1
|
Cheema NA, Castagna A, Ambrosani F, Argentino G, Friso S, Zurlo M, Beri R, Maule M, Vaia R, Senna G, Caminati M. Extracellular Vesicles in Asthma: Intercellular Cross-Talk in TH2 Inflammation. Cells 2025; 14:542. [PMID: 40214495 PMCID: PMC11989134 DOI: 10.3390/cells14070542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Asthma is a complex, multifactorial inflammatory disorder of the airways, characterized by recurrent symptoms and variable airflow obstruction. So far, two main asthma endotypes have been identified, type 2 (T2)-high or T2-low, based on the underlying immunological mechanisms. Recently, extracellular vesicles (EVs), particularly exosomes, have gained increasing attention due to their pivotal role in intercellular communication and distal signaling modulation. In the context of asthma pathobiology, an increasing amount of experimental evidence suggests that EVs secreted by eosinophils, mast cells, dendritic cells, T cells, neutrophils, macrophages, and epithelial cells contribute to disease modulation. This review explores the role of EVs in profiling the molecular signatures of T2-high and T2-low asthma, offering novel perspectives on disease mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Naila Arif Cheema
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Annalisa Castagna
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Francesca Ambrosani
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Giuseppe Argentino
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Simonetta Friso
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Marco Zurlo
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Ruggero Beri
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Matteo Maule
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Rachele Vaia
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Gianenrico Senna
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Marco Caminati
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| |
Collapse
|
2
|
Fang SB, Zhou ZR, Sun Q, Liu XQ, Li CG, Xie YC, He BX, Tian T, Deng XH, Fu QL. Plasma extracellular vesicles regulate the Functions of Th2 and ILC2 cells via miRNA-150-5p in patients with allergic rhinitis. Int Immunopharmacol 2025; 144:113644. [PMID: 39580865 DOI: 10.1016/j.intimp.2024.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Allergic rhinitis (AR), a chronic airway inflammation, has witnessed a rising prevalence in recent decades. Recent research indicates that various EVs are released into plasma in allergic airway inflammation, correlating with impaired airway function and severe inflammation. However, the contribution of plasma EVs to AR pathogenesis remains incompletely understood. We isolated plasma EVs using differential ultracentrifugation or size exclusion chromatography (SEC) and obtained differential microRNA (miRNA) expression profiles through miRNA sequencing. Peripheral blood mononuclear cells (PBMCs) were exposed to plasma EVs and miRNA mimics and inhibitors to assess the effect of plasma EVs and the underlying mechanisms. We found that EVs from HC and AR patients exhibited comparable characteristics in terms of concentration, structure, and EV marker expression. AR-EVs significantly enhanced Th2 cell levels and promoted ILC2 differentiation and IL-13+ ILC2 levels compared to HC-EVs. Both HC-EVs and AR-EVs were efficiently internalized by CD4+ T cells and ILCs. miRNA sequencing of AR-EVs revealed unique miRNA signatures implicated in diverse biological processes, among which miR-150-5p, miR-144-3p, miR-10a-5p, and miR-10b-5p were identified as pivotal contributors to AR-EVs' effects on CD4+ T cells and ILC2s. MiR-150-5p exhibited the most pronounced impact on cell differentiation and was confirmed to be upregulated in AR-EVs by PCR. In total, our study demonstrated that plasma EVs from patients with AR exhibited a pronounced capacity to significantly enhance the differentiation of Th2 cells and ILC2, which was correlated with an elevated expression of miR-150-5p within AR-EVs. These findings contribute to the advancement of our comprehension of EVs in the pathogenesis of AR and hold the potential to unveil novel therapeutic targets for the treatment of AR.
Collapse
Affiliation(s)
- Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Zhi-Rou Zhou
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Qi Sun
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Xiao-Qing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Chan-Gu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Ying-Chun Xie
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Bi-Xin He
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Tian Tian
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Martelo-Vidal L, Vázquez-Mera S, Miguéns-Suárez P, Bravo-López SB, Makrinioti H, Domínguez-Arca V, de-Miguel-Díez J, Gómez-Carballa A, Salas A, González-Barcala FJ, Salgado FJ, Nieto-Fontarigo JJ. Urinary Proteome and Exosome Analysis Protocol for the Discovery of Respiratory Diseases Biomarkers. Biomolecules 2025; 15:60. [PMID: 39858454 PMCID: PMC11762655 DOI: 10.3390/biom15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs). To achieve this, urine was DTT treated to decrease uromodulin, then concentrated and ultracentrifuged. Proteomic analyses of exosome-free urine were performed using LC-MS/MS. Simultaneously, miRNA expression from urine exosomes was measured using either RTqPCR (pre-amplification) or nCounter Nanostring (non-amplication) analyses. We detected 548 different proteins in exosome-free urine samples (N = 5) with high confidence (FDR < 1%), many of them being expressed in different non-renal tissues. Specifically, lung-related proteins were overrepresented (Fold enrichment = 1.31; FDR = 0.0335) compared to whole human proteome, and 10-15% were already described as protein biomarkers for several pulmonary diseases. Urine proteins identified belong to several functional categories important in respiratory pathology. We could confirm the expression of miRNAs previously connected to respiratory diseases (i.e., miR-16-5p, miR-21-5p, miR-146a-5p, and miR-215-5p) in urine exosomes by RTqPCR. Finally, we detected 333 miRNAs using Nanostring, 15 of them up-regulated in T2high asthma (N = 4) compared to T2low asthma (N = 4) and healthy subjects (N = 4). Therefore, this protocol combining the urinary proteome (exosome free) with the study of urinary exosome components (i.e., miRNAs) holds great potential for molecular biomarker discovery of non-renal and particularly respiratory pathologies.
