases can be grouped into different types based on the substrates. Here we systematically reviewed eight types of methyltransferases associated with human diseases. Catechol O-methyltransferase (COMT), As(III) S-adenosylmethionine methyltransferase (AS3MT), indolethylamine N-methyltransferase (INMT), phenylethanolamine N-methyltransferase (PNMT), histamine N-methyltransferase (HNMT), nicotinamide N-methyltransferase (NNMT), thiopurine S-methyltransferase (TPMT) and DNA methyltansferase (DNMT) are classic SAM-dependent MTases. Correlations between genotypes and disease susceptibility can be partially explained by genetic polymorphisms. The physiological function, substrate specificity, genetic variants and disease susceptibility associated with these eight SAM-dependent methyltransferases are discussed in this review.
Collapse
|
8
|
Sio YY, Shi P, Say YH, Chew FT. Functional variants in the chromosome 4q21 locus contribute to allergic rhinitis risk by modulating the expression of N-acylethanolamine acid amidase. Clin Exp Allergy 2021; 52:127-136. [PMID: 33866639 DOI: 10.1111/cea.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous haplotype-based association studies identified chromosome 4q21 as an allergic rhinitis (AR) susceptibility locus; however, the functional role of 4q21 single nucleotide polymorphisms (SNPs) on AR risk remains unclear. OBJECTIVE To investigate the functional effect of 4q21 SNPs on AR risk by conducting cohort-based functional genomics and genetic association analyses. METHODS The associations between 4q21 SNPs and mRNA expression levels of three 4q21-associated genes (SDAD1, NAAA and CXCL9) in peripheral blood mononuclear cells (PBMCs) were assessed in a Singapore/Malaysia Chinese cohort (n = 291). Exon expression levels of these genes in PBMCs were tested against the tag-SNP genotypes in a Singapore Chinese cohort (n = 30). Serum protein levels of these genes were assessed with tag-SNP genotypes in a Singapore Chinese cohort (n = 193). SNP functions were characterized through luciferase assay. In a Singapore Chinese cohort (n = 1794), we confirmed the associations between functional SNPs and AR. RESULTS Forty SNPs in 4q21 showed significant associations with NAAA (but not SDAD1 or CXCL9) mRNA expression in PBMCs, of which were tagged by two tag-SNPs, rs17001237 and rs2242470. Both tag-SNPs rs2242470 and rs12648687 (a proxy for rs17001237) were also significantly associated with the expression level of NAAA exon 1. Tag-SNP rs12648687 was correlated with serum NAAA level. A four promoter SNPs-haplotype tagged by rs17001237 influenced the NAAA promoter activity in HEK293T cells. Lastly, individuals carrying the risk allele A of rs12648687 exhibited significantly higher AR risk in the Singapore Chinese population. CONCLUSIONS & CLINICAL RELEVANCE The rs17001237 linkage set SNPs in the 4q21 locus are associated with NAAA expression at both gene and protein levels ex vivo, have functional consequences in vitro and contribute to AR susceptibility in our study population. Our findings provided a better understanding of the genetic mechanism that contributes to AR pathogenesis.
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ping Shi
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Spatiotemporal Changes in the Gene Expression Spectrum of the β2 Adrenergic Receptor Signaling Pathway in the Lungs of Rhesus Monkeys. Lung 2021; 199:73-82. [PMID: 33512584 PMCID: PMC7870609 DOI: 10.1007/s00408-021-00420-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
Objective β2 adrenergic receptor (ADRB2) agonists mainly participate in regulation of airway function through the ADRB2-G protein-adenylyl cyclase (AC) signaling pathway; however, the key genes associated with this pathway and the spatiotemporal changes in the expression spectrum of some of their subtypes remain unclear, resulting in an insufficient theoretical basis for formulating the dose and method of drug administration for neonates. Methods We performed sampling at different developmental time points in rhesus monkeys, including the embryo stage, neonatal stage, and adolescence. The MiSeq platform was used for sequencing of key genes and some of their subtypes in the ADRB2 signaling pathway in lung tissues, and target gene expression was normalized and calculated according to reads per kilobase million. Results At different lung-developmental stages, we observed expression of phenylethanolamine N-methyltransferase (PNMT), ADRB2, AC, AKAP and EPAC subtypes (except AC8, AKAP4/5), and various phosphodiesterase (PDE) subtypes (PDE3, PDE4, PDE7, and PDE8), with persistently high expression of AC6, PDE4B, and AKAP(1/2/8/9/12/13, and EZR) maintained throughout the lung-developmental process, PNMT, ADRB2, AC(4/6), PDE4B, and AKAP(1/2/8/9/12/13, EZR, and MAP2)were highly expressed at the neonatal stage. Conclusion During normal lung development in rhesus monkeys, key genes associated with ADRB2–G protein–AC signaling and some of their subtypes are almost all expressed at the neonatal stage, suggesting that this signaling pathway plays a role in this developmental stage. Additionally, AC6, PDE4B, and AKAP(1/2/8/9/12/13, and EZR) showed persistently high expression during the entire lung-developmental process, which provides a reference for the development and utilization of key gene subtypes in this pathway.
Collapse
|