1
|
Guarner-Lans V, Soria-Castro E, Cano-Martínez A, Rubio-Ruiz ME, Zarco G, Carreón-Torres E, Grimaldo O, Castrejón-Téllez V, Pérez-Torres I. Rats Exposed to Excess Sucrose During a Critical Period Develop Inflammation and Express a Secretory Phenotype of Vascular Smooth Muscle Cells. Metabolites 2024; 14:555. [PMID: 39452936 PMCID: PMC11509398 DOI: 10.3390/metabo14100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Neonatal rats that receive sucrose during a critical postnatal period (CP, days 12 to 28) develop hypertension by the time they reach adulthood. Inflammation might contribute to changes during this period and could be associated with variations in the vascular smooth muscle (VSMC) phenotype. OBJECTIVE We studied changes in inflammatory pathways that could underlie the expression of the secretory phenotype in the VSMC in the thoracic aorta of rats that received sucrose during CP. METHODS We analyzed histological changes in the aorta and the expression of the COX-2, TLR4, iNOS, eNOS, MMP-2 and -9, and β- and α-actin, the quantities of TNF-α, IL-6, and IL-1β using ELISA, and the levels of fatty acids using gas chromatography. RESULTS The aortic wall presented disorganization, decellularization, and wavy elastic fibers and an increase in the lumen area. The α- and β-actin expressions were decreased, while COX-2, TLR4, TNF-α, and the activity of IL-6 were increased. Oleic acid was increased in CP in comparison to the control group. CONCLUSIONS There is transient hypertension at the end of the CP that is accompanied by inflammation and a change in the phenotype of VSMC to the secretory phenotype. The inflammatory changes could act as epigenetic signals to determine the development of hypertension when animals reach adulthood.
Collapse
Affiliation(s)
- Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (A.C.-M.); (M.E.R.-R.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (A.C.-M.); (M.E.R.-R.)
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (A.C.-M.); (M.E.R.-R.)
| | - Gabriela Zarco
- Department of Pharmacology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Oscar Grimaldo
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (A.C.-M.); (M.E.R.-R.)
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (A.C.-M.); (M.E.R.-R.)
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
2
|
Hollands T. The Chronically Inflamed (Obese) Horse: Understanding Adipose Biology. EVIDENCE BASED EQUINE NUTRITION 2023:355-395. [DOI: 10.1079/9781789245134.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Cisbani G, Koppel A, Metherel AH, Smith ME, Aji KN, Andreazza AC, Mizrahi R, Bazinet RP. Serum lipid analysis and isotopic enrichment is suggestive of greater lipogenesis in young long-term cannabis users: A secondary analysis of a case-control study. Lipids 2022; 57:125-140. [PMID: 35075659 PMCID: PMC8923992 DOI: 10.1002/lipd.12336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023]
Abstract
Cannabis is now legal in many countries and while numerous studies have reported on its impact on cognition and appetite regulation, none have examined fatty acid metabolism in young cannabis users. We conducted an exploratory analysis to evaluate cannabis impact on fatty acid metabolism in cannabis users (n = 21) and non-cannabis users (n = 16). Serum levels of some saturated and monounsaturated fatty acids, including palmitic, palmitoleic, and oleic acids were higher in cannabis users compared to nonusers. As palmitic acid can be derived from diet or lipogenesis from sugars, we evaluated lipogenesis using a de novo lipogenesis index (palmitate/linoleic acid) and carbon-specific isotope analysis, which allows for the determination of fatty acid 13 C signature. The significantly higher de novo lipogenesis index in the cannabis users group along with a more enriched 13 C signature of palmitic acid suggested an increase in lipogenesis. In addition, while serum glucose concentration did not differ between groups, pyruvate and lactate were lower in the cannabis user group, with pyruvate negatively correlating with palmitic acid. Furthermore, the endocannabinoid 2-arachidonoylglycerol was elevated in cannabis users and could contribute to lipogenesis by activating the cannabinoid receptor 1. Because palmitic acid has been suggested to increase inflammation, we measured peripheral cytokines and observed no changes in inflammatory cytokines. Finally, an anti-inflammatory metabolite of palmitic acid, palmitoylethanolamide was elevated in cannabis users. Our results suggest that lipogenic activity is increased in cannabis users; however, future studies, including prospective studies that control dietary intake are required.