Collapse
Affiliation(s)
- Laura Martelo-Vidal
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sara Vázquez-Mera
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Belén Bravo-López
- Proteomic Service, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Vicente Domínguez-Arca
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Bioprocess Engineering Group, Instituto de Investigacións Mariñas (IIM-CSIC), 36208 Vigo, Spain
| | - Javier de-Miguel-Díez
- Respiratory Department, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
- Health Research Institute Gregorio Marañón (IISGM), 28009 Madrid, Spain
- Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.G.-C.); (A.S.)
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), 28029 Madrid, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.G.-C.); (A.S.)
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), 28029 Madrid, Spain
| | - Francisco Javier González-Barcala
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Respiratory Medicine, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francisco Javier Salgado
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Juan José Nieto-Fontarigo
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Cheon J, Kim B, Lee J, Shin J, Kim TH. Functions and Clinical Applications of Extracellular Vesicles in T H2 Cell-Mediated Airway Inflammatory Diseases: A Review. Int J Mol Sci 2024; 25:9455. [PMID: 39273399 PMCID: PMC11394744 DOI: 10.3390/ijms25179455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Type 2 airway inflammation (T2AI), driven by type 2 innate lymphoid and CD4+ T helper 2 cells, leads to various diseases and conditions, such as chronic rhinosinusitis with nasal polyps, allergic rhinitis, and asthma. Emerging evidence suggests the involvement of extracellular vesicles (EVs) in these diseases. In this review, we describe the immunological T2AI pathogenic mechanisms, outline EV characteristics, and highlight their applications in the diagnosis and treatment of T2AI. An extensive literature search was conducted using appropriate strategies to identify relevant articles from various online databases. EVs in various biological samples showed disease-specific characteristics for chronic rhinosinusitis with nasal polyps, allergic rhinitis, and asthma, with some demonstrating therapeutic effects against these conditions. However, most studies have been limited to in vitro and animal models, highlighting the need for further clinical research on the diagnostic and therapeutic applications of EVs.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Juhyun Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jaemin Shin
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Tucis D, Hopkins G, Browne W, James V, Onion D, Fairclough LC. The Role of Extracellular Vesicles in Allergic Sensitization: A Systematic Review. Int J Mol Sci 2024; 25:4492. [PMID: 38674077 PMCID: PMC11049870 DOI: 10.3390/ijms25084492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Allergies affect approximately 10-30% of people worldwide, with an increasing number of cases each year; however, the underlying mechanisms are still poorly understood. In recent years, extracellular vesicles (EVs) have been suggested to play a role in allergic sensitization and skew to a T helper type 2 (Th2) response. The aim of this review is to highlight the existing evidence of EV involvement in allergies. A total of 22 studies were reviewed; 12 studies showed EVs can influence a Th2 response, while 10 studies found EVs promoted a Th1 or Treg response. EVs can drive allergic sensitization through up-regulation of pro-Th2 cytokines, such as IL-4 and IL-13. In addition, EVs from MRSA can induce IgE hypersensitivity in mice towards MRSA. On the other hand, EVs can induce tolerance in the immune system; for example, pre-exposing OVA-loaded EVs prevented OVA sensitization in mice. The current literature thus suggests that EVs play an essential role in allergy. Further research utilizing human in vitro models and clinical studies is needed to give a reliable account of the role of EVs in allergy.
Collapse
Affiliation(s)
- Davis Tucis
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (D.T.); (G.H.); (W.B.); (D.O.)
| | - Georgina Hopkins
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (D.T.); (G.H.); (W.B.); (D.O.)
| | - William Browne
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (D.T.); (G.H.); (W.B.); (D.O.)
| | - Victoria James
- School of Veterinary Medicine and Science, The University of Nottingham, Nottingham NG7 2UH, UK;
| | - David Onion
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (D.T.); (G.H.); (W.B.); (D.O.)
| | - Lucy C. Fairclough
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (D.T.); (G.H.); (W.B.); (D.O.)
