1
|
Sardar N, Aziz MW, Mukhtar N, Yaqub T, Anjum AA, Javed M, Ashraf MA, Tanvir R, Wolfe AJ, Schabacker DS, Forrester S, Khemmani M, Aqel AA, Warraich MA, Shabbir MZ. One Health Assessment of Bacillus anthracis Incidence and Detection in Anthrax-Endemic Areas of Pakistan. Microorganisms 2023; 11:2462. [PMID: 37894120 PMCID: PMC10609008 DOI: 10.3390/microorganisms11102462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Anthrax, a severe zoonotic disease, is infrequently reported in anthrax-endemic regions of Pakistan. Despite clinical reports indicating its presence, particularly cutaneous anthrax, there is insufficient laboratory evidence regarding disease occurrence and environmental persistence. The present study aimed to confirm Bacillus anthracis presence, accountable for animal mortality and human infection, while exploring environmental transmission factors. Between March 2019 and July 2021, a total of 19 outbreaks were documented. Of these, 11 affected sheep/goats in Zhob district and 8 affected cattle/sheep in Bajour Agency. Clinical signs suggestive of Bacillus anthracis outbreak were observed in 11 animals. Blood and swab samples were collected for confirmation. The study followed a One Health approach, analyzing animal, environmental (soil/plant), and human samples. Of the 19 outbreaks, 11 were confirmed positive for anthrax based on growth characteristics, colony morphology, and PCR. Soil and plant root samples from the outbreak areas were collected and analyzed microscopically and molecularly. Cutaneous anthrax was observed in six humans, and swab samples were taken from the lesions. Human serum samples (n = 156) were tested for IgG antibodies against PA toxin and quantitative analysis of anthrax toxin receptor 1 (ANTXR1). Bacillus anthracis was detected in 65 out of 570 (11.40%) soil samples and 19 out of 190 (10%) plant root samples from the outbreak areas. Four out of six human samples from cutaneous anthrax lesions tested positive for Bacillus anthracis. Human anthrax seroprevalence was found to be 11% and 9% in two districts, with the highest rates among butchers and meat consumers. The highest ANTXR1 levels were observed in butchers, followed by meat consumers, farm employees, meat vendors, veterinarians, and farm owners. These findings highlight the persistence of anthrax in the region and emphasize the potential public health risks.
Collapse
Affiliation(s)
- Nageen Sardar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
- Department of Microbiology, University of Jhang, Jhang 35200, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
- Department of Microbiology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Nadia Mukhtar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Aftab Ahmad Anjum
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Maryam Javed
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Muhammad Adnan Ashraf
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Rabia Tanvir
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Chicago, IL 60660, USA; (A.J.W.)
| | | | | | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Chicago, IL 60660, USA; (A.J.W.)
| | - Amin A. Aqel
- Faculty of Medicine, Mutah University, Al-Karak 61710, Jordan;
| | - Muhammad Akib Warraich
- Department of Marketing, Rennes School of Business, CS 76522, 2 Rue Robert d’Arbrissel, 35065 Rennes Cedex, France;
| | - Muhammad Zubair Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| |
Collapse
|
2
|
Patel VI, Booth JL, Dozmorov M, Brown BR, Metcalf JP. Anthrax Edema and Lethal Toxins Differentially Target Human Lung and Blood Phagocytes. Toxins (Basel) 2020; 12:toxins12070464. [PMID: 32698436 PMCID: PMC7405021 DOI: 10.3390/toxins12070464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of inhalation anthrax, is a serious concern as a bioterrorism weapon. The vegetative form produces two exotoxins: Lethal toxin (LT) and edema toxin (ET). We recently characterized and compared six human airway and alveolar-resident phagocyte (AARP) subsets at the transcriptional and functional levels. In this study, we examined the effects of LT and ET on these subsets and human leukocytes. AARPs and leukocytes do not express high levels of the toxin receptors, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2). Less than 20% expressed surface TEM8, while less than 15% expressed CMG2. All cell types bound or internalized protective antigen, the common component of the two toxins, in a dose-dependent manner. Most protective antigen was likely internalized via macropinocytosis. Cells were not sensitive to LT-induced apoptosis or necrosis at concentrations up to 1000 ng/mL. However, toxin exposure inhibited B. anthracis spore internalization. This inhibition was driven primarily by ET in AARPs and LT in leukocytes. These results support a model of inhalation anthrax in which spores germinate and produce toxins. ET inhibits pathogen phagocytosis by AARPs, allowing alveolar escape. In late-stage disease, LT inhibits phagocytosis by leukocytes, allowing bacterial replication in the bloodstream.