Collapse
Affiliation(s)
- Giulia Cisbani
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Alex Koppel
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario
| | - Adam H. Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Mackenzie E. Smith
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Kankana N. Aji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario
| | - Ana C. Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario
| | - Romina Mizrahi
- Department of Psychiatry, McGill University, Montreal, Canada,Douglas Research Center, Montreal, Canada,Corresponding author: Richard P. Bazinet, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada, Medical Sciences Building, 5th Floor, Room 5358, 1 King’s College Circle, Toronto, ON, M5S 1A8, , Phone number: (416) 946-8276, Romina Mizrahi, Department of Psychiatry, McGill University, 6875 Boulevard Lasalle, Montréal, QC H4H 1R3,
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada,Corresponding author: Richard P. Bazinet, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada, Medical Sciences Building, 5th Floor, Room 5358, 1 King’s College Circle, Toronto, ON, M5S 1A8, , Phone number: (416) 946-8276, Romina Mizrahi, Department of Psychiatry, McGill University, 6875 Boulevard Lasalle, Montréal, QC H4H 1R3,
| |
Collapse
|
4
|
Blood Profile of Cytokines, Chemokines, Growth Factors, and Redox Biomarkers in Response to Different Protocols of Treadmill Running in Rats. Int J Mol Sci 2020; 21:ijms21218071. [PMID: 33137990 PMCID: PMC7663152 DOI: 10.3390/ijms21218071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Both positive and negative aspects of sport performance are currently considered. The aim of our study was to determine time- and intensity-dependent effects of a single exercise bout on redox and inflammatory status. The experiment was performed on 40 male Wistar rats subjected to treadmill running for 30 min with the speed of 18 m/min (M30) or 28 m/min (F30), or for 2 h with the speed of 18 m/min (M120). Immunoenzymatic and spectrophotometric methods were applied to assess the levels of pro-inflammatory and anti-inflammatory cytokines, chemokines, growth factors, the antioxidant barrier, redox status, oxidative damage products, nitrosative stress, and their relationships with plasma non-esterified fatty acids. Treadmill running caused a reduction in the content of monocyte chemoattractant protein-1 (MCP1) and nitric oxide (M30, M120, F30 groups) as well as macrophage inflammatory protein-1α (MIP-1α) and regulated on activation, normal T-cell expressed and secreted (RANTES) (M30, F30 groups). We also demonstrated an increase in catalase activity as well as higher levels of reduced glutathione, advanced oxidation protein products, lipid hydroperoxides, malondialdehyde (M30, M120, F30 groups), and advanced glycation end products (F30 group). The presented findings showed the activation of antioxidative defense in response to increased reactive oxygen species' production after a single bout of exercise, but it did not prevent oxidative damage of macromolecules.
Collapse
|
5
|
Ng SW, Selvarajah GT, Cheah YK, Mustaffa Kamal F, Omar AR. Cellular Metabolic Profiling of CrFK Cells Infected with Feline Infectious Peritonitis Virus Using Phenotype Microarrays. Pathogens 2020; 9:E412. [PMID: 32466289 PMCID: PMC7281222 DOI: 10.3390/pathogens9050412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal feline immune-mediated disease caused by feline infectious peritonitis virus (FIPV). Little is known about the biological pathways associated in FIP pathogenesis. This is the first study aiming to determine the phenotypic characteristics on the cellular level in relation to specific metabolic pathways of importance to FIP pathogenesis. METHODS The internalization of type II FIPV WSU 79-1146 in Crandell-Rees Feline Kidney (CrFK) cells was visualized using a fluorescence microscope, and optimization prior to phenotype microarray (PM) study was performed. Then, four types of Biolog Phenotype MicroArray™ plates (PM-M1 to PM-M4) precoated with different carbon and nitrogen sources were used to determine the metabolic profiles in FIPV-infected cells. RESULTS The utilization of palatinose was significantly low in FIPV-infected cells; however, there were significant increases in utilizing melibionic acid, L-glutamine, L-glutamic acid and alanyl-glutamine (Ala-Gln) compared to non-infected cells. CONCLUSION This study has provided the first insights into the metabolic profiling of a feline coronavirus infection in vitro using PMs and deduced that glutamine metabolism is one of the essential metabolic pathways for FIPV infection and replication. Further studies are necessary to develop strategies to target the glutamine metabolic pathway in FIPV infection.
