1
|
Peterkova L, Trifonova D, Gattinger P, Focke-Tejkl M, Garib V, Magbulova N, Djambekova G, Zakhidova N, Ismatova M, Sekerel BE, Tuten Dal S, Tulaev M, Kundi M, Keller W, Karaulov A, Valenta R. The cytoskeletal protein profilin is an important allergen in saltwort ( Salsola kali). Front Immunol 2024; 15:1379833. [PMID: 38911871 PMCID: PMC11190152 DOI: 10.3389/fimmu.2024.1379833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Pollen from Salsola kali, i.e., saltwort, Russian thistle, is a major allergen source in the coastal regions of southern Europe, in Turkey, Central Asia, and Iran. S. kali-allergic patients mainly suffer from hay-fever (i.e., rhinitis and conjunctivitis), asthma, and allergic skin symptoms. The aim of this study was to investigate the importance of individual S. kali allergen molecules. Sal k 1, Sal k 2, Sal k 3, Sal k 4, Sal k 5, and Sal k 6 were expressed in Escherichia coli as recombinant proteins containing a C-terminal hexahistidine tag and purified by nickel affinity chromatography. The purity of the recombinant allergens was analyzed by SDS-PAGE. Their molecular weight was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and their fold and secondary structure were studied by circular dichroism (CD) spectroscopy. Sera from clinically well-characterized S. kali-allergic patients were used for IgE reactivity and basophil activation experiments. S. kali allergen-specific IgE levels and IgE levels specific for the highly IgE cross-reactive profilin and the calcium-binding allergen from timothy grass pollen, Phl p 12 and Phl p 7, respectively, were measured by ImmunoCAP. The allergenic activity of natural S. kali pollen allergens was studied in basophil activation experiments. Recombinant S. kali allergens were folded when studied by CD analysis. The sum of recombinant allergen-specific IgE levels and allergen-extract-specific IgE levels was highly correlated. Sal k 1 and profilin, reactive with IgE from 64% and 49% of patients, respectively, were the most important allergens, whereas the other S. kali allergens were less frequently recognized. Specific IgE levels were highest for profilin. Of note, 37% of patients who were negative for Sal k 1 showed IgE reactivity to Phl p 12, emphasizing the importance of the ubiquitous cytoskeletal actin-binding protein, profilin, for the diagnosis of IgE sensitization in S. kali-allergic patients. rPhl p 12 and rSal k 4 showed equivalent IgE reactivity, and the clinical importance of profilin was underlined by the fact that profilin-monosensitized patients suffered from symptoms of respiratory allergy to saltwort. Accordingly, profilin should be included in the panel of allergen molecules for diagnosis and in molecular allergy vaccines for the treatment and prevention of S. kali allergy.
Collapse
Affiliation(s)
- Ludmila Peterkova
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Daria Trifonova
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pia Gattinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University, Krems an der Donau, Austria
| | - Victoria Garib
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Ministry of Higher Education, Science and Innovation, Tashkent, Uzbekistan
| | - Nigora Magbulova
- International Center of Molecular Allergology, Ministry of Higher Education, Science and Innovation, Tashkent, Uzbekistan
| | - Gulnara Djambekova
- International Center of Molecular Allergology, Ministry of Higher Education, Science and Innovation, Tashkent, Uzbekistan
| | | | | | - Bulent Enis Sekerel
- Pediatric Allergy and Asthma Division, Hacettepe University School of Medicine, Ankara, Türkiye
| | - Sevda Tuten Dal
- Pediatric Allergy and Asthma Division, Hacettepe University School of Medicine, Ankara, Türkiye
| | - Mikhail Tulaev
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Karl Landsteiner University, Krems an der Donau, Austria
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Rudolf Valenta
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
- Karl Landsteiner University, Krems an der Donau, Austria
- National Research Center, National Research Center Institute of Immunology (NRCI) Institute of Immunology, Federal Medical-Biological Agency of Russia (FMBA), Moscow, Russia
| |
Collapse
|
2
|
Custovic A, Custovic D, Fontanella S. Understanding the heterogeneity of childhood allergic sensitization and its relationship with asthma. Curr Opin Allergy Clin Immunol 2024; 24:79-87. [PMID: 38359101 PMCID: PMC10906203 DOI: 10.1097/aci.0000000000000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW To review the current state of knowledge on the relationship between allergic sensitization and asthma; to lay out a roadmap for the development of IgE biomarkers that differentiate, in individual sensitized patients, whether their sensitization is important for current or future asthma symptoms, or has little or no relevance to the disease. RECENT FINDINGS The evidence on the relationship between sensitization and asthma suggests that some subtypes of allergic sensitization are not associated with asthma symptoms, whilst others are pathologic. Interaction patterns between IgE antibodies to individual allergenic molecules on component-resolved diagnostics (CRD) multiplex arrays might be hallmarks by which different sensitization subtypes relevant to asthma can be distinguished. These different subtypes of sensitization are associated amongst sensitized individuals at all ages, with different clinical presentations (no disease, asthma as a single disease, and allergic multimorbidity); amongst sensitized preschool children with and without lower airway symptoms, with different risk of subsequent asthma development; and amongst sensitized patients with asthma, with differing levels of asthma severity. SUMMARY The use of machine learning-based methodologies on complex CRD data can help us to design better diagnostic tools to help practising physicians differentiate between benign and clinically important sensitization.
Collapse
Affiliation(s)
- Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|