1
|
Kleniewska P, Pawliczak R. The Link Between Dysbiosis, Inflammation, Oxidative Stress, and Asthma-The Role of Probiotics, Prebiotics, and Antioxidants. Nutrients 2024; 17:16. [PMID: 39796449 PMCID: PMC11722634 DOI: 10.3390/nu17010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Asthma (a chronic inflammatory disease of the airways) is characterized by a variable course, response to treatment, and prognosis. Its incidence has increased significantly in recent decades. Unfortunately, modern lifestyle and environmental factors contribute to the further increase in the incidence of this disease. Progressive industrialization and urbanization, widespread use of antibiotic therapy, excessive sterility and inappropriate, highly processed diets are some of the many risk factors that are relevant today. Over the years, a lot of evidence has been gathered showing the influence of microorganisms of the gut or airways on human health. Studies published in recent years indicate that dysbiosis (microbial imbalance) and oxidative stress (pro-oxidant-antioxidant imbalance) are important elements of the pathogenesis of this inflammatory disease. Scientists have attempted to counteract the effects of this process by using probiotics, prebiotics, and antioxidants. The use of probiotic microorganisms positively modulates the immune system by maintaining homeostasis between individual fractions of immune system cells. Moreover, recently conducted experiments have shown that probiotics have antioxidant, anti-inflammatory, and protective properties in oxidative stress (OS). The aim of this study is to present the current state of knowledge on the role of dysbiosis and OS in the pathogenesis of asthma. Conclusions: This review highlights the importance of using probiotics, prebiotics, and antioxidants as potential strategies to support the treatment and prevention of this disease.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | | |
Collapse
|
2
|
Balan D, Baral T, Manu MK, Mohapatra AK, Miraj SS. Efficacy of probiotics as adjuvant therapy in bronchial asthma: a systematic review and meta-analysis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:60. [PMID: 39563347 PMCID: PMC11575415 DOI: 10.1186/s13223-024-00922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Asthma is a chronic, heterogeneous disease characterized by airway inflammation. Asthma exacerbations significantly increase the disease burden, necessitating new therapeutic approaches. Emerging evidence suggests probiotics, through the gut-lung axis, may benefit asthma management by modulating immune responses and reducing inflammation. METHODS This systematic review and meta-analysis adhered to PRISMA guidelines and was registered with PROSPERO (CRD42023480098). A comprehensive search of PubMed, Scopus, Web of Science, and Embase was conducted up to March 2024. Inclusion criteria encompassed randomized controlled trials (RCTs) evaluating probiotic interventions in asthma patients. Statistical analysis was done using RevMan 5.3, with odds ratios (OR) and 95% confidence intervals (CI) calculated, and heterogeneity assessed using I2 statistics. RESULTS Twelve RCTs, comprising 1401 participants, met the inclusion criteria. The probiotic strains investigated included various Lactobacillus and Bifidobacterium species. Meta-analysis revealed significant improvements in asthma control test scores (OR 1.18, 95% CI: 1.18-3.64, p = 0.0001) following probiotic supplementation. Probiotics also improved fractional exhaled nitric oxide (FeNO) in one study, but pooled FeNO and eosinophil data were not statistically significant (p = 0.46 and p = 0.29, respectively). One study observed fewer asthma exacerbations in the probiotic group (24/212) compared to placebo (67/210), with no difference in exacerbation duration. CONCLUSION Probiotic supplementation may be beneficial in improving asthma symptom control with no significant impact on lung function indices or eosinophil levels. Probiotics can be a potential adjunctive therapy in asthma management, particularly for asthma symptom control.