Collapse
Affiliation(s)
- Shing Wei Ng
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Gayathri Thevi Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| | - Farina Mustaffa Kamal
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (F.M.K.); (A.R.O.)
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (F.M.K.); (A.R.O.)
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| |
Collapse
|
6
|
Brovold H, Lund T, Svistounov D, Solbu MD, Jenssen TG, Ytrehus K, Zykova SN. Crystallized but not soluble uric acid elicits pro-inflammatory response in short-term whole blood cultures from healthy men. Sci Rep 2019; 9:10513. [PMID: 31324844 PMCID: PMC6642259 DOI: 10.1038/s41598-019-46935-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Several epidemiological studies have pointed at serum uric acid (SUA) as an independent risk factor for mortality, diabetes, hypertension, cardiovascular and kidney disease; however, no clear pathogenic pathway is established. Uric acid (UA) crystals show pro-inflammatory properties and can thus create or contribute to the state of chronic low-grade inflammation, a widely accepted pathogenic mechanism in several of the above-mentioned pathologies. On the other hand, soluble uric acid possesses antioxidant properties that might attenuate inflammatory responses. We aimed to explore the net effects of experimentally rising SUA in human whole blood cultures on several mediators of inflammation. Production of TNF-α, IL-1ß, IL-1RA, MCP-1 and IL-8 was assessed upon addition of 200 µM UA, 500 µM UA or monosodium urate (MSU) crystals in the presence or absence of 5 ng/ml lipopolysaccharide (LPS). RT-qPCR and multiplex bead based immunoassay were used to measure mRNA expression and cytokine release at 2 and 4 h of culture, respectively. 14C labeled UA was used to assess intracellular uptake of UA. We show that crystallized, but not soluble, UA induces production of pro-inflammatory mediators in human whole blood. Soluble UA is internalized in blood cells but does not potentiate or reduce LPS-induced release of cytokines.
Collapse
Affiliation(s)
- Henrik Brovold
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Trine Lund
- Cardiovascular Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dmitri Svistounov
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway.,Section of Nephrology, University Hospital of North Norway, Tromsø, Norway
| | - Marit D Solbu
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway.,Section of Nephrology, University Hospital of North Norway, Tromsø, Norway
| | - Trond G Jenssen
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Transplantation Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kirsti Ytrehus
- Cardiovascular Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Svetlana N Zykova
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway. .,Center for Quality Assurance and Development, University Hospital of North Norway, Tromsø, Norway. .,Department of Blood Bank and Medical Biochemistry, Innlandet Hospital Trust, Lillehammer, Norway.
| |
Collapse
|
7
|
Auger C, Samadi O, Jeschke MG. The biochemical alterations underlying post-burn hypermetabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2633-2644. [PMID: 28219767 PMCID: PMC5563481 DOI: 10.1016/j.bbadis.2017.02.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/22/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
A severe burn can trigger a hypermetabolic state which lasts for years following the injury, to the detriment of the patient. The drastic increase in metabolic demands during this phase renders it difficult to meet the body's nutritional requirements, thus increasing muscle, bone and adipose catabolism and predisposing the patient to a host of disorders such as multi-organ dysfunction and sepsis, or even death. Despite advances in burn care over the last 50 years, due to the multifactorial nature of the hypermetabolic phenomenon it is difficult if not impossible to precisely identify and pharmacologically modulate the biological mediators contributing to this substantial metabolic derangement. Here, we discuss biomarkers and molecules which play a role in the induction and mediation of the hypercatabolic condition post-thermal injury. Furthermore, this thorough review covers the development of the factors released after burns, how they induce cellular and metabolic dysfunction, and how these factors can be targeted for therapeutic interventions to restore a more physiological metabolic phenotype after severe thermal injuries. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Osai Samadi
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada.