Collapse
Affiliation(s)
- Vineet I. Patel
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - J. Leland Booth
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Brent R. Brown
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - Jordan P. Metcalf
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
- Department of Microbiology and Immunology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
3
|
Toxin-neutralizing antibodies elicited by naturally acquired cutaneous anthrax are elevated following severe disease and appear to target conformational epitopes. PLoS One 2020; 15:e0230782. [PMID: 32294093 PMCID: PMC7159215 DOI: 10.1371/journal.pone.0230782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/09/2020] [Indexed: 01/03/2023] Open
Abstract
Understanding immune responses to native antigens in response to natural infections can lead to improved approaches to vaccination. This study sought to characterize the humoral immune response to anthrax toxin components, capsule and spore antigens in individuals (n = 46) from the Kayseri and Malatya regions of Turkey who had recovered from mild or severe forms of cutaneous anthrax infection, compared to regional healthy controls (n = 20). IgG antibodies to each toxin component, the poly-γ-D-glutamic acid capsule, the Bacillus collagen-like protein of anthracis (BclA) spore antigen, and the spore carbohydrate anthrose, were detected in the cases, with anthrax toxin neutralization and responses to Protective Antigen (PA) and Lethal Factor (LF) being higher following severe forms of the disease. Significant correlative relationships among responses to PA, LF, Edema Factor (EF) and capsule were observed among the cases. Though some regional control sera exhibited binding to a subset of the tested antigens, these samples did not neutralize anthrax toxins and lacked correlative relationships among antigen binding specificities observed in the cases. Comparison of serum binding to overlapping decapeptides covering the entire length of PA, LF and EF proteins in 26 cases compared to 8 regional controls revealed that anthrax toxin-neutralizing antibody responses elicited following natural cutaneous anthrax infection are directed to conformational epitopes. These studies support the concept of vaccination approaches that preserve conformational epitopes.
Collapse
|
4
|
Valente TS, Baldi F, Sant’Anna AC, Albuquerque LG, Paranhos da Costa MJR. Genome-Wide Association Study between Single Nucleotide Polymorphisms and Flight Speed in Nellore Cattle. PLoS One 2016; 11:e0156956. [PMID: 27300296 PMCID: PMC4907449 DOI: 10.1371/journal.pone.0156956] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
Introduction Cattle temperament is an important factor that affects the profitability of beef cattle enterprises, due to its relationship with productivity traits, animal welfare and labor safety. Temperament is a complex phenotype often assessed by measuring a series of behavioral traits, which result from the effects of multiple environmental and genetic factors, and their interactions. The aims of this study were to perform a genome-wide association study and detect genomic regions, potential candidate genes and their biological mechanisms underlying temperament, measured by flight speed (FS) test in Nellore cattle. Materials and Methods The genome-wide association study (GWAS) was performed using a single-step procedure (ssGBLUP) which combined simultaneously all 16,600 phenotypes from genotyped and non-genotyped animals, full pedigree information of 162,645 animals and 1,384 genotyped animals in one step. The animals were genotyped with High Density Bovine SNP BeadChip which contains 777,962 SNP markers. After quality control (QC) a total of 455,374 SNPs remained. Results Heritability estimated for FS was 0.21 ± 0.02. Consecutive SNPs explaining 1% or more of the total additive genetic variance were considered as windows associated with FS. Nine candidate regions located on eight different Bos taurus chromosomes (BTA) (1 at 73 Mb, 2 at 65 Mb, 5 at 22 Mb and 119 Mb, 9 at 98 Mb, 11 at 67 Mb, 15 at 16 Mb, 17 at 63 Kb, and 26 at 47 Mb) were identified. The candidate genes identified in these regions were NCKAP5 (BTA2), PARK2 (BTA9), ANTXR1 (BTA11), GUCY1A2 (BTA15), CPE (BTA17) and DOCK1 (BTA26). Among these genes PARK2, GUCY1A2, CPE and DOCK1 are related to dopaminergic system, memory formation, biosynthesis of peptide hormone and neurotransmitter and brain development, respectively. Conclusions Our findings allowed us to identify nine genomic regions (SNP windows) associated with beef cattle temperament, measured by FS test. Within these windows, six promising candidate genes and their biological functions were identified. These results may contribute to a better comprehension into the genetic control of temperament expression in Nellore cattle.