Collapse
Affiliation(s)
- Divya Balan
- Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Tejaswini Baral
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Mohan K Manu
- Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Aswini Kumar Mohapatra
- Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Kleniewska P, Pawliczak R. Can probiotics be used in the prevention and treatment of bronchial asthma? Pharmacol Rep 2024; 76:740-753. [PMID: 38951480 PMCID: PMC11294272 DOI: 10.1007/s43440-024-00618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Asthma is a lifelong condition with varying degrees of severity and susceptibility to symptom control. Recent studies have examined the effects of individual genus, species, and strains of probiotic microorganisms on the course of asthma. The present review aims to provide an overview of current knowledge on the use of probiotic microorganisms, mainly bacteria of the genus Lactobacillus and Bifidobacterium, in asthma prevention and treatment. Recent data from clinical trials and mouse models of allergic asthma indicate that probiotics have therapeutic potential in this condition. Animal studies indicate that probiotic microorganisms demonstrate anti-inflammatory activity, attenuate airway hyperresponsiveness (AHR), and reduce airway mucus secretion. A randomized, double-blind, placebo-controlled human trials found that combining multi-strain probiotics with prebiotics yielded promising outcomes in the treatment of clinical manifestations of asthma. It appears that probiotic supplementation is safe and significantly reduces the frequency of asthma exacerbations, as well as improved forced expiratory volume and peak expiratory flow parameters, and greater attenuation of inflammation. Due to the small number of available clinical trials, and the use of a wide range of probiotic microorganisms and assessment methods, it is not possible to draw clear conclusions regarding the use of probiotics as asthma treatments.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, Łódź, 90-752, Poland.
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, Łódź, 90-752, Poland
| |
Collapse
|
4
|
Zhou T, Xiao L, Zuo Z, Zhao F. MAMI: a comprehensive database of mother-infant microbiome and probiotic resources. Nucleic Acids Res 2024; 52:D738-D746. [PMID: 37819042 PMCID: PMC10767955 DOI: 10.1093/nar/gkad813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Extensive evidence has demonstrated that the human microbiome and probiotics confer great impacts on human health, particularly during critical developmental stages such as pregnancy and infancy when microbial communities undergo remarkable changes and maturation. However, a major challenge in understanding the microbial community structure and interactions between mothers and infants lies in the current lack of comprehensive microbiome databases specifically focused on maternal and infant health. To address this gap, we have developed an extensive database called MAMI (Microbiome Atlas of Mothers and Infants) that archives data on the maternal and neonatal microbiome, as well as abundant resources on edible probiotic strains. By leveraging this resource, we can gain profound insights into the dynamics of microbial communities, contributing to lifelong wellness for both mothers and infants through precise modulation of the developing microbiota. The functionalities incorporated into MAMI provide a unique perspective on the study of the mother-infant microbiome, which not only advance microbiome-based scientific research but also enhance clinical practice. MAMI is publicly available at https://bioinfo.biols.ac.cn/mami/.
Collapse
Affiliation(s)
- Tian Zhou
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liwen Xiao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqing Zhao
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Duffy EP, Bachtell RK, Ehringer MA. Opioid trail: Tracking contributions to opioid use disorder from host genetics to the gut microbiome. Neurosci Biobehav Rev 2024; 156:105487. [PMID: 38040073 PMCID: PMC10836641 DOI: 10.1016/j.neubiorev.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Opioid use disorder (OUD) is a worldwide public health crisis with few effective treatment options. Traditional genetics and neuroscience approaches have provided knowledge about biological mechanisms that contribute to OUD-related phenotypes, but the complexity and magnitude of effects in the brain and body remain poorly understood. The gut-brain axis has emerged as a promising target for future therapeutics for several psychiatric conditions, so characterizing the relationship between host genetics and the gut microbiome in the context of OUD will be essential for development of novel treatments. In this review, we describe evidence that interactions between host genetics, the gut microbiome, and immune signaling likely play a key role in mediating opioid-related phenotypes. Studies in humans and model organisms consistently demonstrated that genetic background is a major determinant of gut microbiome composition. Furthermore, the gut microbiome is susceptible to environmental influences such as opioid exposure. Additional work focused on gene by microbiome interactions will be necessary to gain improved understanding of their effects on OUD-related behaviors.