| |
Collapse
|
8
|
Ticinesi A, Meschi T, Lauretani F, Felis G, Franchi F, Pedrolli C, Barichella M, Benati G, Di Nuzzo S, Ceda GP, Maggio M. Nutrition and Inflammation in Older Individuals: Focus on Vitamin D, n-3 Polyunsaturated Fatty Acids and Whey Proteins. Nutrients 2016; 8:186. [PMID: 27043616 PMCID: PMC4848655 DOI: 10.3390/nu8040186] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/17/2022] Open
Abstract
Chronic activation of the inflammatory response, defined as inflammaging, is the key physio-pathological substrate for anabolic resistance, sarcopenia and frailty in older individuals. Nutrients can theoretically modulate this phenomenon. The underlying molecular mechanisms reducing the synthesis of pro-inflammatory mediators have been elucidated, particularly for vitamin D, n-3 polyunsaturated fatty acids (PUFA) and whey proteins. In this paper, we review the current evidence emerging from observational and intervention studies, performed in older individuals, either community-dwelling or hospitalized with acute disease, and evaluating the effects of intake of vitamin D, n-3 PUFA and whey proteins on inflammatory markers, such as C-Reactive Protein (CRP), interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). After the analysis, we conclude that there is sufficient evidence for an anti-inflammatory effect in aging only for n-3 PUFA intake, while the few existing intervention studies do not support a similar activity for vitamin D and whey supplements. There is need in the future of large, high-quality studies testing the effects of combined dietary interventions including the above mentioned nutrients on inflammation and health-related outcomes.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Internal Medicine and Critical Subacute Care Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Tiziana Meschi
- Internal Medicine and Critical Subacute Care Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Fulvio Lauretani
- Internal Medicine and Critical Subacute Care Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Giovanna Felis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| | - Fabrizio Franchi
- Geriatric Unit, "Guglielmo da Saliceto" Hospital, AUSL Piacenza, Via Taverna 49, Piacenza 29121, Italy.
| | - Carlo Pedrolli
- Dietetics and Clinical Nutrition Unit, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari Provincia Autonoma di Trento, Largo Medaglie d'Oro 9, Trento 38122, Italy.
| | - Michela Barichella
- Parkinson Institute, Azienda Socio-Sanitaria Territoriale "Gaetano Pini"-C.T.O., Via Bignami 1, Milan 20126, Italy.
| | - Giuseppe Benati
- Geriatric Unit, Ospedale G.B. Morgagni-L. Pierantoni, Via Carlo Forlanini 34, Forlì 47121, Italy.
| | - Sergio Di Nuzzo
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Gian Paolo Ceda
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Clinical Geriatrics Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Marcello Maggio
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Clinical Geriatrics Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| |
Collapse
|
9
|
Oliveira V, Marinho R, Vitorino D, Santos GA, Moraes JC, Dragano N, Sartori-Cintra A, Pereira L, Catharino RR, da Silva ASR, Ropelle ER, Pauli JR, De Souza CT, Velloso LA, Cintra DE. Diets Containing α-Linolenic (ω3) or Oleic (ω9) Fatty Acids Rescues Obese Mice From Insulin Resistance. Endocrinology 2015; 156:4033-46. [PMID: 26280128 DOI: 10.1210/en.2014-1880] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Subclinical systemic inflammation is a hallmark of obesity and insulin resistance. The results obtained from a number of experimental studies suggest that targeting different components of the inflammatory machinery may result in the improvement of the metabolic phenotype. Unsaturated fatty acids exert antiinflammatory activity through several distinct mechanisms. Here, we tested the capacity of ω3 and ω9 fatty acids, directly from their food matrix, to exert antiinflammatory activity through the G protein-coupled receptor (GPR)120 and GPR40 pathways. GPR120 was activated in liver, skeletal muscle, and adipose tissues, reverting inflammation and insulin resistance in obese mice. Part of this action was also mediated by GPR40 on muscle, as a novel mechanism described. Pair-feeding and immunoneutralization experiments reinforced the pivotal role of GPR120 as a mediator in the response to the nutrients. The improvement in insulin sensitivity in the high-fat substituted diets was associated with a marked reduction in tissue inflammation, decreased macrophage infiltration, and increased IL-10 levels. Furthermore, improved glucose homeostasis was accompanied by the reduced expression of hepatic gluconeogenic enzymes and reduced body mass. Thus, our data indicate that GPR120 and GPR40 play a critical role as mediators of the beneficial effects of dietary unsaturated fatty acids in the context of obesity-induced insulin resistance.