- School of Veterinary Medicine and Science, The University of Nottingham, Nottingham NG7 2UH, UK;
| |
Collapse
|
6
|
Al-Humiari MA, Yu L, Liu LP, Nouri MZ, Tuna KM, Denslow ND, Alli AA. Extracellular vesicles from BALF of pediatric cystic fibrosis and asthma patients increase epithelial sodium channel activity in small airway epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184219. [PMID: 37634857 PMCID: PMC11632644 DOI: 10.1016/j.bbamem.2023.184219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Extracellular Vesicles (EVs) are nanosized vesicles derived from all cell types. EV cargo allows for intercellular communication, intracellular signaling, and regulation of proteins in recipient cells. We tested the hypothesis that EVs isolated from the bronchoalveolar-lavage fluid (BALF) of pediatric cystic fibrosis (CF) or pediatric asthma patients increase epithelial sodium channel (ENaC) activity in normal human small airway epithelial cells (SAECs) and the mechanism involves specific EV lipids. We characterized EVs from BALF of pediatric CF and pediatric asthma patients by nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. The CF and asthma pediatric groups were similar in BALF electrolytes concentration and cell count, except for neutrophils, which were higher in the CF group. Lipidomic analyses for each group of EVs were performed using targeted mass spectrometry. Phosphatidylethanolamine, sphingomyelins, and triacylglycerol were enriched in both groups, but phosphatidylcholine and phosphatidylinositol concentrations were greater in the CF group compared to the asthma group, and the opposite trend was found for phosphatidylserine. Endogenous ENaC activity, measured by the single-channel patch-clamp technique, increased in normal human SAECs after challenging SAEC with EVs from either the CF or asthma groups compared to control EVs. In conclusion, EVs isolated from BALF of pediatric patients with CF or asthma have unique lipid profiles. Despite the differences, both types of EVs increase ENaC activity in normal human SAECs compared to control EVs isolated from the conditioned media of these cells.
Collapse
Affiliation(s)
- Mohammed A Al-Humiari
- Department of Pediatrics, Pediatric Pulmonology, University of Florida, Gainesville, FL, United States of America
| | - Ling Yu
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States of America
| | - Lauren P Liu
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States of America
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States of America
| | - Kubra M Tuna
- Department of Endocrinology, University of Florida, Gainesville, FL, United States of America
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States of America
| | - Abdel A Alli
- Department of Pediatrics, Pediatric Pulmonology, University of Florida, Gainesville, FL, United States of America; Department of Physiology and Aging, University of Florida, Gainesville, FL, United States of America; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
7
|
Afzal A, Khawar MB, Habiba U, Afzal H, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Abaidullah R, Asif Z, Saeed T. Diagnostic and therapeutic value of EVs in lungs diseases and inflammation. Mol Biol Rep 2023; 51:26. [PMID: 38127201 DOI: 10.1007/s11033-023-09045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
Extracellular vesicles (EVs) are membrane-derived messengers which have been playing an important role in the inflammation and pathogenesis of lung diseases. EVs contain varieties of DNA, RNA, and membrane receptors through which they work as a delivery system for bioactive molecules as well as intracellular communicators. EV signaling mediates tumor progression and metastasis. EVs are linked with many diseases and perform a diagnostic role in lung injury and inflammation so are used to diagnose the severity of diseases. EVs containing a variety of biomolecules communicate with the recipient cells during pathophysiological mechanisms thereby acquiring the attention of clinicians toward the diagnostic and therapeutic potential of EVs in different lung diseases. In this review, we summarize the role of EVs in inflammation with an emphasis on their potential as a novel candidate in the diagnostics and therapeutics of chronic obstructive pulmonary disease, asthma, and sarcoidosis.
Collapse
Affiliation(s)
- Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Ume Habiba
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rimsha Abaidullah
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zoya Asif
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Tahaa Saeed
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
8
|
Abstract
ABSTRACT Extracellular vesicles (EVs) are anuclear particles composed of lipid bilayers that contain nucleic acids, proteins, lipids, and organelles. EVs act as an important mediator of cell-to-cell communication by transmitting biological signals or components, including lipids, proteins, messenger RNAs, DNA, microRNAs, organelles, etc, to nearby or distant target cells to activate and regulate the function and phenotype of target cells. Under physiological conditions, EVs play an essential role in maintaining the homeostasis of the pulmonary milieu but they can also be involved in promoting the pathogenesis and progression of various respiratory diseases including chronic obstructive pulmonary disease, asthma, acute lung injury/acute respiratory distress syndrome, idiopathic pulmonary fibrosis (IPF), and pulmonary artery hypertension. In addition, in multiple preclinical studies, EVs derived from mesenchymal stem cells (EVs) have shown promising therapeutic effects on reducing and repairing lung injuries. Furthermore, in recent years, researchers have explored different methods for modifying EVs or enhancing EVs-mediated drug delivery to produce more targeted and beneficial effects. This article will review the characteristics and biogenesis of EVs and their role in lung homeostasis and various acute and chronic lung diseases and the potential therapeutic application of EVs in the field of clinical medicine.