Collapse
Affiliation(s)
- Eamonn P Duffy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan K Bachtell
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
6
|
Visser E, Ten Brinke A, Sizoo D, Pepels JJS, Ten Have L, van der Wiel E, van Zutphen T, Kerstjens HAM, de Jong K. Effect of dietary interventions on markers of type 2 inflammation in asthma: A systematic review. Respir Med 2024; 221:107504. [PMID: 38141862 DOI: 10.1016/j.rmed.2023.107504] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Type 2 (T2) inflammation is a key mechanism in the pathophysiology of asthma. Diet may have immunomodulatory effects, and a role for diet in T2 inflammation has been suggested in the literature. Indeed, diet and food allergies play a role in children with atopic asthma, but less is known about diet in relation to adult asthma, which is often non-atopic. OBJECTIVE To review the effect of dietary interventions on markers of T2 inflammation in adults with asthma. METHODS The databases PubMed, Embase, Cochrane Library, and CINAHL were searched for eligible studies until December 2022. We included studies of all types of foods, nutrients, diets or supplements, either as an exposure or as an intervention, in adults and adolescents with asthma. Outcomes of interest included the T2 biomarkers FeNO, eosinophils, IL-4, IL-5, IL-13, eosinophil cationic protein and eosinophil peroxidase. The methodological quality of eligible studies was systematically evaluated, and the results were summarised according to dietary clusters. RESULTS The systematic search identified studies on the dietary clusters antioxidants (n = 14), fatty acids, (n = 14), Mediterranean-style diets (n = 5), phytotherapy (n = 7), prebiotics & probiotics (n = 8), vitamin D (n = 7), and other dietary factors (n = 5). Studies within the phytotherapy and omega-3 poly-unsaturated fatty acids (PUFA) clusters showed possible improvements in T2 inflammation. Furthermore, we found little evidence for an effect of antioxidants, prebiotics & probiotics, and Mediterranean-style diets on T2 inflammation. However, heterogeneity in study protocols, methodological shortcomings and limited power of almost all studies make it difficult to fully determine the impact of different dietary approaches on T2 inflammation in asthma. CONCLUSIONS Overall, the current evidence does not support a specific dietary intervention to improve T2 inflammation in asthma. Interventions involving phytotherapy and omega-3 PUFA currently have the best evidence and warrant further evaluation in well-designed and adequately powered studies, while taking into account T2-high phenotypes of asthma.
Collapse
Affiliation(s)
- Edith Visser
- Department of Epidemiology, Medical Centre Leeuwarden, Leeuwarden, the Netherlands; Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, the Netherlands.
| | - Anneke Ten Brinke
- Department of Pulmonary Medicine, Medical Centre Leeuwarden, Leeuwarden, the Netherlands.
| | - Dionne Sizoo
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, the Netherlands; Centre Obesity Northern Netherlands (CON), Department of Surgery, Medical Centre Leeuwarden, Leeuwarden, the Netherlands.
| | - Janneke J S Pepels
- Department of Epidemiology, Medical Centre Leeuwarden, Leeuwarden, the Netherlands.
| | - Lianne Ten Have
- Department of Epidemiology, Medical Centre Leeuwarden, Leeuwarden, the Netherlands.
| | - Erica van der Wiel
- Department of Pulmonary Medicine, Martini Hospital, Groningen, the Netherlands.
| | - Tim van Zutphen
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, the Netherlands.
| | - Huib A M Kerstjens
- Department of Pulmonary Medicine, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| | - Kim de Jong
- Department of Epidemiology, Medical Centre Leeuwarden, Leeuwarden, the Netherlands.
| |
Collapse
|
7
|
Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023; 14:1228754. [PMID: 37638038 PMCID: PMC10450031 DOI: 10.3389/fimmu.2023.1228754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xueying Liu
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|