Collapse
Affiliation(s)
- V Oliveira
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - R Marinho
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - D Vitorino
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - G A Santos
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - J C Moraes
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - N Dragano
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - A Sartori-Cintra
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - L Pereira
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - R R Catharino
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - A S R da Silva
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - E R Ropelle
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - J R Pauli
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - C T De Souza
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - L A Velloso
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| | - D E Cintra
- Laboratories of Nutritional Genomics (V.O., D.E.C.), Limeira 13484-350, Cell Signaling (V.O., D.V., J.C.M., N.D., L.A.V., D.E.C.), and Molecular Biology of Exercise (R.M., L.P., A.S.R.d.S., E.R.R., J.R.P.); Innovare (G.A.S., R.R.C.); and Nutrigenomics and Lipids Center (A.S.-C., D.E.C.) and Biotechnology Center (E.R.R., J.R.P., D.E.C.), School of Applied Sciences, State University of Campinas, Campinas, Brazil 13083-887; and Laboratory of Exercise Biochemistry and Physiology (C.T.D.S.), Health Sciences Unit, Universidade do Extremo Sul Catarinense Criciúma, Brazil 88806-000
| |
Collapse
|
10
|
Cheng SC, Joosten LA, Netea MG. The interplay between central metabolism and innate immune responses. Cytokine Growth Factor Rev 2014; 25:707-13. [DOI: 10.1016/j.cytogfr.2014.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
11
|
Dow CA, Stauffer BL, Greiner JJ, DeSouza CA. Influence of dietary saturated fat intake on endothelial fibrinolytic capacity in adults. Am J Cardiol 2014; 114:783-8. [PMID: 25052545 PMCID: PMC4357274 DOI: 10.1016/j.amjcard.2014.05.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 12/01/2022]
Abstract
Approximately 50% of middle-aged and older adults in the United States regularly consume a diet high in saturated fat. High dietary saturated fat intake has been linked to promote atherothrombotic vascular disease. We tested the hypothesis that endothelial fibrinolytic function is diminished in middle-aged and older adults who habitually consume a diet high in saturated fat. Twenty-four healthy, sedentary middle-aged, and older adults (54 to 71 years) were studied: 10 (8 men and 2 women) with a dietary saturated fat intake <10% (lower saturated fat) of total calories and 14 (9 men and 5 women) with a dietary saturated fat intake ≥10% of total calories (high saturated fat). Net endothelial release of tissue-type plasminogen activator (t-PA), the primary activator of fibrinolysis, was determined, in vivo, in response to intrabrachial infusions of bradykinin (12.5 to 50.0 ng/100 ml tissue/min) and sodium nitroprusside (1.0 to 4.0 μg/100 ml tissue/min). Capacity of the endothelium to release t-PA in response to bradykinin was ∼30% less (p <0.05) in the high (from -0.7 ± 0.6 to 36.9 ± 3.3 ng/100 ml tissue/min) compared with the lower (from -0.3 ± 0.3 to 53.4 ± 7.8 ng/100 ml tissue/min) dietary saturated fat group. Moreover, total amount of t-PA released was significantly less (∼30%) (201 ± 22 vs 274 ± 29 ng/100 ml tissue) in the adults who reported consuming a diet high in saturated fat. These results indicate that the capacity of the endothelium to release t-PA is lower in middle-aged and older adults who habitually consume a diet high in saturated fat. In conclusion, endothelial fibrinolytic dysfunction may underlie the increased atherothrombotic disease risk with a diet high in saturated fat.
Collapse
Affiliation(s)
- Caitlin A Dow
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Brian L Stauffer
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado; Department of Medicine, University of Colorado Denver and the Health Sciences Center, Aurora, Colorado; Denver Health Medical Center, Denver, Colorado
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado; Department of Medicine, University of Colorado Denver and the Health Sciences Center, Aurora, Colorado.
| |
Collapse
|