Collapse
Affiliation(s)
- Tiago Silva Valente
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Fernando Baldi
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Aline Cristina Sant’Anna
- Universidade Federal de Juiz de Fora (UFJF), Instituto de Ciências Biológicas, Departamento de Zoologia, Rua José Lourenço Kelmer, Juiz de Fora, MG 36.036-900, Brazil
| | - Lucia Galvão Albuquerque
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Mateus José Rodrigues Paranhos da Costa
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
- * E-mail:
| |
Collapse
|
5
|
Laws TR, Kuchuloria T, Chitadze N, Little SF, Webster WM, Debes AK, Saginadze S, Tsertsvadze N, Chubinidze M, Rivard RG, Tsanava S, Dyson EH, Simpson AJH, Hepburn MJ, Trapaidze N. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines. PLoS One 2016; 11:e0148713. [PMID: 27007118 PMCID: PMC4805272 DOI: 10.1371/journal.pone.0148713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens.
Collapse
Affiliation(s)
- Thomas R. Laws
- Defence Science and Technology Laboratory, DSTL Porton Down, Salisbury, United Kingdom
- * E-mail:
| | - Tinatin Kuchuloria
- Department of Public Health, Tbilisi State University, Tbilisi, Georgia
- Clinical Research Unit (CRU), Technology Management Company (TMC), Tbilisi, Georgia
| | - Nazibriola Chitadze
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| | - Stephen F. Little
- U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Wendy M. Webster
- U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Amanda K. Debes
- U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Salome Saginadze
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| | - Nikoloz Tsertsvadze
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| | - Mariam Chubinidze
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| | - Robert G. Rivard
- U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Shota Tsanava
- Department of Public Health, Tbilisi State University, Tbilisi, Georgia
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| | - Edward H. Dyson
- Defence Science and Technology Laboratory, DSTL Porton Down, Salisbury, United Kingdom
| | - Andrew J. H. Simpson
- Defence Science and Technology Laboratory, DSTL Porton Down, Salisbury, United Kingdom
| | - Matthew J. Hepburn
- U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Nino Trapaidze
- Clinical Research Unit (CRU), Technology Management Company (TMC), Tbilisi, Georgia
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| |
Collapse
|
6
|
Williamson ED, Dyson EH. Anthrax prophylaxis: recent advances and future directions. Front Microbiol 2015; 6:1009. [PMID: 26441934 PMCID: PMC4585224 DOI: 10.3389/fmicb.2015.01009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Anthrax is a serious, potentially fatal disease that can present in four distinct clinical patterns depending on the route of infection (cutaneous, gastrointestinal, pneumonic, or injectional); effective strategies for prophylaxis and therapy are therefore required. This review addresses the complex mechanisms of pathogenesis employed by the bacterium and describes how, as understanding of these has developed over many years, so too have current strategies for vaccination and therapy. It covers the clinical and veterinary use of live attenuated strains of anthrax and the subsequent identification of protein sub-units for incorporation into vaccines, as well as combinations of protein sub-units with spore or other components. It also addresses the application of these vaccines for conventional prophylactic use, as well as post-exposure use in conjunction with antibiotics. It describes the licensed acellular vaccines AVA and AVP and discusses the prospects for a next generation of recombinant sub-unit vaccines for anthrax, balancing the regulatory requirement and current drive for highly defined vaccines, against the risk of losing the “danger” signals required to induce protective immunity in the vaccinee. It considers novel approaches to reduce time to immunity by means of combining, for example, dendritic cell vaccination with conventional approaches and considers current opportunities for the immunotherapy of anthrax.