Collapse
|
9
|
Höglund N, Koho N, Rossi H, Karttunen J, Mustonen AM, Nieminen P, Rilla K, Oikari S, Mykkänen A. Isolation of Extracellular Vesicles From the Bronchoalveolar Lavage Fluid of Healthy and Asthmatic Horses. Front Vet Sci 2022; 9:894189. [PMID: 35799843 PMCID: PMC9255554 DOI: 10.3389/fvets.2022.894189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles that engage in inflammatory reactions by mediating cell–cell interactions. Previously, EVs have been isolated from the bronchoalveolar lavage fluid (BALF) of humans and rodents. The aim of this study was to investigate the number and size distribution of EVs in the BALF of asthmatic horses (EA, n = 35) and healthy horses (n = 19). Saline was injected during bronchoscopy to the right lung followed by manual aspiration. The retrieved BALF was centrifuged twice to remove cells and biological debris. The supernatant was concentrated and EVs were isolated using size-exclusion chromatography. Sample fractions were measured with nanoparticle tracking analysis (NTA) for particle number and size, and transmission electron microscopy and confocal laser scanning microscopy were used to visualize EVs. The described method was able to isolate and preserve EVs. The mean EV size was 247 ± 35 nm (SD) in the EA horses and 261 ± 47 nm in the controls by NTA. The mean concentration of EVs was 1.38 × 1012 ± 1.42 × 1012 particles/mL in the EA horses and 1.33 × 1012 ± 1.07 × 1012 particles/mL in the controls with no statistically significant differences between the groups. With Western blotting and microscopy, these particles were documented to associate with EV protein markers (CD63, TSG101, HSP70, EMMPRIN, and actin) and hyaluronan. Equine BALF is rich in EVs of various sizes, and the described protocol is usable for isolating EVs. In the future, the role of EVs can be studied in horses with airway inflammation.
Collapse
Affiliation(s)
- Nina Höglund
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- *Correspondence: Nina Höglund
| | - Ninna Koho
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Heini Rossi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jenni Karttunen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu, Finland
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna Oikari
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Abstract
Extracellular vesicles (EVs) are membranous nanoparticles secreted by nearly all cell types and play a critical role in cell-to-cell crosstalk. EVs can be categorized based on their size, surface markers, or the cell type from which they originate. EVs carry "cargo," including but not limited to, RNA, DNA, proteins, and small signaling molecules. To date, many methods have been developed to isolate EVs from biological fluids, such as blood plasma, urine, bronchoalveolar lavage fluid, and urine. Once isolated, EVs can be characterized by dynamic light scattering, nanotracking analysis, nanoscale flow cytometry, and transmission electron microscopy. Given the ability of EVs to transport cargo between cells, research has recently focused on understanding their role in various human diseases. As understanding of their significance to disease processes grows, insight into the mechanisms behind the physiological role of their cargo in target cells can facilitate the development of a new type of biomarker and therapeutic target for diseases in future. In addition, their ability to deliver their cargo selectively to target cells within the human body means that they could serve as therapeutic agents or methods of drug delivery. In this review, we will first introduce EVs and the cargo they carry, outline current methods for EV isolation and characterization, and discuss their potential use as biomarkers and therapeutic agents in the near future.
Collapse
Affiliation(s)
- Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea.
| |
Collapse
|
11
|
Virtanen T. Inhalant Mammal-Derived Lipocalin Allergens and the Innate Immunity. FRONTIERS IN ALLERGY 2022; 2:824736. [PMID: 35387007 PMCID: PMC8974866 DOI: 10.3389/falgy.2021.824736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
A major part of important mammalian respiratory allergens belongs to the lipocalin family of proteins. By this time, 19 respiratory mammalian lipocalin allergens have been registered in the WHO/IUIS Allergen Nomenclature Database. Originally, lipocalins, small extracellular proteins (molecular mass ca. 20 kDa), were characterized as transport proteins but they are currently known to exert a variety of biological functions. The three-dimensional structure of lipocalins is well-preserved, and lipocalin allergens can exhibit high amino acid identities, in several cases more than 50%. Lipocalins contain an internal ligand-binding site where they can harbor small principally hydrophobic molecules. Another characteristic feature is their capacity to bind to specific cell-surface receptors. In all, the physicochemical properties of lipocalin allergens do not offer any straightforward explanations for their allergenicity. Allergic sensitization begins at epithelial barriers where diverse insults through pattern recognition receptors awaken innate immunity. This front-line response is manifested by epithelial barrier-associated cytokines which together with other components of immunity can initiate the sensitization process. In the following, the crucial factor in allergic sensitization is interleukin (IL)-4 which is needed for stabilizing and promoting the type 2 immune response. The source for IL-4 has been searched widely. Candidates for it may be non-professional antigen-presenting cells, such as basophils or mast cells, as well as CD4+ T cells. The synthesis of IL-4 by CD4+ T cells requires T cell receptor engagement, i.e., the recognition of allergen peptides, which also provides the specificity for sensitization. Lipocalin and innate immunity-associated cell-surface receptors are implicated in facilitating the access of lipocalin allergens into the immune system. However, the significance of this for allergic sensitization is unclear, as the recognition by these receptors has been found to produce conflicting results. As to potential adjuvants associated with mammalian lipocalin allergens, the hydrophobic ligands transported by lipocalins have not been reported to enhance sensitization while it is justified to suppose that lipopolysaccharide plays a role in it. Taken together, type 2 immunity to lipocalin allergens appears to be a harmful immune response resulting from a combination of signals involving both the innate and adaptive immunities.
Collapse
Affiliation(s)
- Tuomas Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Boyle RJ, Shamji MH. Developments in the field of allergy in 2020 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2021; 51:1531-1537. [PMID: 34750898 DOI: 10.1111/cea.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
While 2020 will be remembered for the global coronavirus pandemic, there were also important advances in the field of allergy. In this review article, we summarize key findings reported in Clinical and Experimental Allergy during 2020. We hope this provides readers with an accessible snapshot of the work published in our journal during this time.
Collapse
Affiliation(s)
- Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| |
Collapse
|
13
|
Fang SB, Zhou ZR, Peng YQ, Liu XQ, He BX, Chen DH, Chen D, Fu QL. Plasma EVs Display Antigen-Presenting Characteristics in Patients With Allergic Rhinitis and Promote Differentiation of Th2 Cells. Front Immunol 2021; 12:710372. [PMID: 34691024 PMCID: PMC8531542 DOI: 10.3389/fimmu.2021.710372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
Background Allergic rhinitis (AR) is characterized by IgE-mediated mucosa response after exposure to allergens. Extracellular vesicles (EVs) are nano-size vesicles containing biological cargos for intercellular communications. However, the role of plasma EVs in pathogenesis of AR remains largely unknown. Methods Plasma EVs from patients with AR were isolated, quantified, and characterized. The expression of Der p 1 and antigen-presenting molecules on EVs was determined by Western blot, flow cytometry, or ELISA. PKH26- and CFSE (carboxyfluorescein succinimidyl ester)-stained AR-EVs were used to determine the uptake of EVs by CD4+T cells and their effects on CD4+T cell proliferation, respectively. Results Plasma EVs in healthy control (HC) and AR patients were similar in the concentration of particles, expression for specific EV markers, and both had structural lipid bilayer. However, the levels of Der p 1 on plasma EVs from both mild and moderate-severe AR patients were significantly higher than that on HC. The levels of antigen-presenting molecules on plasma EVs were similar from three subjects. Moreover, levels of Der p 1 on EVs in plasma, but not nasal secretion, were significantly associated with the symptom score of AR patients and level of plasma IL-13. Additionally, plasma EVs from patients with AR promoted the development of Th2 cells, while no effect was found on CD4+ T-cell proliferation. Conclusions Plasma EVs derived from patients with AR exhibited antigen-presenting characteristics and promoted differentiation of Th2 cells, thus providing novel understanding of the pathogenesis of AR.
Collapse
Affiliation(s)
- Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Rou Zhou
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ya-Qi Peng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Qing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bi-Xin He
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - De-Hua Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Extracellular Vesicles in Airway Homeostasis and Pathophysiology. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The epithelial–mesenchymal trophic unit (EMTU) is a morphofunctional entity involved in the maintenance of the homeostasis of airways as well as in the pathogenesis of several diseases, including asthma and chronic obstructive pulmonary disease (COPD). The “muco-microbiotic layer” (MML) is the innermost layer of airways made by microbiota elements (bacteria, viruses, archaea and fungi) and the surrounding mucous matrix. The MML homeostasis is also crucial for maintaining the healthy status of organs and its alteration is at the basis of airway disorders. Nanovesicles produced by EMTU and MML elements are probably the most important tool of communication among the different cell types, including inflammatory ones. How nanovesicles produced by EMTU and MML may affect the airway integrity, leading to the onset of asthma and COPD, as well as their putative use in therapy will be discussed here.
Collapse
|
15
|
Pilette C. Role of exosomes in allergic asthma: Signaling platforms between the epithelium and type 2 immunity. J Allergy Clin Immunol 2021; 148:1478-1480. [PMID: 34599976 DOI: 10.1016/j.jaci.2021.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Charles Pilette
- Department of Pulmonology, Cliniques universitaires Saint-Luc, and Pole of Pulmonology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
16
|
Alobaidi A, Alsamarai A, Alsamarai MA. Inflammation in Asthma Pathogenesis: Role of T cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy Agents Med Chem 2021; 20:317-332. [PMID: 34544350 DOI: 10.2174/1871523020666210920100707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Asthma is a chronic disease with abnormal inflammatory and immunological responses. The disease initiated by antigens in subjects with genetic susceptibility. However, environmental factors play a role in the initiation and exacerbation of asthma attack. Asthma is T helper 2 (Th2)-cell-mediated disease. Recent studies indicated that asthma is not a single disease entity, but it is with multiple phenotypes and endotypes. The pathophysiological changes in asthma included a series of subsequent continuous vicious circle of cellular activation contributed to induction of chemokines and cytokines that potentiate inflammation. The heterogeneity of asthma influenced the treatment response. The asthma pathogenesis driven by varied set of cells such as eosinophils, basophils, neutrophils, mast cells, macrophages, epithelial cells and T cells. In this review the role of T cells, macrophage, and epithelial cells are discussed.