Collapse
Affiliation(s)
| | - Edward Hugh Dyson
- Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| |
Collapse
|
7
|
Natural cutaneous anthrax infection, but not vaccination, induces a CD4(+) T cell response involving diverse cytokines. Cell Biosci 2015; 5:20. [PMID: 26075052 PMCID: PMC4464127 DOI: 10.1186/s13578-015-0011-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/13/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Whilst there have been a number of insights into the subsets of CD4(+) T cells induced by pathogenic Bacillus anthracis infections in animal models, how these findings relate to responses generated in naturally infected and vaccinated humans has yet to be fully established. We describe the cytokine profile produced in response to T cell stimulation with a previously defined immunodominant antigen of anthrax, lethal factor (LF), domain IV, in cohorts of individuals with a history of cutaneous anthrax, compared with vaccinees receiving the U.K. licenced Anthrax Vaccine Precipitated (AVP) vaccine. FINDINGS We found that immunity following natural cutaneous infection was significantly different from that seen after vaccination. AVP vaccination was found to result in a polarized IFNγ CD4+ T cell response, while the individuals exposed to B. anthracis by natural infection mounted a broader cytokine response encompassing IFNγ, IL-5, -9, -10, -13, -17, and -22. CONCLUSIONS Vaccines seeking to incorporate the robust, long-lasting, CD4 T cell immune responses observed in naturally acquired cutaneous anthrax cases may need to elicit a similarly broad spectrum cellular immune response.
Collapse
|
8
|
Altmann DM. Host immunity to Bacillus anthracis lethal factor and other immunogens: implications for vaccine design. Expert Rev Vaccines 2014; 14:429-34. [PMID: 25400140 DOI: 10.1586/14760584.2015.981533] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Infections of humans with Bacillus anthracis are an issue with respect to the biothreat both to civilians and military personnel, infections of individuals by infected livestock in endemic regions and, recently, infections of intravenous drug users injecting anthrax-contaminated heroin. Existing vaccination regimens are reliant on protective antigen neutralization induced by repeated boosts with the AVA or AVP vaccines. However, there is ongoing interest in updated approaches in light of the intensive booster regime and extent of reactogenicity inherent in the current protocols. Several other immunogens from the B. anthracis proteome have been characterized in recent years, including lethal factor. Lethal factor induces strong CD4 T-cell immunity and encompasses immunodominant epitopes of relevance across diverse HLA polymorphisms. Taken together, recent studies emphasize the potential benefits of vaccines able to confer synergistic immunity to protective antigen and to other immunogens, targeting both B-cell and T-cell repertoires.
Collapse
Affiliation(s)
- Daniel M Altmann
- Department of Medicine, Hammersmith Hospital, Imperial College, Du Cane Road, London, UK
| |
Collapse
|
9
|
Ascough S, Ingram RJ, Abarra A, Holmes AJ, Maillere B, Altmann DM, Boyton RJ. Injectional anthrax infection due to heroin use induces strong immunological memory. J Infect 2014; 68:200-3. [PMID: 24513100 DOI: 10.1016/j.jinf.2013.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/08/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|