Collapse
Affiliation(s)
- Amina Alobaidi
- Kirkuk University College of Veterinary Medicine, Kirkuk. Iraq
| | - Abdulghani Alsamarai
- Aalborg Academy College of Medicine [AACOM], Denmark. Tikrit University College of Medicine, [TUCOM], Tikrit. Iraq
| | | |
Collapse
|
17
|
Extracellular Vesicles in Allergic Rhinitis and Asthma and Laboratory Possibilities for Their Assessment. Int J Mol Sci 2021; 22:ijms22052273. [PMID: 33668821 PMCID: PMC7956366 DOI: 10.3390/ijms22052273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, extracellular vesicles (EVs) have been implicated in the etiopathogenesis of many diseases, including lung disorders, with the possibility of diagnostic and therapeutic applications. The analysis of EV in respiratory tract diseases faces many obstacles, including material collection from airways, standardization of isolation techniques, detection methods, the analysis of their content, etc. This review focuses on the role of extracellular vesicles in the pathogenesis of atopic respiratory diseases, especially asthma, with a special focus on their clinical applicability as a diagnostic tool. We also summarize available laboratory techniques that enable the detection of EVs in various biological materials, with particular emphasis on flow cytometry. The opportunities and limitations of detecting EV in bronchoalveolar lavage fluid (BALF) were also described.
Collapse
|
18
|
The Therapeutic Effect of Extracellular Vesicles on Asthma in Pre-Clinical Models: A Systematic Review Protocol. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Asthma is the most common pediatric disease, characterized by chronic airway inflammation and airway hyperresponsiveness. There are several management options for asthma, but no specific treatment. Extracellular vesicles (EVs) are powerful cellular mediators of endocrine, autocrine and paracrine signalling, and can modulate biophysiological function in vitro and in vivo. A thorough investigation of therapeutic effects of EVs in asthma has not been conducted. Therefore, this systematic review is designed to synthesize recent literature on the therapeutic effects of EVs on physiological and biological outcomes of asthma in pre-clinical studies. An electronic search of Web of Science, EMBASE, MEDLINE, and Scopus will be conducted on manuscripts published in the last five years that adhere to standardized guidelines for EV research. Grey literature will also be included. Two reviewers will independently screen the selected studies for title and abstract, and full text based on the eligibility criteria. Data will be extracted, narratively synthesized and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This systematic review will summarize the current knowledge from preclinical studies investigating the therapeutic effects of EVs on asthma. The results will delineate whether EVs can mitigate biological hallmarks of asthma, and if so, describe the underlying mechanisms involved in the process. This insight is crucial for identifying key pathways that can be targeted to alleviate the burden of asthma. The data will also reveal the origin, dosage and biophysical characteristics of beneficial EVs. Overall, our results will provide a scaffold for future intervention and translational studies on asthma treatment.
Collapse
|
19
|
Zhang YH, Li Z, Zeng T, Chen L, Li H, Huang T, Cai YD. Detecting the Multiomics Signatures of Factor-Specific Inflammatory Effects on Airway Smooth Muscles. Front Genet 2021; 11:599970. [PMID: 33519902 PMCID: PMC7838645 DOI: 10.3389/fgene.2020.599970] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Smooth muscles are a specific muscle subtype that is widely identified in the tissues of internal passageways. This muscle subtype has the capacity for controlled or regulated contraction and relaxation. Airway smooth muscles are a unique type of smooth muscles that constitute the effective, adjustable, and reactive wall that covers most areas of the entire airway from the trachea to lung tissues. Infection with SARS-CoV-2, which caused the world-wide COVID-19 pandemic, involves airway smooth muscles and their surrounding inflammatory environment. Therefore, airway smooth muscles and related inflammatory factors may play an irreplaceable role in the initiation and progression of several severe diseases. Many previous studies have attempted to reveal the potential relationships between interleukins and airway smooth muscle cells only on the omics level, and the continued existence of numerous false-positive optimal genes/transcripts cannot reflect the actual effective biological mechanisms underlying interleukin-based activation effects on airway smooth muscles. Here, on the basis of newly presented machine learning-based computational approaches, we identified specific regulatory factors and a series of rules that contribute to the activation and stimulation of airway smooth muscles by IL-13, IL-17, or the combination of both interleukins on the epigenetic and/or transcriptional levels. The detected discriminative factors (genes) and rules can contribute to the identification of potential regulatory mechanisms linking airway smooth muscle tissues and inflammatory factors and help reveal specific pathological factors for diseases associated with airway smooth muscle inflammation on multiomics levels.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
20
|
Lee YS, Kim JH, Lim DH. Urine Microbe-Derived Extracellular Vesicles in Children With Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:75-87. [PMID: 33191678 PMCID: PMC7680828 DOI: 10.4168/aair.2021.13.1.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Several studies have found significant associations between asthma and microbiome. However, it is challenging to obtain-sputum and bronchoalveolar lavage samples from pediatric patients. Thus, we used voided urine to show that urine microbe-derived extracellular vesicles (EVs) in asthma are an available source for clinical research. METHODS Five urine samples were obtained at 2-3-month intervals from each patient with asthma (n = 20), and a single voided urine sample were obtained from each healthy child (n = 20). After isolating EVs, 16S rDNA pyrosequencing was performed. The Chao1 index and principal coordinate analysis (PCoA) were used to assess diversity. To predict microbiota functional capacities, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used based on the Kyoto Encyclopedia of Genes and Genomes pathway database. Eight covariates were included in the EnvFit analysis to identify significant factors in the asthma group. RESULTS The asthma group showed lower Chao1 bacterial richness, and PCoA-based clustering differed significantly. Two phyla, and 13 families and genera were enriched or depleted. Functional profiling revealed significant differences between the asthma and control groups. EnvFit analysis of correlation to age, sex, body mass index, infection, season, asthma phenotype, severity, and symptoms was not significant except for infections associated with visit 1 and the season of visit 2. CONCLUSIONS This study showed that microbe-derived EVs were constantly altered in the urine of children with asthma, consistent with the findings of previous studies indicating microbiome changes in the lung and gut. The urine may reflect the specific pattern of microbiome EVs in children with asthma.
Collapse
Affiliation(s)
- Yeong Seok Lee
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea
| | - Jeong Hee Kim
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea
| | - Dae Hyun Lim
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
21
|
Hejrati A, Hasani B, Esmaili M, Bashash D, Tavakolinia N, Zafari P. Role of exosome in autoimmunity, with a particular emphasis on rheumatoid arthritis. Int J Rheum Dis 2020; 24:159-169. [PMID: 33159418 DOI: 10.1111/1756-185x.14021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Cell-derived exosomes are identified as carriers of lipids, proteins, and genetic materials that participate in cell-cell signal communication, biological process, and cell signaling. Also, their involvement has been reported in a vast array of disorders and inflammatory conditions such as autoimmune diseases. Rheumatoid arthritis (RA), a common cause of joint disorder, is an inflammation-based disease in which the precise understanding of its pathogenesis needs to be further investigated. Also, there is only a palliative care approach for the alleviation of RA symptoms. This paper discusses the recent advances in the biology of exosomes in autoimmune disorders especially in RA, and also provides a new line of research for arthritis therapy using exosomes.
Collapse
Affiliation(s)
- Alireza Hejrati
- Department of Internal Medicine, Hazrate-Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahare Hasani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Esmaili
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naeimeh Tavakolinia
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
22
|
Li M, Wu M, Qin Y, Liu H, Tu C, Shen B, Xu X, Chen H. Differentially expressed serum proteins in children with or without asthma as determined using isobaric tags for relative and absolute quantitation proteomics. PeerJ 2020; 8:e9971. [PMID: 33194371 PMCID: PMC7646293 DOI: 10.7717/peerj.9971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Background Although asthma is one of the most common chronic, noncommunicable diseases worldwide, the pathogenesis of childhood asthma is not yet clear. Genetic factors and environmental factors may lead to airway immune-inflammation responses and an imbalance of airway nerve regulation. The aim of the present study was to determine which serum proteins are differentially expressed between children with or without asthma and to ascertain the potential roles that these differentially expressed proteins (DEPs) may play in the pathogenesis of childhood asthma. Methods Serum samples derived from four children with asthma and four children without asthma were collected. The DEPs were identified by using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses. Using biological information technology, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups of Proteins (COG) databases and analyses, we determined the biological processes associated with these DEPs. Key protein glucose-6-phosphate dehydrogenase (G6PD) was verified by enzyme linked immunosorbent assay (ELISA). Results We found 46 DEPs in serum samples of children with asthma vs. children without asthma. Among these DEPs, 12 proteins were significantly (>1.5 fold change) upregulated and 34 proteins were downregulated. The results of GO analyses showed that the DEPs were mainly involved in binding, the immune system, or responding to stimuli or were part of a cellular anatomical entity. In the KEGG signaling pathway analysis, most of the downregulated DEPs were associated with cardiomyopathy, phagosomes, viral infections, and regulation of the actin cytoskeleton. The results of a COG analysis showed that the DEPs were primarily involved in signal transduction mechanisms and posttranslational modifications. These DEPs were associated with and may play important roles in the immune response, the inflammatory response, extracellular matrix degradation, and the nervous system. The downregulated of G6PD in the asthma group was confirmed using ELISA experiment. Conclusion After bioinformatics analyses, we found numerous DEPs that may play important roles in the pathogenesis of childhood asthma. Those proteins may be novel biomarkers of childhood asthma and may provide new clues for the early clinical diagnosis and treatment of childhood asthma.
Collapse
Affiliation(s)
- Ming Li
- Department of Neonatology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingzhu Wu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Qin
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Huaqing Liu
- Department of Neonatology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chengcheng Tu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohong Xu
- Department of Clinical Laboratory, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
23
|
Shi S, Xue L, Han S, Qiu H, Peng Y, Zhao P, Liu QH, Shen J. Anti-Contractile and Anti-Inflammatory Effects of Diacerein on Isolated Mouse Airways Smooth Muscle and Mouse Asthma Model. Front Pharmacol 2020; 11:560361. [PMID: 33013396 PMCID: PMC7498646 DOI: 10.3389/fphar.2020.560361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
Characterized by abnormal smooth muscle contractility and airway inflammation, asthma is one of the most common airway diseases worldwide. Diacerein is a well-known anti-inflammatory drug, widely used in osteoarthritis. In current study, the innovative usage of diacerein in anti-contractile and anti-inflammatory treatment of asthma was studied. In vitro experiments including tension measurement and patch-clamp technique and in vivo experiments including establishment of mice model and measurement of respiratory resistance were applied to explore the role of diacerein in asthma. It turned out that agonist-precontracted mouse airway smooth muscle could be relaxed by diacerein via intracellular and extracellular calcium mobilization which was mediated by switched voltage-dependent L-type Ca2+ channels, non-selective cation channels, large-conductance Ca2+-activated K+ channel, and Na+/Ca2+ exchangers. Furthermore, diacerein could relieve bronchospasm and control airway inflammation in asthmatic mice via reduction of several inflammatory factors. Our studies elucidated the potential therapeutic property of diacerein in asthma treatment and the possible underlying mechanism. It also confirmed that new uses for already-approved drugs could be an important form of innovation.
Collapse
Affiliation(s)
- Shunbo Shi
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Shuhui Han
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Haiting Qiu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yongbo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
24
|
The Role of T Cells and Macrophages in Asthma Pathogenesis: A New Perspective on Mutual Crosstalk. Mediators Inflamm 2020; 2020:7835284. [PMID: 32922208 PMCID: PMC7453253 DOI: 10.1155/2020/7835284] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is associated with innate and adaptive immunity mediated by immune cells. T cell or macrophage dysfunction plays a particularly significant role in asthma pathogenesis. Furthermore, crosstalk between them continuously transmits proinflammatory or anti-inflammatory signals, causing the immune cell activation or repression in the immune response. Consequently, the imbalanced immune microenvironment is the major cause of the exacerbation of asthma. Here, we discuss the role of T cells, macrophages, and their interactions in asthma pathogenesis.
Collapse
|
25
|
Holtzman J, Lee H. Emerging role of extracellular vesicles in the respiratory system. Exp Mol Med 2020; 52:887-895. [PMID: 32541816 PMCID: PMC7338515 DOI: 10.1038/s12276-020-0450-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) present numerous biomedical ways of studying disease and pathology. They function as protective packaging for the delivery of controlled concentrations of miRNAs and effector molecules, including cytokines, chemokines, genetic material, and small signaling molecules. Previous studies of EVs have yielded valuable insights into pathways of intercellular communication that affect a variety of biological processes and disease responses. The roles of EVs, specifically microRNA-containing EVs (EV-miRNAs), in either mitigating or exacerbating pulmonary disease symptoms are numerous and show promise in helping us understand pulmonary disease pathology. Because of their well-documented involvement in pulmonary diseases, EVs show promise both as possible diagnostic biomarkers and as therapeutic agents. This review surveys the physiological functions of EVs in the respiratory system and outlines the pulmonary disease states in which EVs are involved in intercellular crosstalk. This review also discusses the potential clinical applications of EV-miRNAs in pulmonary diseases. Studies of tiny membrane-bound sacs called extracellular vesicles (EVs), which bud from cells naturally but are also implicated in disease, offer insights into respiratory health and disease, and could be used to deliver therapies into respiratory system cells. Joshua Holtzman at Oberlin College, Ohio, USA, and Heedoo Lee at Changwon National University in South Korea review current understanding of the role of EVs in the respiratory system and their potential uses in treatment. Researchers are discovering how EVs deliver signaling molecules to promote respiratory health, and how they can be involved in cancer, autoimmunity, asthma and other diseases. Early trials using EVs to deliver conventional drugs, and small RNA molecules that can control gene activity suggest great potential for treating a range of serious respiratory conditions. Analysis of EVs may also assist in diagnosis.
Collapse
Affiliation(s)
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea.
| |
Collapse
|
26
|
Bordoni B. The Shape and Function of Solid Fascias Depend on the Presence of Liquid Fascias. Cureus 2020; 12:e6939. [PMID: 32190491 PMCID: PMC7067346 DOI: 10.7759/cureus.6939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Scientific research is not a showcase of his own talent or own resources, it is a chance to improve common knowledge on certain topics for the collective well-being. A researcher should use multidisciplinarity to observe a phenomenon in its entirety and not only its alignment of thought, federations, committees, and knowledge; to get to understand it is necessary to exploit more tools and more disciplines. The article discusses the importance of the fluids (or liquid fascia) in maintaining the shape and function of the human body, as, currently, many texts forget how much body fluids are fundamental for understanding structural dynamics (bones and muscles, fibrils, and cells). By revisiting the current literature, the text wishes to highlight how the liquid fascia determines body adaptation in the presence of mechanical stress. Without fluids, there would be no body shape that we know.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| |
Collapse
|